

Ultra low drop BiCMOS voltage regulator

Datasheet - production data

Features

- 1.5 A guaranteed output current
- Ultra low dropout voltage (200 mV typ. @ 1.5 A load, 40 mV typ. @ 300 mA load)
- Very low quiescent current (1 mA typ. @ 1.5 A load, 1 µA max @ 25 °C in off mode)
- Logic-controlled electronic shutdown
- Current and thermal internal limit
- ± 1.5% output voltage tolerance @ 25 °C
- Fixed and ADJ output voltages: 1.8 V, 2.5 V, 3.3 V, ADJ

- Temperature range: -40 to 125 °C
- Fast dynamic response to line and load changes
- Stable with ceramic capacitor
- Available in PPAK, DPAK and DFN6 (3x3 mm)

Applications

- Microprocessor power supply
- · DSPs power supply
- Post regulators for switching suppliers
- · High efficiency linear regulator

Description

The LD39150 is a fast ultra low drop linear regulator which operates from 2.5 V to 6 V input supply.

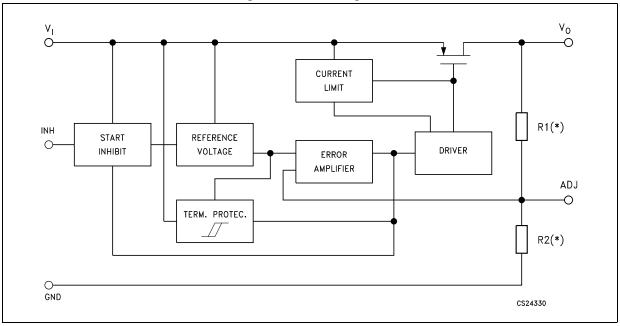
A wide range of output options are available. The low drop voltage, low noise, and ultra low quiescent current make it suitable for low voltage microprocessor and memory applications. The device is developed on a BiCMOS process which allows low quiescent current operation independently of output load current.

Table 1. Device summary

	Output voltages		
DPAK (tape and reel)	PPAK (tape and reel)	DFN	Output voltages
LD39150DT18-R			1.8 V
LD39150DT25-R			2.5 V
LD39150DT33-R			3.3 V
	LD39150PT-R	LD39150PU-R	ADJ from 1.22 to 5.0 V

Contents LD39150

Contents


1	Diag	gram	3					
2	Pin (configuration	4					
3	Турі	Typical application circuits						
4	Max	imum ratings	7					
5	Elec	etrical characteristics	8					
6	Турі	cal performance characteristics	9					
7	Арр	lication notes	11					
	7.1	External capacitors						
	7.2	Input capacitor						
	7.3	Output capacitor						
	7.4	Thermal note						
	7.5	Inhibit input operation	11					
8	Pacl	kage information	12					
	8.1	PPAK package information	13					
	8.2	DPAK package information	15					
	8.3	DFN6 package information	18					
9	Pacl	kaging information	21					
	9.1	DPAK and PPAK packaging information	21					
	9.2	DFN6 packaging information	23					
10	Revi	ision history	25					

LD39150 Diagram

1 Diagram

Figure 1. Block diagram

(*) Not present on ADJ versions.

Pin configuration LD39150

2 Pin configuration

Figure 2. Pin connections (top view for DPAK and PPAK, bottom view for DFN)

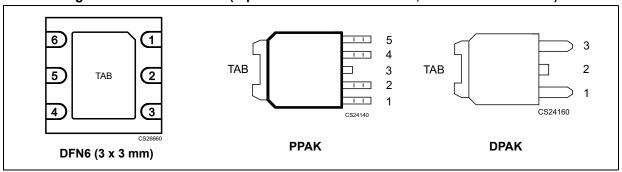
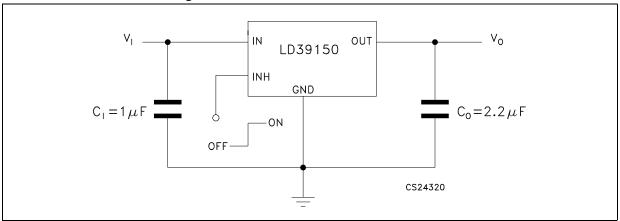


