Sample \& Technical
Documents

Tools \& Software

LMH6657 and LMH6658 270-MHz Single Supply, Single and Dual Amplifiers

1 Features

$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ (Typical Values Unless Specified)

- -3 dB BW $\left(\mathrm{A}_{\mathrm{V}}=+1\right) 270 \mathrm{MHz}$
- Supply Voltage Range 3 V to 12 V
- Slew Rate, ($\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$) $700 \mathrm{~V} / \mu \mathrm{s}$
- Supply Current $6.2 \mathrm{~mA} / \mathrm{amp}$
- Output Current $+80 /-90 \mathrm{~mA}$
- Input Common-Mode Volt. 0.5 V Beyond $\mathrm{V}^{-}, 1.7 \mathrm{~V}$ from V^{+}
- Output Voltage Swing $\left(R_{L}=2 \mathrm{k} \Omega\right) 0.8 \mathrm{~V}$ from

Rails

- Input Voltage Noise $11 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Input Current Noise $2.1 \mathrm{pA} \sqrt{\mathrm{Hz}} /$
- DG Error 0.03\%
- DP Error 0.10°
- THD (5 MHz) -55 dBc
- Settling Time (0.1\%) 37ns
- Fully Characterized for 5 V , and $\pm 5 \mathrm{~V}$
- Output Overdrive Recovery 18 ns
- Output Short Circuit Protected ${ }^{(1)}$
- No Output Phase Reversal With CMVR Exceeded

2 Applications

- CD/DVD ROM
- ADC Buffer Amps
- Portable Video
- Current Sense Buffers
- Portable Communications
(1) Short Circuit Test is a momentary test. See Note 3 under Absolute Maximum Ratings.

Noninverting Frequency Response, Gain

3 Description

The LMH6657 and LMH6658 devices are low-cost operational amplifiers that operate from a single supply with input voltage range extending below the V^{-}. Based on easy to use voltage feedback topology and boasting fast slew rate ($700 \mathrm{~V} / \mu \mathrm{s}$) and high speed (140 MHz GBWP), the LMH6657 (Single) and LMH6658 (dual) can be used in high speed large signal applications. These applications include instrumentation, communication devices, set-top boxes, and so forth.
With a -3 dB BW of $100 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{V}}=+2\right)$ and DG \& DP of 0.03% \& 0.10° respectively, the LMH6657 and LMH6658 are well suited for video applications. The output stage can typically supply 80 mA into the load with a swing of about 1 V from either rail.
For Industrial applications, the LMH6657 and LMH6658 are excellent cost-saving choices. Input referred voltage noise is low and the input voltage can extend below V^{-}to ease amplification of low level signals that could be at or near the system ground. With low distortion and fast settling, LMH6657 and LMH6658 can provide buffering for A/D and D/A applications.
The LMH6657 and LMH6658 versatility and ease of use is extended even further by offering these high slew rate, high-speed operational amplifiers in miniature packages such as SOT-23-5, SC70, SOIC8, and VSSOP-8.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LMH6657	SC70 (5)	$2.00 \mathrm{~mm} \times 1.25 \mathrm{~mm}$
	SOT-23 (5)	$2.90 \mathrm{~mm} \times 1.60 \mathrm{~mm}$
LMH6658	SOIC (8)	$4.90 \mathrm{~mm} \times 3.91 \mathrm{~mm}$
	VSSOP (8)	$3.00 \mathrm{~mm} \times 3.00 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Noninverting Frequency Response, Phase

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History. 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics, 5 V 5
6.6 Electrical Characteristics, $\pm 5 \mathrm{~V}$ 7
6.7 Typical Characteristics 9
7 Detailed Description 17
7.1 Overview 17
7.2 Feature Description 17
7.3 Device Functional Modes 18
8 Application and Implementation 19
8.1 Application Information 19
9 Power Supply Recommendations 20
10 Layout. 20
10.1 Layout Guidelines 20
10.2 Layout Example 21
11 Device and Documentation Support 23
11.1 Documentation Support 23
11.2 Related Links 23
11.3 Community Resources. 23
11.4 Trademarks 23
11.5 Electrostatic Discharge Caution. 23
11.6 Glossary 23
12 Mechanical, Packaging, and Orderable Information 23
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision F (April 2013) to Revision G Page

- Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Changes from Revision E (March 2013) to Revision F Page
- Changed layout of National Data Sheet to TI format 1

5 Pin Configuration and Functions

Pin Functions

PIN				
NAME	NO.			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
$\mathrm{V}_{\text {IN }}$ Differential			± 2.5	V
Output Short Circuit Duration			See ${ }^{(2)(3)}$	
Input Current			± 10	mA
Supply Voltage (V^{+}- V^{-})			12.6	V
Voltage at Input/Output pins		$\mathrm{V}^{-}-0.8$	$\mathrm{V}^{+}+0.8$	V
Soldering Information	Infrared or Convection (20 sec.)		260	${ }^{\circ} \mathrm{C}$
	Wave Soldering (10 sec.)		260	
Storage temperature, $\mathrm{T}_{\text {stg }}$		-65	100	${ }^{\circ} \mathrm{C}$
Junction Temperature ${ }^{(4)}$			150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
(3) Output short circuit duration is infinite for $\mathrm{V}_{\mathrm{S}}<6 \mathrm{~V}$ at room temperature and below. For $\mathrm{V}_{\mathrm{S}}>6 \mathrm{~V}$, allowable short circuit duration is 1.5 ms .
(4) The maximum power dissipation is a function of $T_{J(M A X)}, R_{\theta J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / R_{\theta J A}$. All numbers apply for packages soldered directly onto a PCB.

6.2 ESD Ratings

$V_{(E S D)} \quad$ Electrostatic discharge		Human body model (HBM), per ANSI/ESDA/JEDEC JS-0011 ${ }^{(1)(2)}$	VALUE
		± 2000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than $500-\mathrm{V}$ HBM is possible with the necessary precautions. Pins listed as $\pm 2000 \mathrm{~V}$ may actually have higher performance.
(2) Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
(3) Machine Model, 0Ω in series with 200 pF .

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX
UNIT		
Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	3	12
Operating Temperature ${ }^{(1)}$	-40	$\mathrm{~V}^{\circ}$

(1) The maximum power dissipation is a function of $T_{J(M A X)}, R_{\theta J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / R_{\theta J A}$. All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		LMH6657		LMH6658		UNIT
		$\begin{gathered} \text { DBV (SOT- } \\ 23) \\ \hline \end{gathered}$	DCK (SC70)	D (SOIC)	$\begin{aligned} & \text { DGK } \\ & \text { (VSSOP) } \end{aligned}$	
		5 PINS		8 PINS		
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance ${ }^{(2)}$	265	478	190	235	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The maximum power dissipation is a function of $T_{J(M A X)}, R_{\theta J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / R_{\theta J A}$. All numbers apply for packages soldered directly onto a PCB.

6.5 Electrical Characteristics, 5 V

Unless otherwise specified, all limits ensured for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=100 \Omega$ (or as specified) tied to $\mathrm{V}^{+} / 2$.

(1) All limits are ensured by testing or statistical analysis.
(2) Typical values represent the most likely parametric norm.
(3) Slew rate is the "worst case" of the rising and falling slew rates.
(4) Output Swing not limited by Slew Rate limit.
(5) Drift determined by dividing the change in parameter at temperature extremes by the total temperature change.

Electrical Characteristics, 5 V (continued)

Unless otherwise specified, all limits ensured for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}=100 \Omega$ (or as specified) tied to $\mathrm{V}^{+} / 2$.

