ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
Data Sheet
 October 2013

N-Channel UItraFET Power MOSFET $100 \mathrm{~V}, 75 \mathrm{~A}, 14 \mathrm{~m} \Omega$

Packaging

JEDEC TO-263AB

Symbol

Features

- Ultra Low On-Resistance
- $\quad r_{D S}(O N)=0.014 \Omega, V_{G S}=10 \mathrm{~V}$
- Simulation Models
- Temperature Compensated PSPICE® and SABER ${ }^{\text {TM }}$ Electrical Models
- Spice and Saber Thermal Impedance Models
- www.onsemi.com
- Peak Current vs Pulse Width Curve
- UIS Rating Curve

Ordering Information

PART NUMBER	PACKAGE	BRAND
HUF75645P3	TO-220AB	75645 P
HUF75645S3ST	TO-263AB	75645 S

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified			
		HUF75645P3, HUF75645S3ST	UNITS
Drain to Source Voltage (Note 1).	$V_{\text {DSS }}$	100	V
Drain to Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$) (Note 1)	V $\mathrm{V}_{\text {GR }}$	100	V
Gate to Source Voltage	V_{GS}	± 20	V
Drain Current			
Continuous ($\left.\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$ (Figure 2)	. ID	75	A
Continuous ($\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$) (Figure 2)	$\ldots{ }^{\text {d }}$	65	A
Pulsed Drain Current .	. . IDM	Figure 4	
Pulsed Avalanche Rating	UIS	Figures 6, 14, 15	
Power Dissipation . . Derate Above $25^{\circ} \mathrm{C}$	$\ldots P_{D}$	$\begin{aligned} & 310 \\ & 2.07 \end{aligned}$	$\begin{gathered} \text { W } \\ \text { W/ }{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-55 to 175	${ }^{\circ} \mathrm{C}$
Maximum Temperature for Soldering			
Leads at 0.063in (1.6 mm) from Case for 10s. .	$\ldots . T_{L}$	300	${ }^{\circ} \mathrm{C}$
Package Body for 10s, See Techbrief TB334. .	. . $\mathrm{T}_{\text {pkg }}$	260	${ }^{\circ} \mathrm{C}$
NOTES:			
1. $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.			

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS							
Drain to Source Breakdown Voltage	$B V_{\text {DSS }}$	$\mathrm{ID}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}($ Figure 11)		100	-	-	V
Zero Gate Voltage Drain Current	IDSS	$\mathrm{V}_{\mathrm{DS}}=95 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=90 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$		-	-	250	$\mu \mathrm{A}$
Gate to Source Leakage Current	$I_{G S S}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		-	-	± 100	nA
ON STATE SPECIFICATIONS							
Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}($ Figure 10$)$		2	-	4	V
Drain to Source On Resistance	rDS(ON)	$\mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Figure 9)		-	0.0115	0.014	Ω
THERMAL SPECIFICATIONS							
Thermal Resistance Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	TO-220 and TO-263		-	-	0.48	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$			-	-	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SWITCHING SPECIFICATIONS (V $\left.\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$							
Turn-On Time	${ }^{\text {O }} \mathrm{ON}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GS}}=2.5 \Omega \\ & \text { (Figures } 18,19 \text {) } \end{aligned}$		-	-	197	ns
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$			-	14	-	ns
Rise Time	t_{r}			-	117	-	ns
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{OFF})}$			-	41	-	ns
Fall Time	t_{f}			-	97	-	ns
Turn-Off Time	toFF			-	-	207	ns
GATE CHARGE SPECIFICATIONS							
Total Gate Charge	$Q_{g(T O T)}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 20 V	$\begin{aligned} & V_{D D}=50 \mathrm{~V}, \\ & I_{D}=75 A \\ & I_{g(R E F}=1.0 \mathrm{~mA} \\ & \text { (Figures } 13,16,17) \end{aligned}$	-	198	238	$n \mathrm{C}$
Gate Charge at 10V	$\mathrm{Q}_{\mathrm{g}(10)}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10 V		-	106	127	$n C$
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 2 V		-	6.8	8.2	$n \mathrm{C}$
Gate to Source Gate Charge	$Q_{g s}$			-	14	-	$n C$
Gate to Drain "Miller" Charge	$Q_{g d}$			-	41	-	$n C$
CAPACITANCE SPECIFICATIONS							
Input Capacitance	CISS	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \\ & \text { (Figure 12) } \end{aligned}$		-	3790	-	pF
Output Capacitance	$\mathrm{C}_{\text {OSS }}$			-	810	-	pF
Reverse Transfer Capacitance	$\mathrm{C}_{\text {RSS }}$			-	230	-	pF

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\text {SD }}=75 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\text {SD }}=35 \mathrm{~A}$	-	-	1.00	V
Reverse Recovery Time	$t_{r r}$	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	145	ns
Reverse Recovered Charge	$Q_{R R}$	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{dl}_{\text {SD }} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	360	$n \mathrm{C}$

Typical Performance Curves

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. PEAK CURRENT CAPABILITY

Typical Performance Curves (Continued)

FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

NOTE: Refer to ON Semiconductor Application Notes AN9321 and AN9322.