Table 2. Pin description


	Pin n°		Pin n° SYMBOL		CVMPOL	NOTE	
DFN	PPAK	DPAK	STWIBOL	NOTE			
5	5		V _{SENSE} /N.C.	For fixed versions: to be connected with LDO output voltage pins for DFN package and not connected on PPAK			
			ADJ	For adjustable version: Error amplifier input pin for V_{O} from 1.22 to 5.0 V			
3	2	1	VI	LDO input voltage; V_I from 2.5 V to 6 V, C_I = 1 μ F must be located at a distance of not more than 0.5" from input pin.			
4	4	3	V _O	LDO output voltage pins, with minimum $C_O = 2.2 \mu\text{F}$ needed for stability (also refer to C_O vs ESR stability chart)			
2	1		V _{INH}	Inhibit input voltage: ON MODE when $V_{INH} \ge 2$ V, OFF MODE when $V_{INH} \le 0.3$ V (Do not leave floating, not internally pulled down/up)			
1	3	2	GND	Common ground			
6			N.C.	Not connected			
	TAB	TAB	GND	Electrically connected to GND			
Exp. Pad				Connect to GND (it is not a power GND)			

577

3 Typical application circuits

(C_I and C_O capacitors must be placed as close as possible to the IC pins)

Figure 3. LD39150 fixed version with inhibit

Note: Inhibit pin is not internally pulled down/up then it must not be left floating. Disable the device when connected to GND or to a positive voltage less than 0.3 V.

VI O INPUT LD39150 $1 \mu F$ ON OFF R1 R2 $4.7 k\Omega$ CS24180

Figure 4. LD39150 adjustable version

Note: Set R2 as close as possible to 4.7 $k\Omega$

DocID13159 Rev 5

 $V_0 = V_{REF} (1 + R_1/R_2)$

Figure 5. LD39150 DPAK

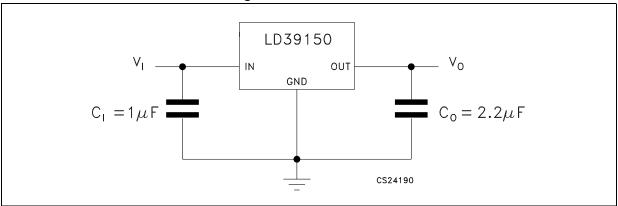
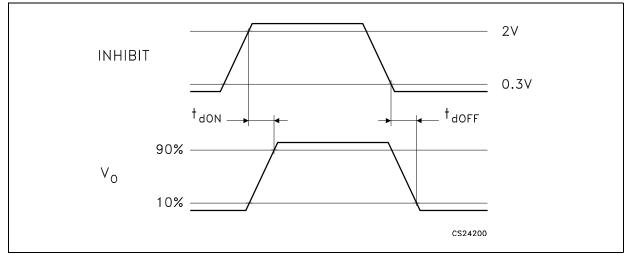



Figure 6. Timing diagram

577

LD39150 Maximum ratings

4 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	-0.3 to 6.5	V
V _{INH}	INHIBIT input voltage	-0.3 to V _I +0.3 (6.5 V max)	V
V _O	DC output voltage	-0.3 to V _I +0.3 (6.5 V max)	V
V _{ADJ}	ADJ pin voltage	-0.3 to V _I +0.3 (6.5 V max)	V
I _O	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-50 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND.

Table 4. Thermal data

Symbol	Parameter	PPAK	DPAK	DFN ⁽¹⁾	Unit
R _{thJA}	Thermal resistance junction-ambient	100	100	40	°C/W
R _{thJC}	R _{thJC} Thermal resistance junction-case		8	10	°C/W

^{1.} With PCB ground plane heatsink.

