

HV9910C

Universal High-Brightness LED Driver

Features

- Switch Mode Controller for Single Switch LED
 Drivers
- · Enhanced Drop-In Replacement to the HV9910B
- Open Loop Peak Current Controller
- Internal 15 to 450V Linear Regulator
- Constant Frequency or Constant Off-Time
 Operation
- · Linear and PWM Dimming Capability
- · Requires Few External Components for Operation
- Over-Temperature Protection

Applications

- DC/DC or AC/DC LED Driver Applications
- RGB Back-Lighting LED Driver
- · Back Lighting of Flat Panel Displays
- General Purpose Constant Current Source
- Signage and Decorative LED Lighting
- Chargers

Description

HV9910C is an open-loop, current-mode control, LED driver IC. This IC can be programmed to operate in either a constant frequency or constant off-time mode. It includes a 15-450V linear regulator which allows it to work with a wide range of input voltages without the need for an external low voltage supply. HV9910C includes a TTL-compatible, PWM-dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz. It also includes a 0-250 mV linear-dimming input which can be used for linear dimming of the LED current. Unlike the HV9910B, the HV9910C is equipped with built-in thermal-shutdown protection.

HV9910C is ideally suited for buck LED drivers. Since the HV9910C operates in open-loop current mode control, the controller achieves good output current regulation without the need for any loop compensation. Also, being an open-loop controller, PWM-dimming response is limited only by the rate of rise of the inductor current, enabling a very fast rise and fall times of the LED current. HV9910C requires only three external components (apart from the power stage) to produce a controlled LED current. This makes HV9910C an ideal solution for low-cost LED drivers.

Package Types

Typical Application Circuit

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS[†]

V _{IN} to GND	-0.5V to +470V
V _{DD} to GND	
CS, LD, PWMD, GATE	-0.3V to (V _{DD} + 0.3V)
Junction temperature	40°C to +125°Ć
Storage temperature	65°C to +150°C
Continuous power dissipation ($T_A = +25^{\circ}C$)	
8-lead SOIC	650 mW
16-lead SOIC	
8-lead SOIC with heat slug	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1.1 ELECTRICAL SPECIFICATIONS

TABLE 1-1: ELECTRICAL CHARACTERISTICS (Note 1)

Parameter	Symbol	Min	Тур	Max	Units	Conditions
Input		-		-	-	
Input DC Supply Voltage Range, (Note 2)	V _{INDC}	15		450	V	DC input voltage, (Note 3)
Supply Current	I _{IN(MAX)}		0.8	1.5	mA	Pin PWMD to V _{DD} , no capacitance at GATE
Shut-down Mode Supply Current	I _{INSD}	—	0.5	1.0	mA	Pin PWMD to GND
Internal Regulator						
Internally Regulated Voltage	V _{DD}	7.20	7.50	7.75	V	V_{IN} = 15V, $I_{DD(ext)}$ = 0, PWMD = V_{DD} , 500 pF at GATE; R_{OSC} = 249 k Ω
Line Regulation of V _{DD}	ΔV _{DD} , line	0		1.0	V	
Load Regulation of V _{DD}	ΔV _{DD} , Ioad	0	_	0.1	V	I _{DD(ext)} = 0 - 1.0 mA, PWMD = V _{DD} , 500 pF at GATE; ROSC = 249 kΩ
V _{DD} Under Voltage Lockout Threshold	UVLO	6.45	6.70	6.95	V	V _{DD} rising, (Note 3)
V _{DD} Under Voltage Lockout Hysteresis	∆UVLO	_	500	_	mV	V _{DD} falling
Maximum Regulator Current	I _{IN(MAX)}	5.0	_	—	mA	V _{DD} = UVLO - ∆UVLO, (Note 4)
PWM Dimming						
PWMD Input Low Voltage	V _{EN(lo)}	_	_	1.0	V	V _{IN} = 15 - 450V, (Note 3)
PWMD Input High Voltage	V _{EN(hi)}	2.4		—	V	V _{IN} = 15 - 450V, (Note 3)
Internal Pull-down Resistance at PWMD	R _{EN}	50	100	150	kΩ	$V_{PWMD} = 5.0V$
Current Sense Comparator						
Current Sense Pull-in Threshold Voltage	V _{CST}	217	250	275	mV	-40°C < T _A < +125°C
Offset Voltage for LD Comparator	VOFFSET	-20	—	+20	mV	Note 3

Note 1: Specifications apply at $T_A = 25^{\circ}C$, $V_{IN} = 15V$ unless otherwise noted.

