LM2592HV SIMPLE SWITCHER ${ }^{\text {® }}$ Power Converter 150-kHz 2-A Step-Down Voltage Regulator

1 Features

- 3.3-V, 5-V, and Adjustable Output Versions
- Adjustable Version Output Voltage Range: 1.2 V to $57 \mathrm{~V} \pm 4 \%$ Maximum Over Line and Load Conditions
- 2-A Output Load Current
- Available in 5-Pin Package
- Input Voltage Range up to 60 V
- $150-\mathrm{kHz}$ Fixed Frequency Internal Oscillator
- ON and OFF Control
- Low Power Standby Mode, I_{Q} Typically $90 \mu \mathrm{~A}$
- High Efficiency
- Thermal Shutdown and Current-Limit Protection

2 Applications

- Simple High-Efficiency Step-Down (Buck) Regulators
- Efficient Preregulator for Linear Regulators
- On-Card Switching Regulators
- Positive-to-Negative Converters

3 Description

The LM2592HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 2-A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and an adjustable output version.

This series of switching regulators is similar to the LM2593HV, but without some of the supervisory and control features of the latter.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, improved line and load specifications, and a fixed-frequency oscillator.

The LM2592HV operates at a switching frequency of 150 kHz , thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5 -pin package with several different lead bend options, and a 5 -pin surface mount package.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM2591HV	DDPAK/TO-263 (5)	$10.18 \mathrm{~mm} \times 8.41 \mathrm{~mm}$
	TO-220 (5)	$14.986 \mathrm{~mm} \times 10.16 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(Fixed Output Voltage Versions)

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Description (continued) 3
6 Pin Configuration and Functions 3
7 Specifications 4
7.1 Absolute Maximum Ratings 4
7.2 ESD Ratings 4
7.3 Recommended Operating Conditions 4
7.4 Thermal Information 4
7.5 Electrical Characteristics LM2592HV-3.3 5
7.6 Electrical Characteristics LM2592HV-5.0 5
Electrical Characteristics LM2592HV-ADJ 5
7.8 Electrical Characteristics All Output Voltage Versions 6
7.9 Typical Characteristics 7
8 Parameter Measurement Information 10
8.1 Test Circuits 10
9 Detailed Description 11
9.1 Overview 11
9.2 Functional Block Diagram 11
9.3 Feature Description 11
9.4 Device Functional Modes 13
10 Application and Implementation 14
10.1 Application Information. 14
10.2 Typical Application 17
11 Power Supply Recommendations 20
12 Layout. 20
12.1 Layout Guidelines 20
12.2 Layout Examples 21
12.3 Thermal Considerations 22
13 Device and Documentation Support 24
13.1 Community Resources 24
13.2 Trademarks 24
13.3 Electrostatic Discharge Caution. 24
13.4 Glossary 24
14 Mechanical, Packaging, and Orderable Information 24

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision D (January 2014) to Revision E Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
Changes from Revision C (April 2013) to Revision D Page
- Changed Removed the references to a UVLO circuit with hysteresis. 12
- Changed Changed fig 31 to the correct circuit. 16

5 Description (continued)

Features include a $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $90-\mu \mathrm{A}$ standby current. Self-protection features include a two stage current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	
NO.	NAME	I/O	DESCRIPTION

7 Specifications

7.1 Absolute Maximum Ratings ${ }^{(1)(2)}$

			MIN	MAX	UNIT
Maximum supply v				63	V
$\overline{\text { ON/OFF pin voltag }}$			-0.3	25	V
Feedback pin volta			-0.3	25	V
Output voltage to g	ady-state)			-1	V
Power dissipation					
	KTT package	Vapor phase (60 sec.)	215		
Lead temperature	KTI package	Infrared (10 sec.)	245		${ }^{\circ} \mathrm{C}$
	NDH package	Soldering (10 sec.)	260		
Maximum junction			150		${ }^{\circ} \mathrm{C}$
Storage temperatur			-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

7.2 ESD Ratings

Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)(2)}$			VALUE
$\mathrm{V}_{(\text {ESD })}$	± 2000	UNIT	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.

