Data Sheet

FEATURES

4.7Ω maximum on resistance at $25^{\circ} \mathrm{C}$
0.5Ω on-resistance flatness
Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$
3 V logic-compatible inputs
Up to 115 mA continuous current per channel
Rail-to-rail operation
Break-before-make switching action
16-/20-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Relay replacement

Audio and video routing

Automatic test equipment
Data acquisition systems
Temperature measurement systems

Avionics

Battery-powered systems
Communication systems
Medical equipment

GENERAL DESCRIPTION

The ADG1433 and ADG1434 are monolithic industrial CMOS ($i \mathrm{CMOS}^{*}$) analog switches comprising three independently selectable single-pole, double-throw (SPDT) switches and four independently selectable SPDT switches, respectively.
All channels exhibit break-before-make switching action that prevents momentary shorting when switching channels. An $\overline{\mathrm{EN}}$ input on the ADG1433 (LFCSP and TSSOP) and ADG1434 (LFCSP only) enables or disables the device. When disabled, all channels are switched off.

The i CMOS modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS), and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve. Unlike analog ICs using a conventional CMOS process, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow on resistance and on resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. iCMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
12 V Single Supply. 5
$\pm 5 \mathrm{~V}$ Dual Supply 6
REVISION HISTORY
8/2016-Rev. D to Rev. E
Changes to Analog Inputs Parameter and Digital Inputs
Parameter, Table 4. 7
3/2016-Rev. C to Rev. D
Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26

\qquad
Throughout
Changes to Figure 5 and Table 6 8
Changes to Figure 6, Figure 7, and Table 8 9
Changes to Figure 27 13
Changes to Figure 31, Figure 32, and Figure 33 14
Updated Outline Dimensions 16
Changes to Ordering Guide 17
6/2009—Rev. B to Rev. C
Updated Outline Dimensions 16
Changes to Ordering Guide 17
Absolute Maximum Ratings 7
Thermal Resistance 7
ESD Caution 7
Pin Configurations and Function Descriptions 8
Typical Performance Characteristics. 10
Test Circuits 13
Terminology 15
Outline Dimensions 16
Ordering Guide 17
3/2009—Rev. A to Rev. B
Change to I ${ }_{D D}$ Parameter, Table 14
Change to IdD Parameter, Table 2 5
Updated Outline Dimensions, Figure 39 17
6/2008—Rev. 0 to Rev. A
Added Continuous Current per Channel Parameter, Table 1 4
Added Continuous Current per Channel Parameter, Table 2 5
Added Continuous Current per Channel Parameter, Table 3 6
Changes to Table 4 7
Changes to Figure 30 13
Updated Outline Dimensions 16
Changes to Ordering Guide 17
10/2006—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	+25 ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflaton)	$\begin{aligned} & 4 \\ & 4.7 \\ & 0.5 \\ & 0.78 \\ & 0.5 \\ & 0.72 \\ & \hline \end{aligned}$	5.7 0.85 0.77	V_{SS} to V_{DD} 6.7 1.1 0.92	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { see Figure } 25 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.04 \\ & \pm 0.3 \\ & \pm 0.04 \\ & \pm 0.3 \\ & \pm 0.05 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 0.6 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 8 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \text {; see Figure } 26 \\ & V_{S}=V_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 27 \end{aligned}$
DIGITAL INPUTS Input High Voltage, V_{H} Input Low Voltage, $\mathrm{V}_{\text {IL }}$ Input Current, I_{L} or $I_{I_{H}}$ Digital Input Capacitance, $\mathrm{Clin}^{\mathrm{N}}$	± 0.005 3		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$					
Transition Time, trans	140			ns typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	170	200	230	ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 28
Break-Before-Make Time Delay, t_{D}	40			ns typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{L}=35 \mathrm{pF}$
			30	ns min	$\mathrm{V}_{51}=\mathrm{V}_{52}=10 \mathrm{~V}$, see Figure 29
$t_{\text {on }}(\overline{\mathrm{EN}})$	140			ns typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	170	200	230	ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$, see Figure 30
$\mathrm{t}_{\text {off }}(\overline{\mathrm{EN}}$)	60				
	75	85	90	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$, see Figure 30
Charge Injection	-50			pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$, see Figure 31
Off Isolation	-70			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 32
Channel-to-Channel Crosstalk	-70			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 34
Total Harmonic Distortion, THD + N	0.025			$\% \text { typ }$	$R_{L}=110 \Omega, 15 \mathrm{~V} p-p, f=20 \mathrm{~Hz}$ to 20 kHz , see Figure 35
-3 dB Bandwidth	200			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 33
Insertion Loss	0.24			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, see Figure 33
C_{5} (Off)	12			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	22			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	72			pF typ	$\mathrm{f}=1 \mathrm{MHz}$