2: Also limited by package-power dissipation limit; Whichever is lower.

3: Applies over the full operating ambient temperature range of $-40^{\circ}C < T_A < +125^{\circ}C$.

4: For design guidance only.

D			-			
Parameter	Symbol	Min	Тур	Мах	Units	Conditions
		175	215	317		0°C < T_A < +85°C, $V_{LD} = V_{DD}$, $V_{CS} = V_{CS,TH}$ + 50 mV after T_{BLANK}
Current Sense Blanking Interval	T _{BLANK}	175	215	350	ns	-40°C < T_A < +125°C, $V_{LD} = V_{DD}$, $V_{CS} = V_{CS,TH}$ + 50 mV after T_{BLANK}
Delay to Output	t _{DELAY}	_	80	150	ns	V _{IN} = 15V, V _{LD} = 0.15V, V _{CS} = 0V to 0.22V after t _{BLANK}
Oscillator						
Oscillator Frequency	f	20	25	30	kH7	R _{OSC} = 1.00 MΩ
Oscillator i requericy	IOSC	80	100	120	KI IZ	R _{OSC} = 249 kΩ
Gate Driver						
Maximum GATE Sourcing Current	ISOURCE	0.165	_	—	Α	V _{GATE} = 0V
Maximum GATE Sinking Current	I _{SINK}	0.165	—	—	А	V _{GATE} = V _{DD}
GATE Output Rise Time	t _{RISE}		30	50	ns	C _{GATE} = 500 pF, (Note 4)
GATE Output Fall Time	t _{FALL}	_	30	50	ns	C _{GATE} = 500 pF, (Note 4)
Over-Temperature Protection						
Shut-down Temperature	T _{SD}	128	_	150	°C	
Hysteresis	ΔT_{SD}	10	_	30	°C	
T _{SD} -mode V _{IN} Current	I _{SD}	—	_	350	μA	

TABLE 1-1: ELECTRICAL CHARACTERISTICS (Note 1) (CONTINUED)

Note 1: Specifications apply at $T_A = 25^{\circ}C$, $V_{IN} = 15V$ unless otherwise noted.

2: Also limited by package-power dissipation limit; Whichever is lower.

3: Applies over the full operating ambient temperature range of $-40^{\circ}C < T_A < +125^{\circ}C$.

4: For design guidance only.

TABLE 1-2: THERMAL RESISTANCE

Package	Symbol	Min	Тур	Max	Units	Conditions
8-Lead SOIC	θ_{JA}	—	101	—	°C/W	
16-Lead SOIC	θ_{JA}	—	83	—	°C/W	
8-Lead SOIC (with heat slug)	θ_{JA}	—	84	—	°C/W	

2.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:PIN DESCRIPTION

Pin #		Eurotion	Description	
8-Lead SOIC	16-Lead SOIC	Function		
1	1	VIN	Input of an 15-450V linear regulator.	
2	4	CS	Current sense pin used to sense the FET current by means of an external sense resistor. When this pin exceeds the lower of either the internal 250 mV or the voltage at the LD pin, the GATE output goes low.	
3	5	GND	Ground return for all internal circuitry. Must be electrically connected to the power ground.	
4	8	GATE	Output GATE driver for an external N-channel power MOSFET.	
5	9	PWMD	TTL-compatible, PWM-dimming input of the IC. When this pin is pulled to GND or left open, the GATE driver is turned off. When the pin is pulled high, the GATE driver operates normally.	
6	12	VDD	Power supply pin for all internal circuits. It must be bypassed with a low-ESR capacitor to GND ($\geq 0.1 \ \mu$ F).	
7	13	LD	Linear-dimming input and sets the current sense threshold as long as the voltage at the pin is less than 250 mV (typ).	
8	14	RT	Sets the oscillator frequency. When a resistor is connected between RT and GND, the HV9910C operates in constant fre- quency mode. When the resistor is connected between RT and GATE, the IC operates in constant off-time mode.	
_	2, 3, 6, 7, 10, 11, 15, 16	NC	No connection	