7.3 Recommended Operating Conditions

	MIN	MAX
UNIT		
Temperature	-40	125
${ }^{\circ} \mathrm{C}$		

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$			LM2591HV		UNIT
			KTT (DDPAK/TO-263)	NDH (TO-220)	
			5 PINS	5 PINS	
$\mathrm{R}_{\theta \mathrm{JA}}$	Junction-to-ambient thermal resistance	See ${ }^{(2)(3)}$	50	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$ Junction-to-case (top) thermal resistance	Junction-to-case (top) thermal resistance		2	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance to JESD 51-7
(3) Thermal Resistances were simulated on a 4-layer, JEDEC board

7.5 Electrical Characteristics LM2592HV-3.3

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	ARAMETER	TEST CONDITIONS		$\mathbf{M I N}{ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS - See Test Circuits ${ }^{(3)}$							
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$		3.168	3.3	3.432	V
			over the full operating temperature range	3.135		3.465	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$		76\%			

(1) All limits ensured at room temperature $\left(T_{J}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2592HV is used as shown in the Test Circuits, system performance will be as shown in system parameters section of Electrical Characteristics.

7.6 Electrical Characteristics LM2592HV-5.0

Specifications are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	ARAMETER	TEST CONDITIONS		MIN ${ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS - See Test Circuits ${ }^{(3)}$							
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, \\ & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A} \end{aligned}$		4.8	5	5.2	V
			over the full operating temperature range	4.75		5.25	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$		81\%			

(1) All limits ensured at room temperature $\left(T_{J}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2592HV is used as shown in the Test Circuits, system performance will be as shown in system parameters section of Electrical Characteristics.

7.7 Electrical Characteristics LM2592HV-ADJ

Specifications are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

	ARAMETER	TEST CONDITIONS		MIN ${ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS - See Test Circuits ${ }^{(3)}$							
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}$,		1.193	1.23	1.267	
V_{FB}	Feedback voltage	$0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A}$ $\mathrm{V}_{\text {OUT }}$ programmed for 3 V . Circuit of Test Circuits	over the full operating temperature range	1.18		1.28	V
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOA }}$			75\%		

(1) All limits ensured at room temperature $\left(T_{J}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2592HV is used as shown in the Test Circuits, system performance will be as shown in system parameters section of Electrical Characteristics.

7.8 Electrical Characteristics All Output Voltage Versions

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3-\mathrm{V}, 5-\mathrm{V}$, and adjustable version, and $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$ unless otherwise specified.

	PARAMETER	TEST CONDITIONS		MIN ${ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
DEVICE PARAMETERS							
I_{b}	Feedback bias current	Adjustable Version Only,$\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$			10	50	nA
			over the full operating temperature range			100	
	Oscillator frequency	See ${ }^{(3)}$		127	150	173	kHz
			over the full operating temperature range	110		173	
$\mathrm{V}_{\text {SAT }}$	Saturation voltage	$\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}^{(4)(5)}$			1.1	1.3	V
			over the full operating temperature range			1.4	
DC	Max duty cycle (ON)	See ${ }^{(5)(6)}$		100\%			A
	Min duty cycle (OFF)			0\%			
$\mathrm{I}_{\text {CLIM }}$	Switch current limit	Peak Current ${ }^{(4)(5)}$		2.4	3	3.7	
			over the full operating temperature range	2.3		4	
I_{L}	Output leakage current	Output $=0 \mathrm{~V}$			5	50	$\mu \mathrm{A}$
		Output $=-1 \mathrm{~V}^{(4)(6)(7)}$			5	30	mA
I_{Q}	Operating quiescent current	$\overline{\text { SD/SS Pin Open }}{ }^{(6)}$			5	10	mA
$\mathrm{I}_{\text {StBY }}$	Standby quiescent current	$\overline{\mathrm{SD}} / \mathrm{SS}$ pin $=0 \mathrm{~V}^{(7)}$			90	200	$\mu \mathrm{A}$
			over the full operating temperature range			250	
ON/OFF CONTROL - See Test Circuits							
	$\overline{\mathrm{ON}} /$ OFF pin logic input threshold voltage	Low (Regulator ON) High (Regulator OFF)			1.3		V
$\begin{array}{\|l\|} \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IL}} \\ \hline \end{array}$			over the full operating temperature range	2		0.6	
I_{H}	$\overline{\mathrm{ON}} /$ OFF pin input current	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (Regulator OFF)			5	15	$\mu \mathrm{A}$
I_{L}		$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (Regulator ON)			0.02	5	$\mu \mathrm{A}$

(1) All limits ensured at room temperature $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$ unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
(4) No diode, inductor or capacitor connected to output pin.
(5) Feedback pin removed from output and connected to 0 V to force the output transistor switch ON.
(6) Feedback pin removed from output and connected to 12 V for the $3.3-\mathrm{V}, 5-\mathrm{V}$, and the ADJ. version to force the output transistor switch OFF.
(7) $\mathrm{V}_{\mathrm{IN}}=60 \mathrm{~V}$.