Electrical characteristics LD39150

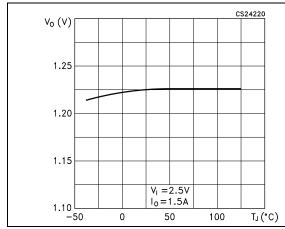
5 Electrical characteristics

 T_J = 25 °C, V_I = V_O +1 V, C_I = 1 $\mu F,$ C_O = 2.2 $\mu F,$ I_{LOAD} = 10 mA, V_{INH} = 2 V, unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Parar	neter	Min.	Тур.	Max.	Unit	
V _I	Operating input voltage			2.5		6	V	
		$V_I = V_O + 1V$, I_{LOAD}	= 10mA to 1.5A	-1.5		1.5	9/ of	
Vo	Output voltage tolerance	$V_I = V_O + 1V \text{ to } 6V$, $I_{LOAD} = 10\text{mA to } 1$	T _J = -40 to 125°C .5A	-3		3	% of V _{O(NOM)}	
V _{REF}	Reference voltage				1.22		V	
A\/ .	Output voltage LINE	$V_I = V_O + 1V \text{ to } 6V$			0.04		%	
ΔV_{O}	regulation	$V_{I} = V_{O} + 1V \text{ to } 6V,$	$T_J = -40 \text{ to } 125^{\circ}\text{C}$		0.1	0.2	%	
	Output voltage LOAD	I _{LOAD} = 10mA to 1	.5A		0.06			
$\Delta V_{O}/\Delta I_{LOAD}$	regulation	I_{LOAD} = 10mA to 1 T _J = -40 to 125°C	.5A,		0.2	0.4	%/A	
V	Dropout voltage (V _I - V _O)	I _{LOAD} = 300mA, T	_J =-40 to 125°C		40	80	mV	
V_{DROP}	Diopout voltage (v ₁ - v ₀)	$I_{LOAD} = 1.5A, T_J =$	-40 to 125°C		200	400	IIIV	
	Quiescent current: ON MODE	I_{LOAD} = 10mA to 1 T_{J} = -40 to 125°C	.5A, V _{INH} = 2V		1	2.5	mA	
l _Q	Quiescent current:	V _{INH} = 0.3V				1	μА	
	OFF MODE	$V_{INH} = 0.3V, T_{J} = -$	V_{INH} = 0.3V, T_{J} = -40 to 125°C			5		
Short-circui	t protection	•						
I _{SC}	Short-circuit protection	R _L = 0			3		Α	
Inhibit input	:	,			•		•	
	Inhibit threshold LOW	V _I = 2.5 to 6V OFF				0.3		
V_{INH}	Inhibit threshold HIGH	$T_{\rm J}$ = -40 to 125°C		2			V	
T _{D-OFF}	Current limit	I _{LOAD} = 1.5A, V _O =	= 3.3V		15			
T _{D-ON}	Current limit	I _{LOAD} = 1.5A, V _O =	= 3.3V		15		μs	
I _{INH}	Inhibit input current (1)	$V_I = 6V$, $V_{INH} = 0$ t	o 6V		±0.1	±1	μA	
AC paramet	ers					•	•	
		$V_{I} = 4.5 \pm 1V$	f = 120Hz		65			
SVR	Supply voltage rejection	$V_O = 3.3V$, $I_{LOAD} = 10$ mA,	f = 1kHz		55		dB	
e _N	Output noise voltage		$B_W = 10Hz \text{ to } 100kHz,$ $C_O = 2.2\mu\text{F}, V_O = 2.5V$		100		μV _{RMS}	
т.	Thermal shutdown OFF				170		°C	
T _{SHDN}	Hysteresis				10			

^{1.} Guaranteed by design



6 Typical performance characteristics

 T_J = 25 °C, V_I = V_O + 1 V, C_I = 1 $\mu\text{F},$ C_O = 2.2 $\mu\text{F},$ I_{LOAD} = 10 mA, V_{INH} = V_I , unless otherwise specified.

