ANALOG
CMOS 1.8 V to $5.5 \mathrm{~V}, 2.5 \Omega$ DEVICES

SPDT Switch/2:1 Mux in Tiny SC70 Package

FEATURES

1.8 V to 5.5 V single supply
2.5Ω on resistance
0.75Ω on-resistance flatness

- $\mathbf{3}$ dB bandwidth $\mathbf{> 2 0 0} \mathbf{~ M H z}$

Rail-to-rail operation
6-lead SC70 package
Fast switching times
ton 20 ns
toff 6 ns
Typical power consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS compatible

APPLICATIONS

Battery-powered systems
Communication systems
Sample hold systems
Audio signal routing
Video switching
Mechanical reed relay replacements

GENERAL DESCRIPTION

The ADG779 is a monolithic CMOS SPDT (single-pole, double-throw) switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The ADG779 operates from a single supply range of 1.8 V to 5.5 V , making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices, Inc.

Each switch of the ADG779 conducts equally well in both directions when on. The ADG779 exhibits break-before-make switching action.

Because of the advanced submicron process, -3 dB bandwidth of greater than 200 MHz can be achieved.

The ADG779 is available in a 6-lead SC70 package.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR
A LOGIC 1 INPUT
产
Figure 1.

PRODUCT HIGHLIGHTS

1. Tiny 6-Lead SC70 Package.
2. $\quad 1.8 \mathrm{~V}$ to 5.5 V Single-Supply Operation. The ADG779 offers high performance, including low on resistance and fast switching times, and is fully specified and guaranteed with 3 V and 5 V supply rails.
3. Very Low Ron (5Ω max at $5 \mathrm{~V}, 10 \Omega \max$ at 3 V). At 1.8 V operation, RoN is typically 40Ω over the temperature range.
4. On-Resistance Flatness ($\mathrm{R}_{\mathrm{flat}}$ (on) $)(0.75 \Omega$ typ).
5. -3 dB Bandwidth $>200 \mathrm{MHz}$.
6. Low Power Dissipation. CMOS construction ensures low power dissipation.
7. 14 ns Switching Times.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADG779

TABLE OF CONTENTS

\qquadApplications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
10/05-Rev. 0 to Rev. A
Updated Format Universal
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
Changes to Terminology Section. 7
Changes to Ordering Guide 12
Pin Configuration and Function Descriptions 6
Terminology 7
Typical Performance Characteristics. 8
Test Circuits 10
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}^{1}$
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	ersion $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflat (on))	$\begin{aligned} & 2.5 \\ & 5 \\ & 0.1 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 6 \\ & 0.8 \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {, see Figure } 12$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS² Source Off Leakage Is (Off) Channel On Leakage $\mathrm{ID}_{\mathrm{D}} \mathrm{Is}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	nA typ nA typ	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {, see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} \text {, see Figure } 14 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linz or linh	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ton toff Break-Before-Make Time Delay, to Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	14 3 8 $\begin{aligned} & -67 \\ & -87 \\ & -62 \\ & -82 \\ & 200 \\ & 7 \\ & 27 \end{aligned}$	20	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \text {, see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \text { see Figure } 19 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

[^0]
ADG779

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}^{1}$
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { /ersion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ros) On-Resistance Flatness (Rflat (on))	6 0.1 2.5	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 7 \\ & 10 \\ & \\ & 0.8 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \text { see Figure } 12 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
```LEAKAGE CURRENTS2 Source Off Leakage Is (Off) Channel On Leakage ID, IS (On)```	$\begin{aligned} & \pm 0.01 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	nA typ   nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \text {, see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V} \text {, see Figure } 14 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current lind or linh	0.005	2.0   0.8   $\pm 0.1$	$V$ min   $\checkmark$ max   $\mu \mathrm{A}$ typ   $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS²   ton   toff   Break-Before-Make Time Delay, to   Off Isolation   Channel-to-Channel Crosstalk   Bandwidth - 3 dB   $\mathrm{C}_{\mathrm{s}}$ (Off)   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	16   4   8 $\begin{aligned} & -67 \\ & -87 \\ & -62 \\ & -82 \\ & 200 \\ & 7 \\ & 27 \end{aligned}$	24 7	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V} \text {, see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {, see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF} \text {, see Figure } 19 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

[^1]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
V ${ }_{\text {D }}$ to GND	-0.3 V to +7V
Analog, Digital Inputs ${ }^{1}$	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms , $10 \%$ duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SC70 Package, Power Dissipation	315 mW
$\theta_{j A}$ Thermal Impedance	$332^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {ı }}$ Thermal Impedance	$120^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Reflow Soldering (Pb-free)	
Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

ADG779 IN	Switch S1	Switch S2
0	On	Off
1	Off	On

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## ADG779

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN	Logic Control Input.
2	V $_{\text {DD }}$	Most Positive Power Supply Potential.
3	GND	Ground (0 V) Reference.
4	S1	Source Terminal. Can be an input or an output.
5	D	Drain Terminal. Can be an input or an output.
6	S2	Source Terminal. Can be an input or an output.

## TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
IdD
Positive supply current.
GND
Ground (0 V) reference.
S
Source terminal. Can be an input or an output.

## D

Drain terminal. Can be an input or an output.

## IN

Logic control input.
$\mathrm{V}_{\mathrm{D}}$ ( $\mathrm{V}_{\mathrm{s}}$ )
Analog voltage on drain (D) and source (S) terminals.
Ron
Ohmic resistance between the D and S .
$\mathrm{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

## $\Delta$ Ron

On-resistance mismatch between any two channels.

## Is (Off)

Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current with the switch on.
Vinl
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
$\mathrm{C}_{\mathrm{s}}$ (Off)
Off switch source capacitance. Measured with reference to ground.

## $\mathrm{C}_{\mathrm{D}}$ (Off)

Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}_{\mathrm{s}}(\mathrm{On})$
On switch capacitance. Measured with reference to ground.
Cin
Digital input capacitance.
ton
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition.
toff
Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch off condition.
$\mathbf{t}_{\text {Bвм }}$
On or off time measured between the $80 \%$ points of both switches when switching from one to another.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on/off switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

## -3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.

## THD + N

The ratio of harmonic amplitudes plus noise of a signal to the fundamental.

## ADG779

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ Single Supplies


Figure 4. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$


Figure 5. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$


Figure 6. Leakage Currents as a Function of Temperature


Figure 7. Leakage Currents as a Function of Temperature


Figure 8. Supply Current vs. Input Switching Frequency


## ADG779

## TEST CIRCUITS



Figure 12. On Resistance


Figure 13. Off Leakage


Figure 14. On Leakage


Figure 15. Switching Times


Figure 16. Break-Before-Make Time Delay, $t_{D}$

## ADG779



Figure 17. Off Isolation


CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}} \quad \stackrel{\infty}{\stackrel{\infty}{+}}$ Figure 18. Channel-to-Channel Crosstalk

## ADG779

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-203-AB
Figure 20. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6)
Dimensions shown in millimeters

## ORDERING GUIDE

Model	Temperature Range	Package Description	Package   Option	Branding ${ }^{\mathbf{1}}$
ADG779BKS-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKS-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SKB
ADG779BKSZ-R2 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM
ADG779BKSZ-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM
ADG779BKSZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package (SC70)	KS-6	SOM

${ }^{1}$ Brand on these packages is limited to three characters due to space constraints.
${ }^{2} Z=P b$-free part.


[^0]:    ${ }^{1}$ Temperature range is B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Temperature range is B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.