PARAMETER		TEST CONDITIONS		$\mathbf{M I N}{ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
I_{B}	Input Bias Current	See ${ }^{(6)}$			-5	-20	$\mu \mathrm{A}$
			At the temperature extremes			-30	
TC IB	Input Bias Current Average Drift	See ${ }^{(5)}$			0.01		$n A /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	At the temperature extremes			50	300	nA
						500	
CMRR	Common-Mode Rejection Ratio	V_{CM} Stepped from 0V to 3.0V		72	82		dB
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V}$		72	82		dB
I_{s}	Supply Current (per channel)	No load			6.2	8.5	mA
			At the temperature extremes			10	
MISCELLANEOUS PERFORMANCE							
V_{OH}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ to $\mathrm{V}^{+} / 2$		4.1	4.25		V
			At the temperature extremes	3.8			
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2$		4	4.19		
			At the temperature extremes	3.7			
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$ to $\mathrm{V}^{+} / 2$		3.85	4.15		
			At the temperature extremes	3.5			
$\mathrm{V}_{\text {OL }}$	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ to $\mathrm{V}^{+} / 2$		900	800		mV
			At the temperature extremes	1100			
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}^{+} / 2$		970	870		
			At the temperature extremes	1200			
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$ to $\mathrm{V}^{+} / 2$		990	885		
			At the temperature extremes	1250			
lout	Output Current	$V_{\text {OUT }}=1 \mathrm{~V}$ from either rail	Sourcing	40	85		mA
			Sinking	-40	105		
Isc	Output Short CircuitCurrent ${ }^{(7)}$	Sourcing to $\mathrm{V}^{+} / 2$		100	155		mA
			At the temperature extremes	80			
		Sinking to $\mathrm{V}^{+} / 2$		100	220		
			At the temperature extremes	80			
$\mathrm{R}_{\text {IN }}$	Common-Mode Input Resistance				3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance				1.8		pF
R OUT	Output Impedance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=+1$			0.06		Ω

(6) Positive current corresponds to current flowing into the device.
(7) Short circuit test is a momentary test. See Note 3 under Absolute Maximum Ratings.
www.ti.com

6.6 Electrical Characteristics, ± 5 V

Unless otherwise specified, all limits ensured for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}$, and $\mathrm{R}_{\mathrm{L}}=100 \Omega$ (or as specified) tied to 0 V .