3.0 APPLICATION INFORMATION

HV9910C is optimized to drive buck LED drivers using open-loop, peak-current mode control. This method of control enables fairly accurate LED current control without the need for high side current sensing or the design of any closed loop controllers. The IC uses very few external components and enables both Linear and PWM-dimming of the LED current.

A resistor connected to the RT pin programs the frequency of operation (or the off-time). The oscillator produces pulses at regular intervals. These pulses set the SR flip-flop in the HV9910C which causes the GATE driver to turn on. The same pulses also start the blanking timer, which inhibits the reset input of the SR flip flop and prevents false turn-offs due to the turn-on spike. When the FET turns on, the current through the inductor starts ramping up. This current flows through the external sense resistor, R_{CS}, and produces a ramp voltage at the CS pin. The comparators are constantly comparing the CS pin voltage to both the voltage at the LD pin and the internal 250 mV. Once the blanking timer is complete, the output of these comparators is allowed to reset the flip-flop. When the output of either one of the two comparators goes high, the flip-flop is reset and the GATE output goes low. The GATE goes low until the SR flip-flop is set by the oscillator. Assuming a 30% ripple in the inductor, the current sense resistor R_{CS} can be set using:

$$R_{CS} = \frac{0.25V(orV_{LD})}{1.15 \bullet I_{LED}}$$

Constant frequency peak current mode control has an inherent disadvantage - at duty cycles greater than 0.5, the control scheme goes into subharmonic oscillations. To prevent this, an artificial slope is typically added to the current sense waveform. This slope compensation scheme will affect the accuracy of the LED current in the present form. However, a constant offtime peak current control scheme does not have this problem and can easily operate at duty cycles greater than 0.5. This control scheme also gives inherent input voltage rejection, making the LED current almost insensitive to input voltage variations. However, this scheme leads to variable frequency operation and the frequency range depends greatly on the input and output voltage variation. Using HV9910C, it is easy to switch between the two modes of operation by changing one connection (see Section 3.3 "Oscillator").

3.1 Input Voltage Regulator

HV9910C can be powered directly from its V_{IN} pin and can work from 15-450 VDC at its V_{IN} pin. When a voltage is applied at the V_{IN} pin, HV9910C maintains a constant 7.5V at the V_{DD} pin. This voltage is used to power the IC and any external-resistor dividers needed

to control the IC. The V_{DD} pin must be bypassed by a low-ESR capacitor to provide a low impedance path for the high frequency current of the output GATE driver.

HV9910C can also be operated by supplying a voltage at the V_{DD} pin greater than the internally regulated voltage. This will turn off the internal linear regulator of the IC and the HV9910C will operate directly off the voltage supplied at the V_{DD} pin. This external voltage at the V_{DD} pin should not exceed 12V.

Although the V_{IN} pin of the HV9910C is rated up to 450V, the actual maximum voltage that can be applied is limited by the power dissipation in the IC. For example, if an 8-lead SOIC HV9910C (junction to ambient thermal resistance $R_{\theta j-a} = 101^{\circ}$ C/W) draws about $I_{IN} = 2.0$ mA from the V_{IN} pin, and has a maximum allowable temperature rise of the junction temperature limited to $\Delta T = 75^{\circ}$ C, the maximum voltage at the V_{IN} pin would be:

$$V_{IN(MAX)} = \frac{\Delta T}{R_{\theta j a}} \bullet \frac{1}{I_{IN}}$$
$$= \frac{75 \,^{\circ}\text{C}}{101 \,^{\circ}\text{C}/W} \bullet \frac{1}{2mA}$$
$$= 371 \, V$$

In these cases, to operate HV9910C from higher input voltages, a Zener diode can be added in series with the V_{IN} pin to divert some of the power loss from HV9910C to the Zener diode. In the above example, using a 100V Zener diode will allow the circuit to easily work up to 450V.