Figure 7. Output voltage vs temperature

Figure 8. Dropout voltage vs temperature

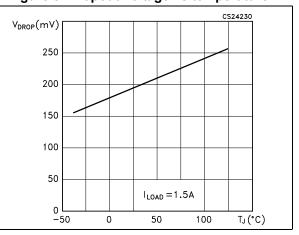
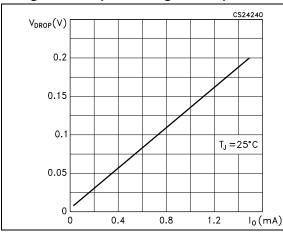



Figure 9. Dropout voltage vs output current

Figure 10. Quiescent current vs supply voltage

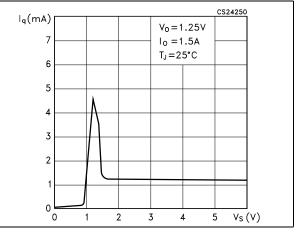
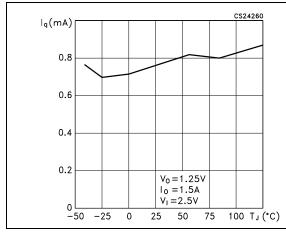
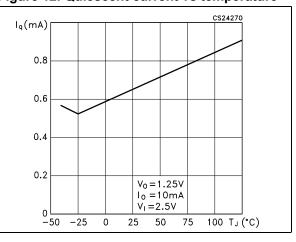




Figure 11. Quiescent current vs temperature

Figure 12. Quiescent current vs temperature

577

DocID13159 Rev 5

9/26

Figure 13. Short circuit current vs temperature

Figure 14. Output voltage vs input voltage

 $I_{LOAD} = 1.5A$

 $V_{I}(V)$

 $T_J = 25^{\circ}C$ ADJ version

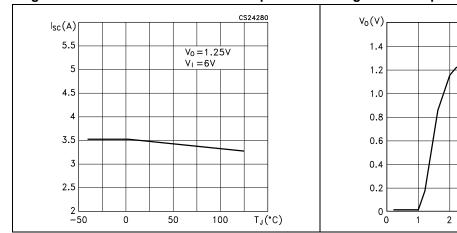


Figure 15. Stability region vs C_O & ESR (at 100 Figure 16. Stability region vs C_O & low ESR (at kHz) 100 kHz)

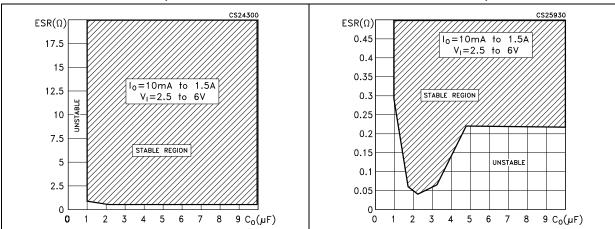
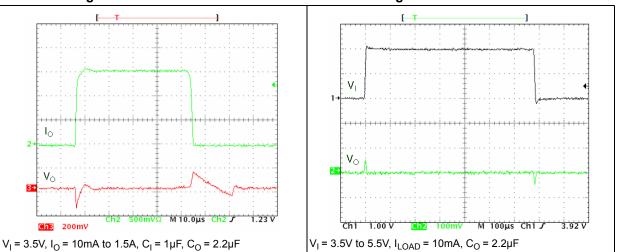



Figure 17. Load transient

Figure 18. Line transient

LD39150 Application notes

7 Application notes

7.1 External capacitors

The LD39150 requires external capacitors for regulator stability. These capacitors must be selected to meet the requirements of minimum capacitance and equivalent series resistance (see *Figure 15* and *Figure 16*). The input/output capacitors must be located less than 1cm from the relative pins and connected directly to the input/output ground pins using traces which have no other currents flowing through them.

7.2 Input capacitor

An input capacitor whose minimum value is $1 \mu F$ is required with the LD39150 (amount of capacitance can be increased without limit). This capacitor must be located a distance of not more than 1cm from the input pin of the device and returned to a clean analog ground. Any good quality ceramic, tantalum or film capacitors can be used for this capacitor.

7.3 Output capacitor

It is possible to use ceramic or tantalum capacitors but the output capacitor must meet the requirement for minimum amount of capacitance and ESR (equivalent series resistance) value. A minimum capacitance of 2.2 μ F is a good choice to guarantee the stability of the regulator. Anyway, other C_O values can be used according to the (*Figure 15* and *Figure 16*) showing the allowable ESR range as a function of the output capacitance. This curve represents the stability region over the full temperature and I_O range.