	PARAMETER		TEST CONDITIONS	MIN ${ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
GB	Gain Bandwidth Product	$\mathrm{V}_{\text {OUT }}<200 \mathrm{mV}$ PP			140		MHz
SSBW -3-dB BW		$A_{V}=+1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{PP}$		220	270		MHz
		$\mathrm{A}_{\mathrm{V}}=+2$ or $-1, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV}$ PP			100		
GFP	Frequency Response Peaking	$A_{V}=+2, V_{\text {OUT }}=200 \mathrm{mV}_{\mathrm{PP}},$$\text { DC to } 100 \mathrm{MHz}$			1		dB
GFR	Frequency Response Rolloff	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{OUT}}=200 \mathrm{mV} \mathrm{VP}_{\text {P }},$ DC to 100 MHz			0.9		dB
$\mathrm{LPD}_{1}{ }^{\text {。 }}$	1° Linear Phase Deviation	$A_{V}=+2, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{PP}+ \pm 1^{\circ}$			30		MHz
$\mathrm{GF}_{0.1 \mathrm{~dB}}$	0.1-dB Gain Flatness	$\mathrm{A}_{\mathrm{V}}=+2, \pm 0.1 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{VP}$			20		MHz
PBW	Full Power Bandwidth	$-1 \mathrm{~dB}, \mathrm{~V}_{\text {OUT }}=8 \mathrm{~V}_{\mathrm{PP}}, \mathrm{A}_{\mathrm{V}}=-1$			30		MHz
DG	Differential Gain	NTSC, $R_{L}=150 \Omega$, Pos. or Neg. Video			0.03\%		
DP	Differential Phase	NTSC, $R_{L}=150 \Omega$, Pos. or Neg. Video			0.1		deg
TIME DOMAIN RESPONSE							
tr_{r}	Rise and Fall Time	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=500 \mathrm{mV} \mathrm{PP}$			3.3		ns
		$A_{V}=-1, V_{\text {OUT }}=500 \mathrm{mV} \mathrm{VP}$			3.3		
OS	Overshoot, Undershoot	$A_{V}=+2, \mathrm{~V}_{\text {OUT }}=500 \mathrm{mV} \mathrm{PP}$			16\%		
t_{s}	Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{PP}}, \pm 0.1 \%, \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{~A}_{\mathrm{V}}=-1 \end{aligned}$			35		ns
SR	Slew Rate ${ }^{(3)}$	$A_{V}=-1, V_{O}=8 V_{P P}$			700		V/ $/ \mathrm{s}$
		$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \mathrm{PP}$			500		
DISTORTION AND NOISE RESPONSE							
HD2	$2^{\text {nd }}$ Harmonic Distortion	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{P P}, A_{V}=-1$			-70		dBc
HD3	$3{ }^{\text {rd }}$ Harmonic Distortion	$f=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{P P}, A_{V}=-1$			-57		dBc
THD	Total Harmonic Distortion	$f=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{P P}, A_{V}=-1$			-55.5		dBc
V_{n}	Input-Referred Voltage Noise	$\mathrm{f}=100 \mathrm{KHz}$			11		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=1 \mathrm{KHz}$			19		
I_{n}	Input-Referred Current Noise	$f=100 \mathrm{KHz}$$\mathrm{f}=1 \mathrm{KHz}$$\mathrm{f}=5 \mathrm{MHz}$,			2.1		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
					7.5		
XTLKA	Cross-Talk Rejection (LMH6658)	$\begin{aligned} & f=5 \mathrm{MHz}, R_{L}(S N D)=100 \Omega \\ & R C V: R_{F}=R_{G}=1 \mathrm{k} \end{aligned}$			69		dB
STATIC, DC PERFORMANCE							
Avol	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}=-3.75 \mathrm{~V}$ to $3.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		87	100		dB
		$\mathrm{V}_{\mathrm{O}}=-3.5 \mathrm{~V}$ to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$		80	90		
		$\mathrm{V}_{\mathrm{O}}=-3 \mathrm{~V}$ to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		75	85		
CMVR	Input Common-Mode Voltage Range	CMRR $\geq 50 \mathrm{~dB}$		-5.2	-5.5		V
			At the temperature extremes	-5.1			
				3	3.3		
			At the temperature extremes	2.8			
V_{OS}	Input Offset Voltage				± 1	± 5	mV
		Apply at the temperature extremes				± 7	
TC V ${ }_{\text {OS }}$	Input Offset Voltage Average Drift	$\text { See }{ }^{(4)}$			± 2		$\mu \mathrm{V} / \mathrm{C}$

(1) All limits are ensured by testing or statistical analysis.
(2) Typical values represent the most likely parametric norm.
(3) Slew rate is the "worst case" of the rising and falling slew rates.
(4) Drift determined by dividing the change in parameter at temperature extremes by the total temperature change.

Electrical Characteristics, ± 5 V (continued)

Unless otherwise specified, all limits ensured for at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}$, and $\mathrm{R}_{\mathrm{L}}=100 \Omega$ (or as specified) tied to 0 V .