Note: The Zener diode will increase the minimum input voltage required to turn on the HV9910C to 115V.

The input current drawn from the V_{IN} pin is a sum of the 1.5 mA (maximum) current drawn by the internal circuit and the current drawn by the GATE driver. The GATE driver depends on the switching frequency and the GATE charge of the external FET.

$$I_{IN} = 1.5mA + Q_g \bullet f_s$$

In the above equation, f_s is the switching frequency and Q_g is the GATE charge of the external FET, which can be obtained from the data sheet of the FET.

3.2 Current Sense

The current sense input of HV9910C goes to the noninverting inputs of two comparators. The inverting terminal of one comparator is tied to an internal 250 mV reference, whereas the inverting terminal of the other comparator is connected to the LD pin. The outputs of both these comparators are fed into an OR GATE and the output of the OR GATE is fed into the reset pin of the flip-flop. Thus, the comparator which has the lowest voltage at the inverting terminal determines when the GATE output is turned off.

The outputs of the comparators also include a 150-280 ns blanking time which prevents spurious turn-offs of the external FET due to the turn-on spike normally present in peak-current mode control. In rare cases, this internal blanking might not be enough to filter out the turn-on spike. In these instances, an external RC filter needs to be added between the external sense resistor (RCS) and the CS pin.

Please note that the comparators are fast (with a typical 80 ns response time). A proper layout minimizing external inductances will prevent false triggering of these comparators.

3.3 Oscillator

The oscillator in HV9910C is controlled by a single resistor connected at the RT pin. The equation governing the oscillator time period T_{osc} is given by:

$$T_{OSC}(\mu s) = \frac{R_{OSC}(k\Omega)}{25}$$

If the resistor is connected between RT and GND, HV9910C operates in a constant frequency mode and the above equation determines the time period. If the resistor is connected between RT and GATE, HV9910C operates in a constant off-time mode and the above equation determines the off-time.

3.4 Gate Output

The gate output of the HV9910C is used to drive an external FET. It is recommended that the GATE charge of the external FET be less than 25 nC for switching frequencies \leq 100 kHz and less than 15 nC for switching frequencies > 100 kHz.

3.5 Linear Dimming

The Linear Dimming pin is used to control the LED current. There are two cases when it may be necessary to use the Linear Dimming pin.

- 1. In some cases, when using the internal 250 mV, it may not be possible to find the exact R_{CS} value required to obtain the LED current. In these cases, an external voltage divider from the V_{DD} pin can be connected to the LD pin to obtain a voltage (less than 250 mV) corresponding to the desired voltage across R_{CS} .
- Linear dimming may be desired to adjust the current level to reduce the intensity of the LEDs. In these cases, an external 0-250 mV voltage can be connected to the LD pin to adjust the LED current during operation.

To use the internal 250 mV, the LD pin can be connected to $V_{\text{DD}}.$

Note: Although the LD pin can be pulled to GND, the output current will not go to zero. This is due to the presence of a minimum ontime, which is equal to the sum of the blanking time and the delay to output time, or about 450 ns. This minimum on-time causes the FET to be on for a minimum of 450 ns, and thus the LED current when LD = GND is not zero. This current is also dependent on the input voltage, inductance value, forward voltage of the LEDs, and circuit parasitics. To get zero LED current, the PWMD pin has to be used.

3.6 **PWM** Dimming

PWM Dimming can be achieved by driving the PWMD pin with a low frequency square wave signal. When the PWM signal is zero, the GATE driver is turned off; when the PWMD signal if high, the GATE driver is enabled. The PWMD signal does not turn off the other parts of the IC, therefore, the response of HV9910C to the PWMD signal is almost instantaneous. The rate of rise and fall of the LED current is thus determined solely by the rise and fall times of the inductor current.