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
IdD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
IDD	260			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			475	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or $\mathrm{V}_{\text {DD }}$
				$\mu \mathrm{A}$ max	
VDD/VSS			$\pm 4.5 / \pm 16.5$	\checkmark min/max	GND $=0 \mathrm{~V}$
Continuous Current per Channel ${ }^{2}$					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
ADG1433	115	75	40	mA max	
ADG1434	100	65	40	mA max	

${ }^{1}$ Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On Resistance Match Between Channels, Δ Ron On Resistance Flatness, Rflatoon)	$\begin{aligned} & 6 \\ & 8 \\ & 0.55 \\ & 0.82 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 0.85 \\ & 2.5 \end{aligned}$	0 to $V_{D D}$ 11.2 1.1 2.8	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {, see Figure } 25 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V} \mathrm{~S}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, lo (Off) Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.04 \\ & \pm 0.3 \\ & \pm 0.04 \\ & \pm 0.3 \\ & \pm 0.06 \\ & \pm 0.4 \end{aligned}$	± 0.6 ± 0.6 ± 0.8	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 8 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=13.2 \mathrm{~V} \\ & V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, V_{D}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {, see Figure } 27 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbf{H}}$ Input Low Voltage, V_{IL} Input Current, I_{L} or I_{H} Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{I}}$	$\begin{aligned} & \pm 0.005 \\ & 4 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
DYNAMIC CHARACTERISTICS² Transition Time, ttrans Break-Before-Make Time Delay, t_{D} ton $(\overline{\mathrm{EN}})$ toff ($\overline{\mathrm{EN}}$) Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth Insertion Loss C_{s} (Off) C_{D} (Off) $C_{d}, C_{s}(O n)$	$\begin{aligned} & 200 \\ & 255 \\ & 80 \\ & 210 \\ & 270 \\ & 70 \\ & 86 \\ & -10 \\ & -70 \\ & -70 \\ & 135 \\ & 0.5 \\ & 25 \\ & 45 \\ & 80 \end{aligned}$	310 320 95	$\begin{aligned} & 350 \\ & 55 \\ & 360 \\ & 105 \end{aligned}$	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS IDD IDD VDD Continuous Current per Channel ${ }^{2}$ ADG1433 ADG1434	$\begin{aligned} & 0.002 \\ & 260 \\ & \\ & 100 \\ & 85 \end{aligned}$	$\begin{aligned} & 65 \\ & 60 \end{aligned}$	1 475 5/16.5 40 35	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/max mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$ Digital inputs $=5 \mathrm{~V}$ $\begin{aligned} & V_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \end{aligned}$

