

4 Ω R_{ON}, Triple/Quad SPDT ± 15 V/ ± 12 V/ ± 5 V iCMOS Switches

Data Sheet

ADG1433/ADG1434

FEATURES

4.7 Ω maximum on resistance at 25°C
0.5 Ω on-resistance flatness
Fully specified at ±15 V/+12 V/±5 V
3 V logic-compatible inputs
Up to 115 mA continuous current per channel
Rail-to-rail operation
Break-before-make switching action
16-/20-lead TSSOP and 4 mm × 4 mm LFCSP

APPLICATIONS

Relay replacement
Audio and video routing
Automatic test equipment
Data acquisition systems
Temperature measurement systems
Avionics
Battery-powered systems
Communication systems
Medical equipment

GENERAL DESCRIPTION

The ADG1433 and ADG1434 are monolithic industrial CMOS (*i*CMOS*) analog switches comprising three independently selectable single-pole, double-throw (SPDT) switches and four independently selectable SPDT switches, respectively.

All channels exhibit break-before-make switching action that prevents momentary shorting when switching channels. An $\overline{\rm EN}$ input on the ADG1433 (LFCSP and TSSOP) and ADG1434 (LFCSP only) enables or disables the device. When disabled, all channels are switched off.

The *i*CMOS modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS), and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve. Unlike analog ICs using a conventional CMOS process, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow on resistance and on resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications, where low distortion is critical. *i*CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG1433 TSSOP and LFCSP

SWITCHES SHOWN FOR A 1 INPUT LOGIC.

Figure 2. ADG1434 TSSOP

Figure 3. ADG1434 LFCSP

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features
Applications1
General Description
Functional Block Diagrams
Revision History
Specifications
±15 V Dual Supply3
12 V Single Supply5
±5 V Dual Supply6
REVISION HISTORY
8/2016—Rev. D to Rev. E
Changes to Analog Inputs Parameter and Digital Inputs
Parameter, Table 4
Parameter, Table 4
3/2016—Rev. C to Rev. D
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26 Throughout
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26 Throughout Changes to Figure 5 and Table 6 8 Changes to Figure 6, Figure 7, and Table 8 9 Changes to Figure 27 13
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26 Throughout Changes to Figure 5 and Table 6 8 Changes to Figure 6, Figure 7, and Table 8 9 Changes to Figure 27 13 Changes to Figure 31, Figure 32, and Figure 33 14
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26 Throughout Changes to Figure 5 and Table 6 8 Changes to Figure 6, Figure 7, and Table 8 9 Changes to Figure 27 13
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26
3/2016—Rev. C to Rev. D Changed CP-20-4 to CP-20-10 and CP-16-13 to CP-16-26

Absolute Maximum Ratings/
Thermal Resistance
ESD Caution
Pin Configurations and Function Descriptions8
Typical Performance Characteristics
Test Circuits
Terminology
Outline Dimensions
Ordering Guide
3/2009—Rev. A to Rev. B
Change to I _{DD} Parameter, Table 14
Change to IDD Parameter, Table 25
Updated Outline Dimensions, Figure 39 17
6/2008—Rev. 0 to Rev. A
Added Continuous Current per Channel Parameter, Table 14
Added Continuous Current per Channel Parameter, Table 25
Added Continuous Current per Channel Parameter, Table 36
Changes to Table 4
Changes to Figure 30
Updated Outline Dimensions
Changes to Ordering Guide

10/2006—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{SS} to V _{DD}	V	
On Resistance, R _{ON}	4			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}; \text{ see Figure 25}$
	4.7	5.7	6.7	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between	0.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -10 \text{ mA}$
Channels, ∆R _{ON}	0.78	0.85	1.1	Ωmax	
On Resistance Flatness, R _{FLAT(ON)}	0.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -10 \text{ mA}$
	0.72	0.77	0.92	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.04			nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}$; see Figure 26
	±0.3	±0.6	±3	nA max	
Drain Off Leakage, I _D (Off)	±0.04			nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}$; see Figure 26
	±0.3	±0.6	±3	nA max	
Channel On Leakage, I _D , I _S (On)	±0.05			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 27
	±0.4	±0.8	±8	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{IH}			2.0	V min	
Input Low Voltage, V _{IL}			0.8	V max	
Input Current, I _L or I _H	±0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANS}	140			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	170	200	230	ns max	$V_S = 10 \text{ V}$, see Figure 28
Break-Before-Make Time Delay, t _D	40			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
			30	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$, see Figure 29
ton (EN)	140			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	170	200	230	ns max	$V_s = 10 \text{ V}$, see Figure 30
toff (EN)	60			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
	75	85	90	ns max	$V_S = 10 \text{ V}$, see Figure 30
Charge Injection	-50			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 31}$
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 32
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34
Total Harmonic Distortion, THD + N	0.025			% typ	$R_L = 110 \Omega$, 15 V p-p, f = 20 Hz to 20 kHz, see Figure 35
–3 dB Bandwidth	200			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 33
Insertion Loss	0.24			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33
C _s (Off)	12			pF typ	f = 1 MHz
C _D (Off)	22			pF typ	f = 1 MHz
C_D , C_S (On)	72			pF typ	f = 1 MHz