PARAMETER		TEST CONDITIONS		$\mathbf{M I N}{ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
I_{B}	Input Bias Current	See ${ }^{(5)}$			-5	-20	$\mu \mathrm{A}$
			At the temperature extremes			-30	
$\mathrm{TC}_{\text {IB }}$	Input Bias Current Average Drift	See ${ }^{(4)}$			0.01		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	At the temperature extremes			50	300	nA
						500	
CMRR	Common-Mode Rejection Ratio	V_{CM} Stepped from -5 V to 3 V		75	84		dB
+PSRR	Positive Power Supply Rejection Ratio	$\mathrm{V}^{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=-4 \mathrm{~V}$		75	82		dB
-PSRR	Negative Power Supply Rejection Ratio	$\mathrm{V}^{-}=-4.5 \mathrm{~V}$ to -5.5 V		78	85		dB
Is	Supply Current (per channel)	No load			6.5	9	mA
			At the temperature extremes			11	
MISCELLANEOUS PERFORMANCE							
V_{OH}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		4.1	4.25		V
			At the temperature extremes	3.8			
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		4	4.2		
			At the temperature extremes	3.7			
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$		3.85	4.18		
			At the temperature extremes	3.5			
V_{OL}	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		-4.05	-4.19		V
			At the temperature extremes	-3.8			
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$		-3.9	-4.05		
			At the temperature extremes	-3.65			
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$		-3.8	-4		
			At the temperature extremes	-3.5			
lout	Output Current	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ from either rail	Sourcing	45	100		mA
			Sinking	-45	-110		
Isc	Output Short Circuit Current ${ }^{(6)}$	Sourcing to Ground		120	180		mA
			At the temperature extremes	100			
		Sinking to Ground		120	230		
			At the temperature extremes	100			
R_{IN}	Common-Mode Input Resistance				4		M Ω
$\mathrm{C}_{\text {IN }}$	Common-Mode Input Capacitance				1.8		pF
Rout	Output Impedance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=+$			0.06		Ω

(5) Positive current corresponds to current flowing into the device.
(6) Short circuit test is a momentary test. See Note 3 under Absolute Maximum Ratings.

LMH6657, LMH6658
www.ti.com

6.7 Typical Characteristics

Figure 1. Noninverting Frequency Response, Gain

Figure 3. Noninverting Frequency Response, Phase

Figure 5. Open Loop Gain/Phase vs. Frequency

Figure 2. Inverting Frequency Response, Gain

Figure 4. Inverting Frequency Response, Phase

Figure 6. Unity Gain Frequency vs. $\mathbf{V}_{\mathbf{C M}}$

Typical Characteristics (continued)

Figure 7. Phase Margin vs. $\mathbf{V}_{\mathbf{C M}}$

Figure 9. Output vs. Input

Figure 11. PSRR vs. Frequency

Figure 8. Output vs. Input

Figure 10. CMRR vs. Frequency

Figure 12. DG/DP vs. IRE

LMH6657, LMH6658
www.ti.com

Typical Characteristics (continued)

Figure 13. Noise vs. Frequency

Figure 15. Output Impedance vs. Frequency

Figure 17. HD vs. ${ }^{\text {Out }}$

Figure 14. Crosstalk Rejection vs. Frequency

Figure 16. HD vs. $\mathrm{V}_{\text {Out }}$

Figure 18. THD vs. $V_{\text {Out }}$

Typical Characteristics (continued)

Figure 23. $\mathrm{V}_{\text {OUT }}$ vs. $\mathrm{I}_{\text {SOURCE }}$
Figure 24. $\mathrm{V}_{\text {OUT }}$ vs. $\mathrm{I}_{\text {SINK }}$

Typical Characteristics (continued)

Figure 25. Short Circuit Current

Figure 27. Settling Time vs. Output Step Amplitude

Figure 29. 0.1\% Settling Time vs. Cap Load

Figure 26. Short Circuit Current

Figure 28. Settling Time vs. Output Step Amplitude

Figure 30. $\Delta \mathrm{V}_{\text {OS }}$ vs. $\mathrm{V}_{\text {OUT }}$

Typical Characteristics (continued)

Figure 31. $\Delta \mathrm{V}_{\text {OS }}$ vs. $\mathrm{V}_{\text {OUT }}$

Figure 33. $\mathrm{I}_{\mathbf{S}} / \mathrm{Amp}$ vs. V_{CM}

Figure 35. V_{OS} vs. V_{S} (for 3 Representative Units)

Figure 32. $\mathrm{I}_{\mathbf{S}} /$ Amp vs. $\mathbf{V}_{\mathbf{S}}$

Figure 34. $\mathrm{I}_{\mathbf{S}} / \mathbf{A m p}$ vs. V_{CM}

Figure 36. V_{OS} vs. V_{S} (for 3 Representative Units)