[^0]
ADG1433/ADG1434

※5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness, Rflation)	$\begin{aligned} & 7 \\ & 9 \\ & 0.55 \\ & 0.78 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 0.91 \\ & 2.5 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 12 \\ & 1.1 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}, \text { see Figure } 25 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, I_{5} (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.02 \\ & \pm 0.3 \\ & \pm 0.02 \\ & \pm 0.3 \\ & \pm 0.04 \\ & \pm 0.4 \end{aligned}$	$\begin{gathered} \pm 0.6 \\ \pm 0.6 \\ \pm 0.8 \end{gathered}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \\ & \pm 8 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, see Figure } 27 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{H}}$ Input Low Voltage, VIL Input Current, $I_{\text {IL }}$ or I_{H} Digital Input Capacitance, C_{IN}			$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ Transition Time, $\mathrm{t}_{\text {taans }}$ Break-Before-Make Time Delay, to ton ($\overline{\mathrm{EN}}$) toff ($\overline{\mathrm{EN}}$) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD + N -3 dB Bandwidth Insertion Loss C_{s} (Off) C_{D} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & 315 \\ & 430 \\ & 90 \\ & 325 \\ & 425 \\ & 150 \\ & 200 \\ & -10 \\ & -70 \\ & -70 \\ & 0.06 \\ & 145 \\ & 0.5 \\ & 18 \\ & 32 \\ & 80 \end{aligned}$	480 490 225	550 55 545 240	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ pF typ	
POWER REQUIREMENTS ID Iss $\mathrm{V}_{\mathrm{DD}} / V_{\mathrm{SS}}$ Continuous Current per Channel ${ }^{2}$ ADG1433 ADG1434	$\begin{aligned} & 0.002 \\ & 0.001 \\ & \\ & 95 \\ & 85 \end{aligned}$	60 55	$\begin{aligned} & 1 \\ & 1 \\ & \pm 4.5 / \pm 16.5 \\ & 35 \\ & 35 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ μA typ $\mu \mathrm{A}$ max V min/max mA max mA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V}, 5 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V}, 5 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{DD}} \\ & \\ & \mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
$V_{\text {dD }}$ to V $\mathrm{V}_{\text {S }}$	35 V
V ${ }_{\text {d }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	-25 V to +0.3 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA (whichever occurs first)
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle Maximum)	250 mA
Continuous Current, S or D ${ }^{2}$	Data + 15\%
Operating Temperature Range	
Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature (Pb-Free)	260 (+ 0 to -5$)^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at $\mathrm{A}, \overline{\mathrm{EN}}, \mathrm{S}$, or D pins are clamped by internal diodes. Current must be limited to the maximum ratings given.
${ }^{2}$ See data given in the Specifications section (see Table 1 to Table 3).
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Unit
TSSOP	150.4	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP	30.4	$\mathrm{~N} / \mathrm{A}^{1}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ N/A means not applicable.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADG1433 TSSOP Pin Configuration

NOTES

1. THE EXPOSED PAD IS TIED TO THE
SUBSTRATE, $V_{\text {SS }}^{\circ}$
Figure 5. ADG1433 LFCSP Pin Configuration

Table 6. ADG1433 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	VDD	Most Positive Power Supply Potential.
2	16	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	S2B	Source Terminal 2B. Can be an input or an output.
6	4	D2	Drain Terminal 2. Can be an input or an output.
7	5	S2A	Source Terminal 2A. Can be an input or an output.
8	6	IN2	Logic Control Input 2.
9	7	IN3	Logic Control Input 3.
10	8	S3A	Source Terminal 3A. Can be an input or an output.
11	9	D3	Drain Terminal 3. Can be an input or an output.
12	10	S3B	Source Terminal 3B. Can be an input or an output.
13	11	V	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
14	12	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx
15	13	IN1	logic inputs determine the on switches.
16	14	GND	Logic Control Input 1.
Ground (0 V) Reference.			
N/A	0	EPAD	Exposed Pad. The exposed pad is tied to the substrate, VSS.