7.9 Typical Characteristics

(Circuit of Test Circuits)

Figure 1. Normalized Output Voltage

Figure 3. Efficiency

Figure 5. Switch Current Limit

Figure 2. Line Regulation

Figure 4. Switch Saturation Voltage

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 6. Dropout Voltage

Typical Characteristics (continued)

(Circuit of Test Circuits)

Figure 7. Operating Quiescent Current

Figure 9. Minimum Operating Supply Voltage

Figure 11. Switching Frequency

Figure 8. Shutdown Quiescent Current

Figure 10. Feedback Pin Bias Current

Figure 12. $\overline{\mathrm{ON}} / \mathrm{OFF}$ Threshold Voltage

Texas
Instruments

Typical Characteristics (continued)

(Circuit of Test Circuits)

Figure 13. $\overline{\text { ON}} /$ OFF Pin Current (Sinking)

Continuous Mode Switching Waveforms $\mathrm{V}_{\text {IN }}=20 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=2 \mathrm{AL}=32 \mu \mathrm{H}, \mathrm{C}_{\text {OUt }}=220 \mu \mathrm{~F}, \mathrm{C}_{\text {OUt }} \mathrm{ESR}=50 \mathrm{~m} \Omega$ Output Pin Voltage, 10V/div.
Inductor Current 1A/div.
Output Ripple Voltage, $50 \mathrm{mV} / \mathrm{div}$.
Figure 15. Horizontal Time Base: $2 \mu \mathrm{~s} / \mathrm{div}$

Load Transient Response for Continuous Mode $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ $5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$ to $2 \mathrm{AL}=32 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=220 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }} \mathrm{ESR}=$ $50 \mathrm{~m} \Omega$
Output Voltage, $100 \mathrm{mV} / \mathrm{div}$. (AC)
500 mA to 2A Load Pulse
Figure 17. Horizontal Time Base: $50 \mu \mathrm{~s} / \mathrm{div}$

Figure 14. Internal Gain-Phase Characteristics

Discontinuous Mode Switching Waveforms $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=500 \mathrm{mAL}=10 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=330 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }} \mathrm{ESR}=45 \mathrm{~m} \Omega$ Output Pin Voltage, 10V/div.
Inductor Current 0.5A/div.
Output Ripple Voltage, $100 \mathrm{mV} /$ div.
Figure 16. Horizontal Time Base: $2 \mu \mathrm{~s} / \mathrm{div}$

Load Transient Response for Discontinuous Mode $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$,
$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$ to $2 \mathrm{AL}=10 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=330 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}$ $E S R=45 \mathrm{~m} \Omega$
Output Voltage, $100 \mathrm{mV} / \mathrm{div}$. (AC)
500-mA to 2-A Load Pulse

Figure 18. Horizontal Time Base: $\mathbf{2 0 0} \boldsymbol{\mu s} /$ div

8 Parameter Measurement Information

8.1 Test Circuits

Component Values shown are for $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$,
$\mathrm{V}_{\text {OUt }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$.
$\mathrm{C}_{\mathrm{IN}}-470-\mu \mathrm{F}, 50-\mathrm{V}$, Aluminum Electrolytic Nichicon PM Series
$\mathrm{C}_{\text {OUT }}$ - $220-\mu \mathrm{F}$, 25-V Aluminum Electrolytic, Nichicon PM Series
D1 - 3.3-A, 60-V Schottky Rectifier, 31DQ06 (International Rectifier)
L1 - $33 \mu \mathrm{H}$, See Application Curves
Figure 19. Fixed Output Voltage Versions

Select R_{1} to be approximately $1 \mathrm{k} \Omega$, use a 1% resistor for best stability.
Component Values shown are for $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$,
$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$.
$\mathrm{C}_{\mathrm{IN}}:-470-\mu \mathrm{F}, 35-\mathrm{V}$, Aluminum Electrolytic Nichicon PM Series
$\mathrm{C}_{\text {Out }}$ - $-220-\mu \mathrm{F}, 35-\mathrm{V}$ Aluminum Electrolytic, Nichicon PM Series
D1 - 3.3-A, 60-V Schottky Rectifier, 31DQ06 (International Rectifier)
L1 - $47 \mu \mathrm{H}$, See Application Curves
$R_{1}-1 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{2}-7.15 \mathrm{k}, 1 \%$
$\mathrm{C}_{\text {FF }}-3.3 \mathrm{nF}$
Typical Values
$\mathrm{C}_{s s}-0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\text {deLay }}-0.1 \mu \mathrm{~F}$
R PULLUP - 4.7 k (use 22 k if $\mathrm{V}_{\text {OUT }}$ is $\geq 45 \mathrm{~V}$)
\dagger Small signal Schottky diode to prevent damage to feedback pin by negative spike when output is shorted. Required
if $\mathrm{V}_{\text {IN }}>40 \mathrm{~V}$
Figure 20. Adjustable Output Voltage Versions