7.4 Thermal note

The output capacitor must maintain its ESR in the stable region over the full operating temperature range to assure stability. Also, capacitors tolerance and variation with temperature must be kept in consideration in order to assure the minimum amount of capacitance at all times.

7.5 Inhibit input operation

The inhibit pin can be used to turn OFF the regulator when pulled down, so drastically reducing the current consumption down to less than 1 μ A. When the inhibit feature is not used, this pin must be tied to V_I to keep the regulator output ON at all times. To assure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section (V_{IH} V_{IL}). The inhibit pin must not be left floating because it is not internally pulled down/up.

8 Package information

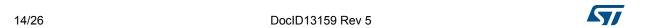
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

LD39150 **Package information**

PPAK package information 8.1

"GATE" <u>Note 6</u> THERMAL PAD B2 L2 D1 Н A1 B (4x) Note 7 R С SEATING PLANE

Figure 19. PPAK outline


GAUGE PLANE

L5 1

0078180_F

Table 6. PPAK mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	2.2		2.4
A1	0.9		1.1
A2	0.03		0.23
В	0.4		0.6
B2	5.2		5.4
С	0.45		0.6
C2	0.48		0.6
D	6		6.2
D1		5.1	
Е	6.4		6.6
E1		4.7	
е		1.27	
G	4.9		5.25
G1	2.38		2.7
Н	9.35		10.1
L2		0.8	1
L4	0.6		1
L5	1		
L6		2.8	
R		0.20	
V2	0°		8°

LD39150 **Package information**

DPAK package information 8.2

E -THERMAL PAD <u>c</u>2 L2 $\vec{D1}$ <u>L4</u> **b**(2x) R С SEATING PLANE *A2* (L1) *V2* GAUGE PLANE

Figure 20. DPAK (TO-252) type A outline

577

DocID13159 Rev 5

15/26

0068772_K_type_A

Table 7. DPAK (TO-252) type A mechanical data

Dim.		mm	
	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

LD39150 Package information

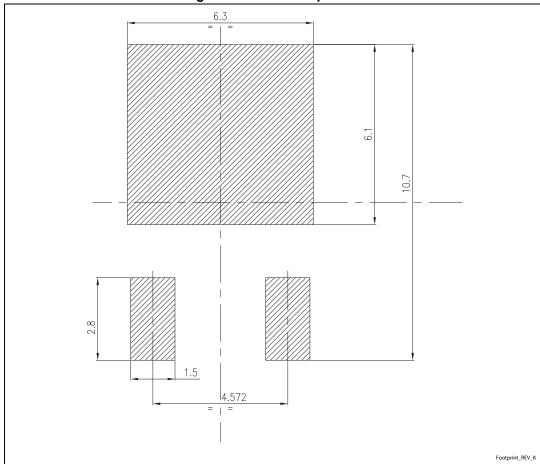


Figure 21. DPAK footprint (a)

a. All dimensions are in millimeters

8.3 DFN6 package information

BOTTOM VIEW D2 EXPOSED PAD PIN 1 ID (6x) 5 - **b** (6x) // 0.1 C -A3 SEATING PLANE c A1-O.08 C LEADS COPLANARITY E/2 PIN 1 ID D/2-OP VIEW 7946637_C

Figure 22. DFN6 (3 x 3 mm) outline

LD39150 Package information

Table 8. DFN6 (3 x 3 mm) mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
Α	0.80		1		
A1	0	0.02	0.05		
А3		0.20			
b	0.23		0.45		
D	2.90	3	3.10		
D2	2.23		2.50		
E	2.90	3	3.10		
E2	1.50		1.75		
		0.95			
L	0.30	0.40	0.50		

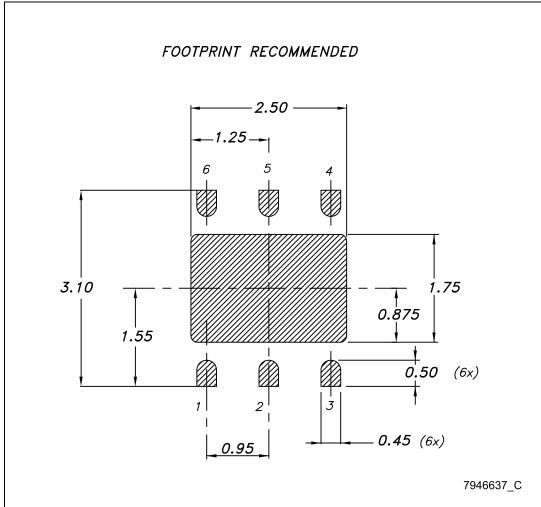


Figure 23. DFN6 footprint (dimensions in mm)