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 8. SATURATION CHARACTERISTICS

FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 16. GATE CHARGE TEST CIRCUIT

FIGURE 18. SWITCHING TIME TEST CIRCUIT

FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. GATE CHARGE WAVEFORMS

FIGURE 19. SWITCHING TIME WAVEFORM

PSPICE Electrical Model

.SUBCKT HUF75645 213 ; rev 21 May 1999
$\begin{array}{ll}\text { CA } & 1285.31 \mathrm{e}-9 \\ \text { CB } & 15145.31 \mathrm{e}-9\end{array}$
CIN 68 3.56e-9

DBODY 75 DBODYMOD
DBREAK 511 DBREAKMOD
DPLCAP 105 DPLCAPMOD

EBREAK 1171718115.5
EDS 148581
EGS 138681
ESG 610681
EVTHRES 6211981
EVTEMP 20618221

IT 8171
LDRAIN 25 1.0e-9
LGATE 19 5.1e-9
LSOURCE 3 74.4e-9
MMED 16688 MMEDMOD
MSTRO 16688 MSTROMOD
MWEAK 162188 MWEAKMOD
RBREAK 1718 RBREAKMOD 1
RDRAIN 5016 RDRAINMOD 7.80e-3
RGATE 9200.83
RLDRAIN 2510
RLGATE 1926
RLSOURCE 3711
RSLC1 551 RSLCMOD 1e-6
RSLC2 550 1e3
RSOURCE 87 RSOURCEMOD 1.65e-3
RVTHRES 228 RVTHRESMOD 1
RVTEMP 1819 RVTEMPMOD 1
S1A 612138 S1AMOD
S1B 1312138 S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD
VBAT 2219 DC 1
ESLC 5150 VALUE=\{(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*205),3.5)) $\}$

```
.MODEL DBODYMOD D (IS = 3.00e-12 IKF = 19 RS = 1.78e-3 XTI = 5 TRS1 = 2.25e-3 TRS2 = 1.00e-5 CJO = 5.32e-9 TT = 7.4e-8 M = 0.68)
MODEL DBREAKMOD D (RS = 2.15e- 1IKF = 1 TRS1 = 8e- 4TRS2 = 3e-6)
MODEL DPLCAPMOD D (CJO =5.55e- 9IS = 1e-3 OM = 0.98)
.MODEL MMEDMOD NMOS (VTO = 3.13 KP = 10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.83)
.MODEL MSTROMOD NMOS (VTO = 3.51 KP = 93 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
MODEL MWEAKMOD NMOS (VTO =2.65 KP = 0.11 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.33)
.MODEL RBREAKMOD RES (TC1 = 9.9e- 4TC2 = -1.3e-6)
.MODEL RDRAINMOD RES (TC1 = 9.40e-3 TC2 = 2.93e-5)
MODEL RSLCMOD RES (TC1 = 2.63e-3 TC2 = 1.05e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
MODEL RVTHRESMOD RES (TC1 = -2.57e-3 TC2 = -7.05e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.87e- 3TC2 = -2.21e-6)
MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.2 VOFF=-2.4)
MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON =-2.4 VOFF=-6.2)
MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON =-1.8 VOFF=0.5)
MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF =0.1 VON = 0.5 VOFF=-1.8)
ENDS
```

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

REV 21 May 1999
template ta75645 n2,n1,n3
electrical n2,n1,n3
\{
var i iscl
d.. model dbodymod $=($ is $=3.00 \mathrm{e}-12, \mathrm{cjo}=5.32 \mathrm{e}-9, \mathrm{tt}=7.4 \mathrm{e}-8, \mathrm{xti}=5, \mathrm{~m}=0.68$)
d..model dbreakmod = ()
d.. model dplcapmod $=(\mathrm{cjo}=5.55 \mathrm{e}-9$, is $=1 \mathrm{e}-30, \mathrm{vj}=1.0, \mathrm{~m}=0.8)$
m..model mmedmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=3.13, \mathrm{kp}=10$, is $=1 \mathrm{e}-30$, tox $=1$)
m..model mstrongmod $=\left(\right.$ type $=_n$, vto $=3.51, \mathrm{kp}=93$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
m..model mweakmod $=($ type $=-\bar{n}$, vto $=2.65, \mathrm{kp}=0.11$, is $=1 \mathrm{e}-30$, tox $=1$)
sw_vcsp..model s1amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-6.2$, voff $=-2.4)$
sw_vcsp..model s1bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=-2.4$, voff $=-6.2)$
sw_vcsp..model s2amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-1.8$, voff $=0.5)$
sw_vcsp..model s2bmod $=(\operatorname{ron}=1 \mathrm{e}-5, \operatorname{roff}=0.1$, von $=0.5$, voff $=-1.8)$

```
c.ca \(\mathrm{n} 12 \mathrm{n} 8=5.31 \mathrm{e}-9\)
c.cb n15 n14 = 5.31e-9
c. \(\operatorname{cin} \mathrm{n} 6 \mathrm{n} 8=3.56 \mathrm{e}-9\)
```