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
I _{DD}	260			μA typ	Digital inputs = 5 V
			475	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V, 5 V, or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±4.5/±16.5	V min/max	GND = 0 V
Continuous Current per Channel ²					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
ADG1433	115	75	40	mA max	
ADG1434	100	65	40	mA max	

 $^{^1}$ Temperature range for Y version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	
On Resistance, Ron	6			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V}, I_s = -10 \text{ mA}, \text{ see Figure 25}$
	8	9.5	11.2	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance Match Between	0.55			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -10 \text{ mA}$
Channels, ΔR _{ON}	0.82	0.85	1.1	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	1.5			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V}, I_s = -10 \text{ mA}$
	2.5	2.5	2.8	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage, I _s (Off)	±0.04			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 26}$
-	±0.3	±0.6	±3	nA max	_
Drain Off Leakage, I _D (Off)	±0.04			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}, \text{ see Figure 26}$
3,7.4.7	±0.3	±0.6	±3	nA max	
Channel On Leakage, ID, Is (On)	±0.06			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V, see Figure } 27$
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	±0.4	±0.8	±8	nA max	, ,
DIGITAL INPUTS					
Input High Voltage, V _{IH}			2.0	V min	
Input Low Voltage, V _{IL}			0.8	V max	
Input Current, I _{IL} or I _{IH}	±0.005		0.0	μA typ	$V_{IN} = V_{GND}$ or V_{DD}
input current, in or in	20.003		±0.1	μA max	VIN — VGND CI VDD
Digital Input Capacitance, C _{IN}	4		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²	7	+		рг тур	
Transition Time, t _{TRANS}	200			nc tun	D = 100 O C = 25 pE
Halisition fille, t _{trans}		210	250	ns typ	$R_L = 100 \Omega$, $C_L = 35 \text{ pF}$
David Defension Males Time Delegati	255	310	350	ns max	$V_s = 8 \text{ V}$, see Figure 28
Break-Before-Make Time Delay, t _□	80			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
(FA)			55	ns min	$V_{51} = V_{52} = 8 \text{ V}$, see Figure 29
t _{on} (EN)	210			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
	270	320	360	ns max	$V_s = 8 \text{ V}$, see Figure 30
$t_{OFF}(\overline{EN})$	70			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
	86	95	105	ns max	$V_s = 8 \text{ V}$, see Figure 30
Charge Injection	-10			pC typ	$V_S = 6 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$, see Figure 31
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 32
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34
–3 dB Bandwidth	135			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 33
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33
C _s (Off)	25			pF typ	f = 1 MHz
C _D (Off)	45			pF typ	f = 1 MHz
C _D , C _S (On)	80			pF typ	f = 1 MHz
POWER REQUIREMENTS				1	$V_{DD} = 13.2 \text{ V}$
I _{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	J
I_{DD}	260			μΑ typ	Digital inputs = 5 V
-55	-50		475	μA max	
V_{DD}			5/16.5	V min/max	V _{SS} = 0 V, GND = 0 V
Continuous Current per Channel ²			5/10.5	v IIIII/IIIax	$V_{DD} = +10.8 \text{ V}, V_{SS} = 0 \text{ V}$
ADG1433	100	65	40	mA max	V _{DD} = 110.0 V, V ₃₅ = 0 V
ADG1434	85	60	35	mA max	