9 Detailed Description

9.1 Overview

The LM2592HV SIMPLE SWITCHER ${ }^{\circledR}$ regulator is an easy-to-use, nonsynchronous, step-down DC-DC converter with a wide input voltage range up to 60 V . The regulator is capable of delivering up to 2-A DC load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and an adjustable output version. The family requires few external components, and the pin arrangement was designed for simple, optimum PCB layout.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Delayed Start-Up

The circuit in Figure 21 uses the $\overline{\text { ON} / O F F ~ p i n ~ t o ~ p r o v i d e ~ a ~ t i m e ~ d e l a y ~ b e t w e e n ~ t h e ~ t i m e ~ t h e ~ i n p u t ~ v o l t a g e ~ i s ~}$ applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start-up is shown). As the input voltage rises, the charging of capacitor C 1 pulls the ON/OFF pin high, keeping the regulator off. When the input voltage reaches its final value and the capacitor stops charging, the resistor R_{2} pulls the ON/OFF pin low, thus allowing the circuit to start switching. Resistor R_{1} is included to limit the maximum voltage applied to the ON/OFF pin (maximum of 25 V), reduces power supply noise sensitivity, and also limits the capacitor, C1, discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the ON/OFF pin and cause problems.
This delayed start-up feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages.

Feature Description (continued)

Figure 21. Delayed Start-Up

9.3.2 Undervoltage Lockout

Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. An undervoltage lockout feature applied to a buck regulator is shown in Figure 22, while Figure 23 applies the same feature to an inverting circuit. The circuit in Figure 22 features a constant threshold voltage for turnon and turnoff (Zener voltage plus approximately one volt). The circuit in Figure 23 has a turnon threshold of about 13 V and a turnoff threshold of about 8 V . The amount of hysteresis is approximately equal to the output voltage. If Zener voltages greater than 25 V are used, an additional $47-\mathrm{k} \Omega$ resistor is needed from the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin to the ground pin to stay within the $25-\mathrm{V}$ maximum limit of the ON/OFF pin.

Figure 22. Undervoltage Lockout for Buck Regulator

Feature Description (continued)

This circuit has hysteresis
Regulator starts switching at $\mathrm{V}_{\mathrm{IN}}=13 \mathrm{~V}$.
Regulator stops switching at $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$
Figure 23. Undervoltage Lockout for Inverting Regulator

9.4 Device Functional Modes

9.4.1 Shutdown Mode

The $\overline{\mathrm{ON}} /$ OFF pin provides electrical ON and OFF control for the LM2592HV. When the voltage of this pin is higher than 2 V , the device is shutdown mode. The typical standby current in this mode is $90 \mu \mathrm{~A}$.

9.4.2 Active Mode

When the ON/OFF pin is left floating or pull below 0.6 V , the device will start switching and the output voltage will rise until it reaches a normal regulation voltage.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 Feedforward Capacitor

(Adjustable Output Voltage Version)

C_{FF} - A feedforward Capacitor C_{FF}, shown across R 2 in Test Circuits, is used when the output voltage is greater than 10 V or when $\mathrm{C}_{\text {out }}$ has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability.
If the output voltage ripple is large ($>5 \%$ of the nominal output voltage), this ripple can be coupled to the feedback pin through the feedforward capacitor and cause the error comparator to trigger the error flag. In this situation, adding a resistor, R_{FF}, in series with the feedforward capacitor, approximately 3 times R 1 , will attenuate the ripple voltage at the feedback pin.

10.1.2 Input Capacitor

C_{IN} - A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.
The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor must be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating. The voltage rating of the capacitor and its RMS ripple current capability must never be exceeded.

10.1.3 Output Capacitor

Cout - An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are the $100-\mathrm{kHz}$ Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter. The ESR must generally not be less than $100 \mathrm{~m} \Omega$ or there will be loop instability. If the ESR is too large, efficiency and output voltage ripple are effected, so ESR must be chosen carefully.

10.1.4 Catch Diode

Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be located close to the LM2592HV using short leads and short printed-circuit traces.
Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5 V and lower). Ultra-fast recovery, or high-efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. The diode must be chosen for its average/RMS current rating and maximum voltage rating. The voltage rating of the diode must be greater than the DC input voltage (not the output voltage).