LMH6657, LMH6658
www.ti.com

Typical Characteristics (continued)

Figure 37. V_{OS} vs. V_{S} (for 3 Representative Units)

Figure $39 .\left.\right|_{\mathrm{B}} \mid$ vs. V_{S}

Figure 41. Small Signal Step Response

Figure 38. V_{OS} vs. V_{CM} (A Typical Unit)

Figure 40. l_{OS} vs. V_{S}

5 ns/DIV

Figure 42. Small Signal Step Response

Typical Characteristics (continued)

Figure 43. Small Signal Step Response

$10 \mathrm{~ns} /$ DIV

5 ns/DIV

Figure 44. Small Signal Step Response

5 ns/DIV

Figure 45. Large Signal Step Response
Figure 46. Large Signal Step Response
$10 \mathrm{~ns} /$ DIV

Figure 47. Large Signal Step Response

7 Detailed Description

7.1 Overview

7.1.1 Large Signal Behavior

The LMH6657 and LMH6658 are large-bandwidth, fast slew rate, voltage feedback operational ampplifers ideal for high-speed, large signal applications. The low input referred voltage noise in conjunction with an input voltage range, which extends below V -, eases the adoption of this part in applications having a tiny signal at or near system ground, as well as other high-speed, low-distortion, and low-noise systems. Also, the large Gain Bandwidth Product allows high gain operation that does not compromise speed.

7.2 Feature Description

The LMH6657 and LMH6658 input stage is designed to provide excess overdrive when needed. This occurs when fast input signal excursions cannot be followed by the output stage. In these situations, the device encounters larger input signals than would be encountered under normal closed loop conditions. The LMH6657 and LMH6658 input stage is designed to take advantage of this "input overdrive" condition. The larger the amount of this overdrive, the greater is the speed with which the output voltage can change. Here is a plot of how the output slew rate limitation varies with respect to the amount of overdrive imposed on the input:

Figure 48. Plot Showing the Relationship Between Slew Rate and Input Overdrive
To relate the explanation above to a practical example, consider the following application example. Consider the case of a closed loop amplifier with a gain of -1 amplifying a sinusoidal waveform. From the plot of Output vs. Input (Figure 8), with a $30-\mathrm{MHz}$ signal and $7 \mathrm{~V}_{\mathrm{PP}}$ input signal, it can be seen that the output will be limited to a swing of $6.9 \mathrm{~V}_{\text {Pp. }}$. From the frequency Response plot it can be seen that the inverting gain of -1 has a -32° output phase shift at this frequency.
It can be shown that this setup will result in about $1.9 \mathrm{~V}_{\mathrm{PP}}$ differential input voltage corresponding to $650 \mathrm{~V} / \mu \mathrm{s}$ of slew rate from Figure 48, above ($\mathrm{SR}=\mathrm{V}_{\mathrm{o}}(\mathrm{pp}) \times \pi \times \mathfrak{f}=650 \mathrm{~V} / \mu \mathrm{s}$)
Note that the amount of overdrive appearing on the input for a given sinusoidal test waveform is affected by the following:

- Output swing
- Gain setting
- Input/output phase relationship for the given test frequency
- Amplifier configuration (inverting or noninverting)

Due to the higher frequency phase shift between input and output, there is no closed form solution to input overdrive for a given input. Therefore, Figure 48 is not very useful by itself in determining the output swing.
The following plots aid in predicting the output transition time based on the amount of swing required for a given gain setting.

Feature Description (continued)

Figure 49. Output 20\%-80\% Transition vs. Output Voltage Swing (Noninverting Gain)

Figure 50. Output 20\%-80\% Transition vs. Output Voltage Swing (Inverting Gain)

Beyond a gain of 5 or so, the LMH6657/6658 output transition would be limited by bandwidth. For example, with a gain of 5 , the -3 dB BW would be around 30 MHz corresponding to a rise time of about 12 ns ($10 \%-90 \%$). Assuming a near linear transition, the $20 \%-80 \%$ transition time would be around 9 ns which matches the measured results as shown in Figure 49.
When the output is heavily loaded, output swing may be limited by current capability of the device. Refer to Output Current Capability section for more details.