To disable PWM Dimming and enable the HV9910C permanently, connect the PWMD pin to V_{DD} .

3.7 Over-Temperature Protection

The auto-recoverable thermal shutdown at 140°C (typ.) junction temperature with 20°C hysteresis is featured to avoid thermal runaway. When the junction temperature reaches T_{SD} = 140°C (typ.), HV9910C enters a low power consumption shut-down mode with I_{IN} < 350 µA.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend	9: XXX Y YY WW NNN @3 * •, ▲, ♥ mark).	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (©3) can be found on the outer packaging for this package. Pin one index is identified by a dot, delta up, or delta down (triangle
Note:	In the even be carried characters the corpor Underbar	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information. Package may or may not include ate logo. (_) and/or Overbar (⁻) symbol may not be to scale.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev J Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	Е	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	_	1.27	
Footprint	L1		1.04 REF		
Lead Thickness	С	0.17	_	0.25	
Lead Width	b	0.31	_	0.51	
Lead Bend Radius	R	0.07	-	_	
Lead Bend Radius	R1	0.07	-	_	
Foot Angle	θ	0°	_	8°	
Mold Draft Angle	θ1	5°	_	15°	
Lead Angle	θ2	0°	_	8°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev J Sheet 2 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev J

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad

Microchip Technology Drawing C04-162-SE Rev D Sheet 1 of 2

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν	8			
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.00	-	0.15	
Overall Width	E		6.00 BSC		
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Exposed Pad Width	E2	2.05	2.23	2.41	
Exposed Pad Length	D1	2.81	3.06	3.30	
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Lead Thickness	С	0.17	-	0.25	
Lead Width	b	0.31	-	0.51	
Lead Bend Radius	R	0.07	-	-	
Lead Bend Radius	R1	0.07	-	-	
Foot Angle	θ	0°	-	8°	
Lead Angle	θ2	0°	-	-	
Mold Draft Angle Top and Bottom	0 1	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-162-SE Rev D Sheet 2 of 2

8-Lead Thermally Enhanced Plastic Small Outline (SE) - Narrow, 3.90 mm Body [SOIC] With 2.2 x 3.0 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		1.27 BSC	
Center Pad Width	X2			3.30
Center Pad Length	Y2			2.40
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55
Contact Pad to Center Pad (X8)	G	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2162-SE Rev D

16-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-108C Sheet 1 of 2

16-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		16		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	9.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.04 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.10	-	0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-108C Sheet 2 of 2

16-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2108A

APPENDIX A: REVISION HISTORY

Revision B (July 2022)

- Modified values in sections Internal Regulator and Current Sense Comparator in Table 1-1.
- Updated Section 4.0 "Packaging Information" with the latest package markings and drawings.
- Minor text and format changes throughout.

Revision A (August 2014)

• Original Release of this Document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>xx</u>	- Ť	<u>-xxxx</u> 1	Examples:		
Device	Package Environmental Reel Options		Reel	a)	HV9910CLG-G:	8-Lead SOIC package, Lead (Pb)-free, RoHS- compliant, 3300/Reel.
Device:	HV9910C= Universal High-Brightness LED Driver		igh-Brightness LED Driver	b)	HV9910CNG-G:	16-Lead SOIC package, Lead (Pb)-free, RoHS- compliant, 45/Tube
Package:	LG	= 8-Lead SOI	C	c)	HV9910CNG-G-M934:	16-Lead SOIC package, Lead (Pb)-free, RoHS- compliant 2600/Reel
_	NG	= 16-Lead SO	с	d)	HV9910CSG-G:	8-Lead SOIC package
	SG	= 8-Lead SOI	C with heat slug			with heat slug, Lead (Pb)-free, RoHS- compliant, 3300/Reel.
Environmental:	G	= Lead (Pb)-f	ree/RoHS-compliant package			
Reel:	Blank M934	Reel for LG packageReel for NG	and SG packages, Tube for NG package	Note	1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Micro-chip Sales Office for package availability with the Tape and Reel option.	

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014-2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0921-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200 Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399

Italy - Padova

Italy - Milan

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820