Application Information (continued)

10.1.5 Inverting Regulator

The circuit in Figure 24 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator's ground pin to the negative output voltage. Then, after grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.
This example uses the LM2592HV-5.0 to generate a $-5-\mathrm{V}$ output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Because this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage.
To determine how much load current is possible before the internal device current limit is reached (and power limiting occurs), the system must be evaluated as a buck-boost configuration rather than as a buck. The peak switch current in amperes, for such a configuration is given as Equation 1:

$$
I_{\text {PEAK }}=I_{\text {LOAD }} \times\left(\frac{V_{\text {IN }}+V_{\text {OUT }}}{V_{\text {IN }}}\right)+\frac{V_{\text {IN }} \times V_{\text {OUT }} \times 10^{6}}{2 \times L \times f \times\left(V_{\text {IN }}+V_{\text {OUT }}\right)}
$$

where

- L is in $\mu \mathrm{H}$
- and f is in Hz
- The maximum possible load current $I_{\text {LOAD }}$ is limited by the requirement that $I_{\text {PEAK }} \leq I_{\text {CLIM }}$

While checking for this, take $\mathrm{I}_{\text {cLim }}$ to be the lowest possible current limit value (minimum across tolerance and temperature is 2.3 A for the LM2592HV). Also to account for inductor tolerances, take the minimum value of Inductance for L in Equation 1 (typically 20% less than the nominal value). Further, Equation 1 disregards the drop across the switch and the diode. This is equivalent to assuming 100% efficiency, which is never so. Therefore expect l PEAK to be an additional 10 to 20% higher than calculated from the above equation.
See Application Note AN-1157 for examples based on positive to negative configuration.
The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 60 V . For example, when converting +20 V to -12 V , the regulator would see 32 V between the input pin and ground pin. The LM2592HV has a maximum input voltage spec of 60 V .
Additional diodes are required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the $\mathrm{C}_{\mathbb{N}}$ capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closely resemble a buck configuration thus providing good closed loop stability. A Schottky diode is recommended for low input voltages, (because of its lower voltage drop) but for higher input voltages, a fast recovery diode could be used.
Without diode D3, when the input voltage is first applied, the charging current of $\mathrm{C}_{\mathbb{N}}$ can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage.

Figure 24. Inverting -5-V Regulator With Delayed Start-Up

Application Information (continued)

Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a $33-\mu \mathrm{H}, 4-\mathrm{A}$ inductor is the best choice. Capacitor selection can also be narrowed down to just a few values.
This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2592HV current limit (approximately 4 A) are needed for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current-limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high start-up currents required by the inverting topology, the delayed start-up feature ($C 1, R_{1}$, and R_{2}) shown in Figure 24 is recommended. By delaying the regulator start-up, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current needed for start-up is now supplied by the input capacitor C_{IN}). For severe start-up conditions, the input capacitor can be made much larger than normal.

10.1.6 Inverting Regulator Shutdown Methods

Using the $\overline{\mathrm{ON}} /$ OFF pin in a standard buck configuration is simple. To turn the regulator ON, pull the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin below 1.3 V (at $25^{\circ} \mathrm{C}$ referenced to ground). To shut the regulator OFF, pull the ON/OFF pin above 1.3 V . With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figure 25 and Figure 26.

Figure 25. Inverting Regulator Ground Referenced Shutdown

Figure 26. Inverting Regulator Ground Referenced Shutdown Using Opto-isolator Device

10.2 Typical Application

Figure 27. Typical Application

10.2.1 Design Requirements

Table 1 lists the parameters for this design example.
Table 1. Example Parameters

PARAMETER	EXAMPLE VALUE
Regulated output voltage, $\mathrm{V}_{\mathrm{OUT}}$	20 V
Maximum input voltage, $\mathrm{V}_{\mathrm{IN}}(\max)$	24 V
Maximum load current, $\mathrm{I}_{\mathrm{LOAD}}(\max)$	1 A
Switching frequency, F	Fixed at a nominal 150 kHz

10.2.2 Detailed Design Procedure

10.2.2.1 Inductor Selection Procedure

See application note AN-1197 (SNVA038) for detailed information on selecting inductors for buck converters. For a quick-start, the designer may refer to the nomographs provided in Figure 28 to Figure 30. To give designers more options of available inductors, the nomographs provide the required inductance and also the energy in the core expressed in microjoules ($\mu \mathrm{J}$), as an alternative to just prescribing custom parts. The following points must be highlighted:

1. The Energy values shown on the nomographs apply to steady operation at the corresponding x-coordinate (rated maximum load current). However, under start-up, without soft start, or a short circuit on the output, the current in the inductor will momentarily/repetitively hit the current limit Iclim of the device, and this current could be much higher than the rated load, $\mathrm{I}_{\text {LOAD }}$. This represents an overload situation, and can cause the inductor to saturate (if it has been designed only to handle the energy of steady operation). However, most types of core structures used for such applications have a large inherent air gap (for example, powdered iron types or ferrite rod inductors), so the inductance does not fall off too sharply under an overload. The device is usually able to protect itself by preventing the current from exceeding $\mathrm{I}_{\text {clim. }}$. However, if the DC input voltage of the regulator is over 40 V , the current can slew up so fast under core saturation that the device may not be able to act fast enough to restrict the current. The current can then rise without limit until the device destructs. Therefore to ensure reliability, it is recommended, that if the DC Input Voltage exceeds 40 V , the inductor must ALWAYS be sized to handle an instantaneous current equal to $\mathrm{I}_{\text {CLIM }}$ without saturating, irrespective of the type of core structure/material.
2. The energy under steady operation is calculated in Equation 2:

$$
\mathrm{e}=\frac{1}{2} \times \mathrm{Lx} \mathrm{I}_{\text {PEAK }}{ }^{2} \mu \mathrm{~J}
$$

where

- L is in $\mu \mathrm{H}$
- and $\mathrm{I}_{\text {PEAK }}$ is the peak of the inductor current waveform with the regulator delivering $\mathrm{I}_{\text {LOAD }}$

These are the energy values shown in the nomographs. See Example 1.
3. The energy under overload is calculated in Equation 3:

$$
\begin{equation*}
\mathrm{e}_{\text {CLIM }}=\frac{1}{2} \times L \times \mathrm{I}_{\text {CLIM }}{ }^{2} \mu \mathrm{~J} \tag{3}
\end{equation*}
$$

If $\mathrm{V}_{\mathrm{IN}}>40 \mathrm{~V}$, the inductor must be sized to handle $\mathrm{e}_{\text {CLIM }}$ instead of the steady energy values. The worst case $\mathrm{I}_{\text {cLIM }}$ for the LM2592HV is 4 A . The energy rating depends on the Inductance. See Figure 28 through Figure 30.
4. The nomographs were generated by allowing a greater amount of percentage current ripple in the inductor as the maximum rated load decreases (see Figure 31). This was done to allow smaller inductors to be used at light loads. Figure 31, however, shows only the median value of the current ripple. In reality there may be a great spread around this because the nomographs approximate the exact calculated inductance to standard available values. It is a good idea to refer to AN-1197 for detailed calculations if a certain maximum inductor current ripple is required for various possible reasons. Also consider the rather wide tolerance on the nominal inductance of commercial inductors.
5. Figure 30 shows the inductor selection curves for the Adjustable version. The y-axis is 'Et', in $\mathrm{V} \mu \mathrm{s}$. It is the applied volts across the inductor during the ON time of the switch ($\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{SAT}}-\mathrm{V}_{\text {OUT }}$) multiplied by the time for which the switch is on in $\mu \mathrm{s}$. See Example 3.

Example 1: ($\mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$) LM2592HV-5.0, $\mathrm{V}_{\mathbb{I N}}=24 \mathrm{~V}$, Output 5 V at 1 A

1. A first pass inductor selection is based upon Inductance and rated max load current. Choose an inductor with the inductance value indicated by the nomograph (see Figure 29) and a current rating equal to the maximum load current. We therefore quick-select a $68-\mu \mathrm{H}, 1-\mathrm{A}$ inductor (designed for $150-\mathrm{kHz}$ operation) for this application.
2. Confirm that it is rated to handle $50 \mu \mathrm{~J}$ (see Figure 29) by either estimating the peak current or by a detailed calculation as shown in AN-1197 (SNVS038). Also, confirm that the losses are acceptable.
Example 2: $\left(\mathrm{V}_{\mathbb{I N}}>40 \mathrm{~V}\right) \mathrm{LM} 2592 \mathrm{HV}-5.0, \mathrm{~V}_{\mathbb{I N}}=48 \mathrm{~V}$, Output 5 V at 1.5 A
3. A first pass inductor selection is based upon Inductance and the switch currrent limit. We choose an inductor with the Inductance value indicated by the nomograph (see Figure 29) and a current rating equal to $\mathrm{I}_{\text {CLIM }}$. We therefore quick-select a $68-\mu \mathrm{H}, 4-\mathrm{A}$ inductor (designed for $150-\mathrm{kHz}$ operation) for this application.
4. Confirm that it is rated to handle $\mathrm{e}_{\text {CLIM }}$ by the procedure shown in AN-1197 (SNVA038) and that the losses are acceptable. Here $\mathrm{e}_{\text {CLIM }}$ is calculated in Equation 4:

$$
\begin{equation*}
e_{\text {CLIM }}=\frac{1}{2} \times 68 \times 4^{2}=544 \mu \mathrm{~J} \tag{4}
\end{equation*}
$$