7.3 Device Functional Modes

7.3.1 Output Phase Reversal

This is a problem with some operational amplifiers. This effect is caused by phase reversal in the input stage due to saturation of one or more of the transistors when the inputs exceed the normal expected range of voltages. Some applications, such as servo control loops among others, are sensitive to this kind of behavior and would need special safeguards to ensure proper functioning. The LMH6657 and LMH6658 is immune to output phase reversal with input overload. With inputs exceeded, the LMH6657 and LMH6658 output will stay at the clamped voltage from the supply rail. Exceeding the input supply voltages beyond the Absolute Maximum Ratings of the device could however damage or otherwise adversely effect the reliability or life of the device.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Output Characteristics

8.1.1.1 Output Current Capability

The LMH6657/6658 output swing for a given load can be determined by referring to the Output Voltage vs. Output Current plots in Typical Characteristics. Characteristic Tables show the output current when the output is 1 V from either rail. The plots and table values can be used to predict closed loop continuous value of current for a given load. If left unchecked, the output current capability of the LMH6657 and LMH6658 could easily result in junction temperature exceeding the maximum allowed value specified under Absolute Maximum Ratings. Proper heat sinking or other precautions are required if conditions as such exist.
Under transient conditions, such as when the input voltage makes a large transition and the output has not had time to reach its final value, the device can deliver output currents in excess of the typical plots mentioned above. Plots shown in Figure 51 and Figure 52 depict how the output current capability improves under higher input overdrive voltages:

The LMH6657 and LMH6658 output stage is designed to swing within approximately one diode drop of each supply voltage by utilizing specially designed high speed output clamps. This allows adequate output voltage swing even with $5-\mathrm{V}$ supplies and yet avoids some of the issues associated with rail-to-rail output operational amplifiers. Some of these issues are:

- Supply current increases when output reaches saturation at or near the supply rails
- Prolonged recovery when output approaches the rails

The LMH6657 and LMH6658 output is exceedingly well-behaved when it comes to recovering from an overload condition. As can be seen from Figure 53, the LMH6657 and LMH6658 will typically recover from an output overload condition in about 18 ns , regardless of the duration of the overload.

Application Information (continued)

Figure 53. Output Overload Recovery

8.1.1.2 Driving Capacitive Loads

The LMH6657 and LMH6658 can drive moderate values of capacitance by utilizing a series isolation resistor between the output and the capacitive load. Typical Characteristics shows the settling time behavior for various capacitive loads and 20Ω of isolation resistance. Capacitive load tolerance will improve with higher closed loop gain values. Applications such as ADC buffers, among others, present complex and varying capacitive loads to the operational amplifier; best value for this isolation resistance is often found by experimentation and actual trial and error for each application.

8.1.1.3 Distortion

Applications with demanding distortion performance requirements are best served with the device operating in the inverting mode. The reason for this is that in the inverting configuration, the input common-mode voltage does not vary with the signal and there is no subsequent ill effects due to this shift in operating point and the possibility of additional non-linearity. Moreover, under low closed loop gain settings (most suited to low distortion), the noninverting configuration is at a further disadvantage of having to contend with the input common voltage range. There is also a strong relationship between output loading and distortion performance (that is, 1 $\mathrm{k} \Omega$ vs. 100Ω distortion improves by about 20 dB at 100 KHz) especially at the lower frequency end where the distortion tends to be lower. At higher frequency, this dependence diminishes greatly such that this difference is only about 4 dB at 10 MHz . But, in general, lighter output load leads to reduced HD3 term and thus improves THD.