 $^{^1}$ Temperature range for Y version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	7			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}, \text{ see Figure 25}$
	9	10.5	12	Ω max	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance Match Between	0.55			Ω typ	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
Channels (ΔR _{ON})	0.78	0.91	1.1	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	1.5			Ωtyp	$V_S = \pm 4.5 \text{ V}, I_S = -10 \text{ mA}$
	2.5	2.5	3	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.02			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}, \text{ see Figure 26}$
	±0.3	±0.6	±3	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}, \text{ see Figure 26}$
	±0.3	±0.6	±3	nA max	
Channel On Leakage, ID, IS (On)	±0.04			nA typ	$V_S = V_D = \pm 4.5 \text{ V}$, see Figure 27
	±0.4	±0.8	±8	nA max	
DIGITAL INPUTS					
Input High Voltage, V _H			2.0	V min	
Input Low Voltage, V _{IL}			0.8	V max	
Input Current, I _{IL} or I _{IH}	±0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANS}	315			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
	430	480	550	ns max	$V_s = 5 V$, see Figure 28
Break-Before-Make Time Delay, t _D	90			ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$
			55	ns min	$V_{S1} = V_{S2} = 5 \text{ V}$, see Figure 29
t _{on} (EN)	325			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
	425	490	545	ns max	$V_s = 5 \text{ V}$, see Figure 30
$t_{OFF}(\overline{EN})$	150			ns typ	$R_L = 100 \Omega, C_L = 35 pF$
	200	225	240	ns max	$V_s = 5 V$, see Figure 30
Charge Injection	-10			pC typ	$V_s = 0 \text{ V}, R_s = 0 \Omega, C_L = 1 \text{ nF, see Figure 31}$
Off Isolation	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 32
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34
Total Harmonic Distortion, THD + N	0.06			% typ	$R_L = 110 \Omega$, 5 V p-p, f = 20 Hz to 20 kHz, see Figure 35
−3 dB Bandwidth	145			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 33
Insertion Loss	0.5			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33
C _s (Off)	18			pF typ	f = 1 MHz
C _D (Off)	32			pF typ	f = 1 MHz
C_D , C_S (On)	80			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.002			μA typ	Digital inputs = 0 V, 5 V, or V _{DD}
			1	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V, 5 V, or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±4.5/±16.5	V min/max	GND = 0 V
Continuous Current per Channel ²					$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
ADG1433	95	60	35	mA max	
ADG1434	85	55	35	mA max	

 $^{^1}$ Temperature range for Y version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	−25 V to +0.3 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA (whichever occurs first)
Digital Inputs ¹	GND -0.3 V to $V_{DD} + 0.3 \text{ V}$ or 30 mA (whichever occurs first)
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	250 mA
Continuous Current, S or D ²	Data + 15%
Operating Temperature Range	
Industrial (Y Version)	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature (Pb-Free)	260 (+ 0 to −5)°C

¹ Overvoltages at A, EN, S, or D pins are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 5.

Package Type	θја	θις	Unit
TSSOP	150.4	50	°C/W
LFCSP	30.4	N/A ¹	°C/W

¹ N/A means not applicable.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See data given in the Specifications section (see Table 1 to Table 3).

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. ADG1433 TSSOP Pin Configuration

Figure 5. ADG1433 LFCSP Pin Configuration

Table 6. ADG1433 Pin Function Descriptions

Р	in No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	V _{DD}	Most Positive Power Supply Potential.
2	16	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	S2B	Source Terminal 2B. Can be an input or an output.
6	4	D2	Drain Terminal 2. Can be an input or an output.
7	5	S2A	Source Terminal 2A. Can be an input or an output.
8	6	IN2	Logic Control Input 2.
9	7	IN3	Logic Control Input 3.
10	8	S3A	Source Terminal 3A. Can be an input or an output.
11	9	D3	Drain Terminal 3. Can be an input or an output.
12	10	S3B	Source Terminal 3B. Can be an input or an output.
13	11	Vss	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
14	12	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx logic inputs determine the on switches.
15	13	IN1	Logic Control Input 1.
16	14	GND	Ground (0 V) Reference.
N/A^1	0	EPAD	Exposed Pad. The exposed pad is tied to the substrate, Vss.

¹ N/A means not applicable.