Example 3: ($\mathrm{V}_{\mathbb{I N}} \leq 40 \mathrm{~V}$) LM2592HV-ADJ, $\mathrm{V}_{\mathbb{I N}}=20 \mathrm{~V}$, Output 10 V at 2 A

1. Because input voltage is less than 40 V , a first pass inductor selection is based upon inductance and rated maximum load current. Choose an inductor with the inductance value indicated by the nomograph Figure 30 and a current rating equal to the maximum load. But first calculate Et for the given application. The duty cycle is calculated in Equation 5:
$D=\frac{V_{\text {OUT }}+V_{D}}{V_{\text {IN }}-V_{S A T}+V_{D}}$
where

- V_{D} is the drop across the catch diode ($\cong 0.5 \mathrm{~V}$ for a Schottky)
- and $\mathrm{V}_{\text {SAT }}$ the drop across the switch ($\cong 1.5 \mathrm{~V}$)

Which turns into Equation 6

$$
\begin{equation*}
D=\frac{10+0.5}{20-1.5+0.5}=0.55 \tag{6}
\end{equation*}
$$

And the switch ON time is calculated by Equation 7:
$t_{\text {ON }}=\frac{D}{f} \times 10^{6} \mu \mathrm{~s}$
where

- f is the switching frequency in Hz

Which turns into Equation 8:

LM2592HV
www.ti.com

$$
\begin{align*}
\mathrm{Et} & =\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SAT }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{t}_{\text {ON }} \\
& =(20-1.5-10) \times \frac{0.55}{150000} \times 10^{6} \mathrm{~V}_{\mu \mathrm{secs}} \\
& =31.3 \mathrm{~V}_{\mu \mathrm{secs}} \tag{8}
\end{align*}
$$

Therefore, looking at Figure 28 we quick-select a $47-\mu \mathrm{H}, 2-\mathrm{A}$ inductor (designed for $150-\mathrm{kHz}$ operation) for this application.
2. Confirm that the inductor is rated to handle $200 \mu \mathrm{~J}$ (see Figure 30) by the procedure shown in AN-1197 (SNVA038) and that the losses are acceptable. (If the DC input voltage is greater than 40 V , consider $\mathrm{e}_{\text {cLIM }}$ as shown in Example 2.)
This completes the simplified inductor selection procedure. For more general applications and better optimization, see AN-1197 (SNVA038).

10.2.3 Application Curves

(For Continuous Mode Operation)

maximum load current (a)
Figure 28. LM2592HV-3.3

MAXIMUM LOAD CURRENT (A)
Figure 30. LM2592HV-ADJ

Figure 29. LM2592HV-5.0

Figure 31. Current Ripple Ratio

11 Power Supply Recommendations

The LM2592HV is designed to operate from an input voltage supply up to 60 V . This input supply must be well regulated, able to withstand the maximum input current, and maintain a stable voltage.

12 Layout

12.1 Layout Guidelines

As in any switching regulator, layout is very important. Rapid switching currents associated with wiring inductance can generate voltage transients, which can cause problems. For minimal inductance and ground loops (see Test Circuits), the wires indicated by heavy lines must be wide printed-circuit traces and must be kept as short as possible. For best results, external components must be placed as close to the switcher IC as possible using ground plane construction or single-point grounding.
If open-core inductors are used, take special care as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC ground path, and $\mathrm{C}_{\text {out }}$ wiring can cause problems.
When using the adjustable version, take special care as to the location of the feedback resistors and the associated wiring. Physically place both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor.