Table 7. ADG1433 Truth Table

$\overline{\mathbf{E N}}$	INx	SxA	SxB
1	X	Off	Off
0	0	Off	On
0	1	On	Off

Figure 6. ADG1434 TSSOP Pin Configuration

Figure 7. ADG1434 LFCSP Pin Configuration

Table 8. ADG1434 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	19	IN1	Logic Control Input 1.
2	20	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	VSS	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
6	4	GND	Ground (0 V) Reference.
7	5	S2B	Source Terminal 2B. Can be an input or an output.
8	6	D2	Drain Terminal 2. Can be an input or an output.
9	7	S2A	Source Terminal 2A. Can be an input or an output.
10	8	IN2	Logic Control Input 2.
11	9	IN3	Logic Control Input 3.
12	10	S3A	Source Terminal 3A. Can be an input or an output.
13	11	D3	Drain Terminal 3. Can be an input or an output.
14	12	S3B	Source Terminal 3B. Can be an input or an output.
15	N/A	NIC	No Internal Connection.
16	13	VDD	Most Positive Power Supply Potential.
17	14	S4B	Source Terminal 4B. Can be an input or an output.
18	15	D4	Drain Terminal 4. Can be an input or an output.
19	16	S4A	Source Terminal 4A. Can be an input or an output.
20	17	IN4	Logic Control Input 4.
N/A ${ }^{1}$	18	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx
N/A ${ }^{1}$	0	EPAD	Exposed Pad. The exposed pad is tied to the substrate, VSs.

Table 9. ADG1434 TSSOP Truth Table

$\mathbf{I N x}$	SxA	SxB
0	Off	On
1	On	Off

Table 10. ADG1434 LFCSP Truth Table

$\overline{\mathbf{E N}}$	INx	SxA	SxB
1	X	Off	Off
0	0	Off	On
0	1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Dual Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 12. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 13. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 12 V Single Supply

Figure 14. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 15. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

Figure 16. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 17. IDD vs. Logic Level

Figure 18. Charge Injection vs. Source Voltage

Figure 19. Transition Time vs. Temperature

Figure 20. Off Isolation vs. Frequency

Figure 21. Crosstalk vs. Frequency

Figure 22. On Response vs. Frequency

Figure 23. $T H D+N$ vs. Frequency

Figure 24. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 31. Charge Injection

Figure 32. Off Isolation

Figure 33. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathbf{S}}}$
Figure 34. Channel-to-Channel Crosstalk

Figure 35. THD + Noise

TERMINOLOGY

$\mathbf{R}_{\text {ON }}$
Ohmic resistance between Terminal D and Terminal S.
$\Delta R_{\text {on }}$
The difference between the Ron of any two channels.
$\mathbf{R}_{\text {FLAT(ON) }}$
The difference between the maximum and minimum value of on resistance as measured.

Is (Off)
Source leakage current when the switch is off.

I_{D} (Off)

Drain leakage current when the switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current when the switch is on.
V_{D} (Vs)
Analog voltage on Terminal D and Terminal S.
Cs (Off)
Channel input capacitance for off condition.

C_{D} (Off)

Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton ($\overline{\mathrm{EN}}$)
Delay time between the 50% and 90% points of the digital input and switch on condition.
$\mathbf{t o f f}^{(\overline{\mathbf{E N}})}$
Delay time between the 50% and 90% points of the digital input and switch off condition.
$t_{\text {trans }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$\mathbf{t}_{\text {ввм }}$
Off time measured between the 80% point of both switches when switching from one address state to another.
$V_{\text {IL }}$
Maximum input voltage for Logic 0 .
\mathbf{V}_{IH}
Minimum input voltage for Logic 1.
$\mathbf{I I L}_{\text {IL }}\left(\mathbf{I}_{\text {IH }}\right)$
Input current of the digital input.
$I_{D D}$
Positive supply current.
Iss
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
AC Power Supply Rejection Ratio (ACPSRR)
A measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-26)
Dimensions shown in millimeters

Figure 38. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.
Figure 39. 20-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-20-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Description	$\overline{\text { EN }}$ Pin	Package Option
ADG1433YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-26
ADG1433YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-26
ADG1434YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-20-10
ADG1434YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-20-10

${ }^{1} Z=$ RoHS Compliant Part.

NOTES
Data Sheet ADG1433/ADG1434

NOTES

NOTES

[^0]: ${ }^{1}$ Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