Table 7. ADG1433 Truth Table

EN	INx	SxA	SxB
1	Х	Off	Off
0	0	Off	On
0	1	On	Off

Figure 6. ADG1434 TSSOP Pin Configuration

Figure 7. ADG1434 LFCSP Pin Configuration

15 D4

14 S4B

13 V_{DD}

12 S3B

11 D3

Table 8. ADG1434 Pin Function Descriptions

P	in No.		
TSSOP	LFCSP	Mnemonic	Description
1	19	IN1	Logic Control Input 1.
2	20	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	V_{SS}	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
6	4	GND	Ground (0 V) Reference.
7	5	S2B	Source Terminal 2B. Can be an input or an output.
8	6	D2	Drain Terminal 2. Can be an input or an output.
9	7	S2A	Source Terminal 2A. Can be an input or an output.
10	8	IN2	Logic Control Input 2.
11	9	IN3	Logic Control Input 3.
12	10	S3A	Source Terminal 3A. Can be an input or an output.
13	11	D3	Drain Terminal 3. Can be an input or an output.
14	12	S3B	Source Terminal 3B. Can be an input or an output.
15	N/A ¹	NIC	No Internal Connection.
16	13	V_{DD}	Most Positive Power Supply Potential.
17	14	S4B	Source Terminal 4B. Can be an input or an output.
18	15	D4	Drain Terminal 4. Can be an input or an output.
19	16	S4A	Source Terminal 4A. Can be an input or an output.
20	17	IN4	Logic Control Input 4.
N/A¹	18	ĒN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx logic inputs determine the on switches.
N/A^1	0	EPAD	Exposed Pad. The exposed pad is tied to the substrate, Vss.

¹ N/A means not applicable.

Table 9. ADG1434 TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 10. ADG1434 LFCSP Truth Table

EN	INx	SxA	SxB
1	Х	Off	Off
0	0	Off	On
0	1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance as a Function of V_D (V_S), Dual Supply

Figure 9. On Resistance as a Function of V_D (V_S), Dual Supply

Figure 10. On Resistance as a Function of V_D (V_S), Single Supply

Figure 11. On Resistance as a Function of V_D (V_S) for Different Temperatures, ± 15 V Dual Supply

Figure 12. On Resistance as a Function of V_D (V_S) for Different Temperatures, $\pm 5 V$ Dual Supply

Figure 13. On Resistance as a Function of V_D (V_S) for Different Temperatures, 12 V Single Supply

Figure 14. Leakage Currents as a Function of Temperature, ±15 V Dual Supply

Figure 15. Leakage Currents as a Function of Temperature, ±5 V Dual Supply

Figure 16. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 17. IDD vs. Logic Level

Figure 18. Charge Injection vs. Source Voltage

Figure 19. Transition Time vs. Temperature

Figure 20. Off Isolation vs. Frequency

Figure 21. Crosstalk vs. Frequency

Figure 22. On Response vs. Frequency

Figure 23. THD + N vs. Frequency

Figure 24. ACPSRR vs. Frequency

TEST CIRCUITS

Rev. E | Page 13 of 20

Figure 30. Enable Delay, $t_{ON}(\overline{EN})$, $t_{OFF}(\overline{EN})$

Figure 31. Charge Injection

Figure 32. Off Isolation

Figure 33. Bandwidth

Figure 34. Channel-to-Channel Crosstalk

Figure 35. THD + Noise

TERMINOLOGY

RON

Ohmic resistance between Terminal D and Terminal S.

 ΔR_{ON}

The difference between the R_{ON} of any two channels.

R_{FLAT(ON}

The difference between the maximum and minimum value of on resistance as measured.

Is (Off)

Source leakage current when the switch is off.

ID (Off)

Drain leakage current when the switch is off.

 I_D , I_S (On)

Channel leakage current when the switch is on.

 $V_D(V_s)$

Analog voltage on Terminal D and Terminal S.

Cs (Off)

Channel input capacitance for off condition.

C_D (Off)

Channel output capacitance for off condition.

 C_D , C_S (On)

On switch capacitance.

 C_{IN}

Digital input capacitance.

 $t_{ON}(\overline{EN})$

Delay time between the 50% and 90% points of the digital input and switch on condition.

 $t_{OFF}(\overline{EN})$

Delay time between the 50% and 90% points of the digital input and switch off condition.

tTRANS

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

 t_{BBM}

Off time measured between the 80% point of both switches when switching from one address state to another.

 \mathbf{V}_{IL}

Maximum input voltage for Logic 0.

 V_{IH}

Minimum input voltage for Logic 1.

Iп (Iн)

Input current of the digital input.

 I_{DD}

Positive supply current.

 \mathbf{I}_{ss}

Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-26) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 38. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20)

Figure 39. 20-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-20-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Description	EN Pin	Package Option
ADG1433YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YRUZ-REEL	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16
ADG1433YCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-26
ADG1433YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-26
ADG1434YRUZ	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YRUZ-REEL	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YRUZ-REEL7	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20
ADG1434YCPZ-REEL	-40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-20-10
ADG1434YCPZ-REEL7	-40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-20-10

¹ Z = RoHS Compliant Part.

NOTES

NOTES

NOTES