9 Packaging information

9.1 DPAK and PPAK packaging information

Figure 24. Tape for PPAK and DPAK (TO-252)

Top cover tolerance on tape +/- 0.2 mm

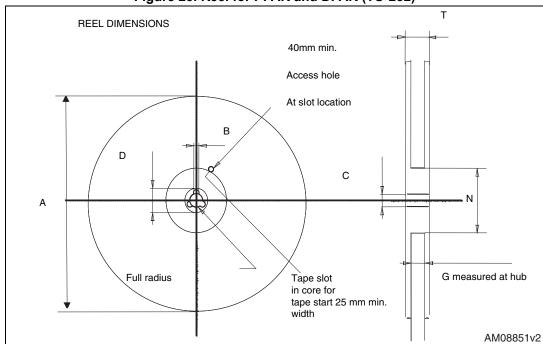
For machine ref. only including draft and radii concentric around B0

User direction of feed

User direction of feed

User direction of feed

AM08852v1



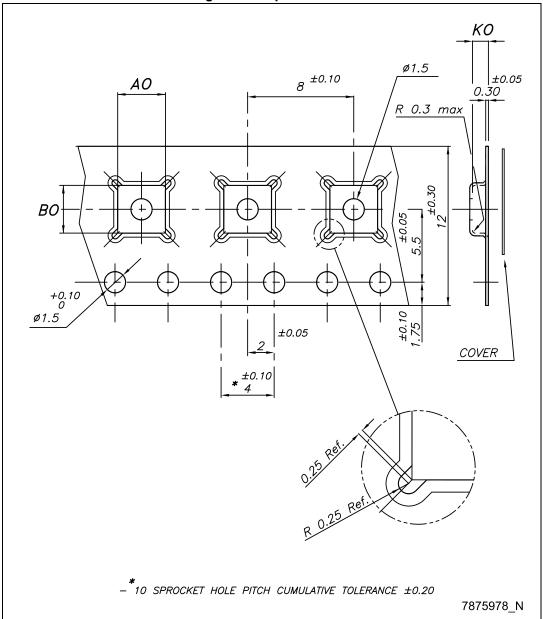

Figure 25. Reel for PPAK and DPAK (TO-252)

Table 9. PPAK and DPAK (TO-252) tape and reel mechanical data

	Таре			Reel		
Dim.	n	nm	Dim.	mm		
Diiii.	Min.	Max.	Dilli.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

9.2 DFN6 packaging information

Figure 26. Tape for DFN6

#0.5 0.2 #1.3 #3.30 (13")

18.4 Mc (Measured at hu (Measured at hub) 12.4

(Measured at hub) 12.4

Figure 27. Reel for DFN6

Table 10. DFN6 tape and reel mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
A0	3.20	3.30	3.40		
В0	3.20	3.30	3.40		
K0	1	1.10	1.20		

LD39150 Revision history

10 Revision history

Table 11. Document revision history

Date	Revision	Changes	
26-Jan-2007	1	Initial release.	
12-Jan-2009	2	Removed: package DFN8 (4 x 4 mm) and added package DFN6 (3 x 3 mm).	
29-Jan-2013	29-Jan-2013 3 Updated: <i>Table 1 on page 1</i> .		
14-Jan-2014	4	Document name changed from LD39150XX to LD39150. Updated Section 8: Package mechanical data. Added Section 9: Packaging mechanical data Minor text changes in title, in features and description in cover page.	
30-Aug-2017 5		Removed the following order codes from <i>Table 1: Device summary</i> : LD39150PT18-R, LD39150PT25-R, LD39150PT33-R, LD39150PU18R, LD39150PU25R, and LD39150PU33R	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

57