12.2 Layout Examples

$\mathrm{C}_{\mathrm{IN}}=470-\mu \mathrm{F}, 50-\mathrm{V}$, aluminum electrolytic Panasonic HFQ Series
$\mathrm{C}_{\text {OUT }}=330-\mu \mathrm{F}, 35-\mathrm{V}$, aluminum electrolytic Panasonic HFQ Series
D1 = 5-A, 40-V Schottky rectifier, 1N5825
$\mathrm{L} 1=47-\mu \mathrm{H}, \mathrm{L} 39$, Renco through hole
$R_{\text {PULL UP }}=10 \mathrm{k}$
$C_{\text {DELAY }}=0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{SD} / \mathrm{SS}}=0.1 \mu \mathrm{~F}$
Thermalloy heat sink \#7020
Figure 32. Typical Through-Hole PCB Layout, Fixed Output (1x Size), Double-Sided

Layout Examples (continued)

$\mathrm{C}_{\mathrm{IN}}=470-\mu \mathrm{F}, 50-\mathrm{V}$, aluminum electrolytic Panasonic, HFQ Series
Cout $=220-\mu \mathrm{F}, 35-\mathrm{V}$, aluminum electrolytic Panasonic, HFQ Series
D1 $=5-\mathrm{A}, 40-\mathrm{V}$ Schottky Rectifier, 1 N5825
$\mathrm{L} 1=47-\mu \mathrm{H}, \mathrm{L} 39$, Renco, through-hole
$\mathrm{R}_{1}=1 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{2}=$ Use formula in Detailed Design Procedure
$\mathrm{R}_{\mathrm{FF}}=$ See Feedforward Capacitor
$R_{\text {PULL UP }}=10 \mathrm{k}$
$\mathrm{C}_{\text {DELAY }}=0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{SD} / \mathrm{SS}}=0.1 \mu \mathrm{~F}$
Thermalloy heat sink \#7020
Figure 33. Typical Through-Hole PCB Layout, Adjustable Output (1x Size), Double-Sided

12.3 Thermal Considerations

The LM2592HV is available in two packages, a 5-pin TO-220 (NDH) and a 5-pin surface mount DDPAK (KTT).
The TO-220 package needs a heat sink under most conditions. The size of the heat sink depends on the input voltage, the output voltage, the load current, and the ambient temperature. Higher ambient temperatures require more heat sinking.

Thermal Considerations (continued)

The DDPAK surface mount package tab is designed to be soldered to the copper on a printed-circuit board. The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PCB copper area that the package is soldered to must be at least $0.4 \mathrm{in}^{2}$, and ideally should have 2 or more square inches of 2 oz . (0.0028) in) copper. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately 6 in 2, only small improvements in heat dissipation are realized. If further thermal improvements are needed, double sided, multilayer PCB with large copper areas and/or airflow are recommended.
The curves shown in Figure 34 show the LM2592HVS (DDPAK package) junction temperature rise above ambient temperature with a $2-\mathrm{A}$ load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PCB to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature. When load currents higher than 2 A are used, double-sided or multilayer PCBs with large copper areas or airflow might be needed, especially for high ambient temperatures and high output voltages.
For the best thermal performance, wide copper traces and generous amounts of printed-circuit board copper should be used in the board layout. (One exception to this is the output (switch) pin, which must not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.
Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed-circuit copper area, copper thickness, single- or double-sided, multilayer board and the amount of solder on the board. The effectiveness of the PCB to dissipate heat also depends on the size, quantity, and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PCB and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

Figure 34. Junction Temperature Rise, DDPAK

13 Device and Documentation Support

13.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.2 Trademarks

E2E is a trademark of Texas Instruments.
SIMPLE SWITCHER is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2592HVS-3.3	NRND	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	45	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	
LM2592HVS-3.3/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples
LM2592HVS-5.0/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2592HVS-ADJ	NRND	$\begin{gathered} \text { DDPAK/ } \\ \text { TO-263 } \end{gathered}$	KTT	5	45	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2592HVS-ADJ/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2592HVSX-3.3/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples
LM2592HVSX-5.0/NOPB	ACTIVE	$\begin{gathered} \text { DDPAK/ } \\ \text { TO-263 } \end{gathered}$	KTT	5	500	Green (RoHS \& no Sb/Br)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2592HVSX-ADJ	NRND	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2592HVSX-ADJ/NOPB	ACTIVE	$\begin{gathered} \text { DDPAK/ } \\ \text { TO-263 } \end{gathered}$	KTT	5	500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2592HVS } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2592HVT-3.3/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no Sb/Br)	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2592HVT } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples
LM2592HVT-5.0/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2592HVT } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2592HVT-ADJ	NRND	TO-220	NDH	5	45	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2592HVT } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2592HVT-ADJ/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no Sb/Br)	SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2592HVT } \\ & \text {-ADJ P+ } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
LM2592HVSX-3.3/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2592HVSX-5.0/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2592HVSX-ADJ	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2592HVSX-ADJ/NOPB	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2592HVSX-3.3/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2592HVSX-5.0/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2592HVSX-ADJ	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2592HVSX-ADJ/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0

NDH0005D

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