9 Power Supply Recommendations

The LMH665x can operate off a single-supply or with dual supplies. The input CM capability of the parts (CMVR) extends all the way down to the V- rail to simplify single-supply applications. Supplies should be decoupled with low-inductance, often ceramic, capacitors to ground less than 0.5 inches from the device pins. TI recommends the use of ground plane, and as in most high-speed devices, it is advisable to remove ground plane close to device sensitive pins such as the inputs.

10 Layout

10.1 Layout Guidelines

Generally, a good high frequency layout will keep power supply and ground traces away from the inverting input and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and possible circuit oscillations. See Application Note OA-15, Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers (SNOA367) for more information. TI suggests the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization:

Layout Guidelines (continued)

Table 1. Evaluation Board Guide

DEVICE	PACKAGE	EVALUATION BOARD PIN
LMH6657MF	SOT-23-5	LMH730216
LMH6657MG	SC-70	LMH730165
LMH6658MA	8-Pin SOIC	LMH730036
LMH6658MM	8-Pin VSSOP	LMH730123

Another important parameter in working with high speed/high performance amplifiers, is the component values selection. Choosing external resistors that are large in value will effect the closed loop behavior of the stage because of the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to the device or a by-product of the board layout and component placement. Either way, keeping the resistor values lower, will diminish this interaction to a large extent. On the other hand, choosing very low value resistors will load down nodes and will contribute to higher overall power dissipation.

10.2 Layout Example

Remove the ground and power planes from under and around the part, especially the input and output pins.

SC-70 Board Layout (Actual size $=1.5$ in $\times 1.5$ in)
Figure 54. Layer 1 Silk

Layout Example (continued)

SC-70 Board Layout (Actual size $=1.5$ in $\times 1.5 \mathrm{in}$)
Figure 55. Layer 2 Silk

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

See Application Note OA-15, Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers, SNOA367

11.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE \& BUY	TECHNICAL DOCUMENTS	 SOFTWARE	 COMMUNITY
LMH6657	Click here				
LMH6658	Click here				

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect Tl's views; see TI's Terms of Use.

TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LMH6657MF/NOPB	ACTIVE	SOT-23	DBV	5	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	A85A	Samples
LMH6657MFX/NOPB	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	A85A	Samples
LMH6657MG	NRND	SC70	DCK	5	1000	TBD	Call TI	Call TI	-40 to 85	A76	
LMH6657MG/NOPB	ACTIVE	SC70	DCK	5	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	A76	Samples
LMH6658MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { LMH66 } \\ & \text { 58MA } \end{aligned}$	Samples
LMH6658MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { LMH66 } \\ & \text { 58MA } \end{aligned}$	Samples
LMH6658MM/NOPB	ACTIVE	VSSOP	DGK	8	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	A88A	Samples
LMH6658MMX/NOPB	ACTIVE	VSSOP	DGK	8	3500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 85	A88A	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Ti has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 (iameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: |
| LMH6657MF/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 |
| LMH6657MFX/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 |
| LMH6657MG | SC70 | DCK | 5 | 1000 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 |
| LMH6657MG/NOPB | SC70 | DCK | 5 | 1000 | 178.0 | 8.4 | 2.25 | 2.45 | 1.2 | 4.0 | 8.0 | Q3 |
| LMH6658MAX/NOPB | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 |
| LMH6658MM/NOPB | VSSOP | DGK | 8 | 1000 | 178.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| LMH6658MMX/NOPB | VSSOP | DGK | 8 | 3500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMH6657MF/NOPB	SOT-23	DBV	5	1000	210.0	185.0	35.0
LMH6657MFX/NOPB	SOT-23	DBV	5	3000	210.0	185.0	35.0
LMH6657MG	SC70	DCK	5	1000	210.0	185.0	35.0
LMH6657MG/NOPB	SC70	DCK	5	1000	210.0	185.0	35.0
LMH6658MAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0
LMH6658MM/NOPB	VSSOP	DGK	8	1000	210.0	185.0	35.0
LMH6658MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

SOLDER MASK DETAILS

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed . 006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

SOLDER MASK DETAILS

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLAStic SmALL OUTLINE PACKAGE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