d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
I.Idrain n2 n5 = 1e-9
I.Igate $n 1 n 9=5.1 \mathrm{e}-9$
I.Isource n3 n7 = 4.4e-9

m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{I}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 = 1, tc1 $=9.9 \mathrm{e}-4$, tc2 $=-1.3 \mathrm{e}-6$
res.rdbody $\mathrm{n} 71 \mathrm{n} 5=1.78 \mathrm{e}-3, \mathrm{tc} 1=2.25 \mathrm{e}-3$, tc2 $=1 . \mathrm{e}-5$
res.rdbreak n72 n5 $=2.15 \mathrm{e}-1$, tc1 $=8 \mathrm{e}-4$, tc2 $=3 \mathrm{e}-6$
res.rdrain n50 n16 $=7.8 \mathrm{e}-3, \mathrm{tc} 1=9.4 \mathrm{e}-3, \mathrm{tc} 2=2.93 \mathrm{e}-5$
res.rgate n9 n20 $=0.83$
res.rldrain n2 n5 $=10$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=26$
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 $=1 \mathrm{e}-6, \mathrm{tc} 1=2.63 \mathrm{e}-3, \mathrm{tc} 2=1.05 \mathrm{e}-6$
res.rslc2 n5 n50 = 1e3
res.rsource $\mathrm{n} 8 \mathrm{n} 7=1.65 \mathrm{e}-3, \mathrm{tc} 1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvtemp n18 n19 $=1$, tc1 $=-2.87 \mathrm{e}-3$, tc2 $=-2.21 \mathrm{e}-6$
res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1, \mathrm{tc} 1=-2.57 \mathrm{e}-3, \mathrm{tc} 2=-7.05 \mathrm{e}-6$
spe.ebreak n11 n7 n17 n18 = 115.5
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $v(n 51, n 50)=\left((v(n 5, n 51) /(1 e-9+a b s(v(n 5, n 51))))^{*}\left(\left(a b s\left(v(n 5, n 51)^{*} 1 e 6 / 205\right)\right)^{* *} 3.5\right)\right)$
\}

SPICE Thermal Model

REV 28 July 1999
HUF75645T

CTHERM1 th $68.80 \mathrm{e}-3$
CTHERM2 65 2.50e-2
CTHERM3 54 2.70e-2
CTHERM4 43 3.70e-2
CTHERM5 32 4.40e-2
CTHERM6 2 tl $3.40 \mathrm{e}-1$
RTHERM1 th $61.20 \mathrm{e}-2$
RTHERM2 65 3.00e-2
RTHERM3 54 4.30e-2
RTHERM4 43 8.80e-2
RTHERM5 32 9.90e-2
RTHERM6 2 tl 1.10e-1

SABER Thermal Model

SABER thermal model HUF75645T
template thermal_model th tl
thermal_c th, tl
\{
ctherm.ctherm1 th $6=8.80 \mathrm{e}-3$ ctherm.ctherm2 $65=2.50 \mathrm{e}-2$ ctherm.ctherm3 $54=2.70 \mathrm{e}-2$ ctherm.ctherm4 $43=3.70 \mathrm{e}-2$ ctherm.ctherm5 $32=4.40 \mathrm{e}-2$ ctherm.ctherm6 $2 \mathrm{tl}=3.40 \mathrm{e}-1$
rtherm.rtherm1 th $6=1.20 \mathrm{e}-2$
rtherm. $\mathrm{rtherm} 265=3.00 \mathrm{e}-2$
rtherm.rtherm3 $54=4.30 \mathrm{e}-2$
rtherm.rtherm4 $43=8.80 \mathrm{e}-2$
rtherm. rth . $\mathrm{rm} 532=9.90 \mathrm{e}-2$
rtherm.rtherm6 $2 \mathrm{tl}=1.10 \mathrm{e}-1$
\}

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

