

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 1 of 8

Get into Parallel Processing with the Parallax PropellerTM

Introducing the Propeller

Every now and again something different comes along. Microcontroller chip development

has proceeded down the same paths for many years now: either the same basic ‘core’

processor being surrounded by more and peripherals or the processor itself being made

more and more powerful. Examples of the former include 8051-core devices, the latter

ARM-based microcontrollers. The common feature is a single processor supported by

specialist, dedicated logic providing features like Pulse Width Modulation output and pulse

Fig.1 Propeller internal architecture

counting input. Even Cypress’ PSoC system still involves a single embedded control core.

The Propeller from Parallax represents a major change in design philosophy. This device

contains eight 32-bit processors or ‘COGs’ with minimal support logic and only the most

basic I/O hardware (Fig.1). A first reaction to this layout might be: ‘Great, I can implement

that Neural network project with each COG running essentially the same program’.

While pure parallel processing may indeed be a good use for the Propeller, I don’t believe

this was the main driver behind the design. The idea is to give the engineer maximum

control over the peripheral system in a particular application. You may still have a single

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 2 of 8

COG running the top-level program, farming out lower-level tasks such as serial I/O to

another COG as and when required. This is the really fascinating feature of this device: the

ability to reconfigure itself under program control to suit the requirements at a particular

time and then to shut processes down when no longer needed, perhaps re-assigning

processor resources to a completely different task. The processor clock is also under

program control so power consumption can be reduced if high speed is not needed when

implementing slow I/O such as RS-232.

The Starter Kit Hardware

The kit contains a very small demonstration board packed with various I/O sockets, some

rather surprising: VGA output to a monitor, TV output, PS/2 keyboard and mouse sockets.

The video outputs are provided because the chip contains as part of its central resource

ROM the look-up table of a character generator. The only ‘conventional’ I/O port is USB

derived from the on-board FTDI chip. The UART function that drives this device, is of

course implemented entirely in software and runs on one of the COGs.

Fig.2 Source code in Propeller Tool

All communication with the IDE software on the PC - Propeller Tool – is via the USB port.

There is a serial EEPROM on-board which communicates with the Propeller via an I2C bus

which, you guessed it, is implemented in software run by a COG. It provides non-volatile

memory for user programs. These I/O routines are loaded from system ROM at Reset to

allow programs to be downloaded from the PC or from the EEPROM, but are then shut

down before the user’s program begins execution. If your program requires these I/O

resources, then it will have to load them and assign COG(s) as appropriate. This may

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 3 of 8

seem awkward at first, but why have unwanted resources cluttering up memory space if

you don’t need them?

Propeller Tool

The IDE that comes with the starter kit is called Propeller Tool and provides program

editing, compilation of the high-level language Spin, and downloading to the demo board.

You have the option of programming in Spin, assembly language or a combination of both.

Obviously the assembler produces more efficient, faster operation and there is the usual

trade-off between faster development and faster operation.

Fig.3 The wired-up demo board

The editor screen is very colourful (Fig.2) and the automatic assignment of different

colours to code blocks is supposed to aid understanding. A number of radio buttons allow

you to view sub-sets of the full source code, for example, just the comments. There are

two options for downloading and running: compile and run in COG RAM, and compile and

send to the EEPROM from where it is automatically loaded into RAM by the device

bootloader.

The first method is best for development, only transferring to non-volatile memory when

the code works.

Using the Demo Board

To illustrate some of the main features of Propeller programming a task was devised

involving the speed control of a small DC motor using PWM. Two pushbuttons provide

Speed Up and Speed Down inputs. The drive capability of the I/O ports is insufficient for

the motor used so an H-Bridge circuit was constructed from half of an L293D quad driver

chip. This was mounted on the breadboard together with two ‘Tact’ switches, pull-up

resistors and decoupling capacitors (Fig.3). Note the use of the D-variant of this chip which

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 4 of 8

has built-in protection diodes for driving inductive loads. Only Ports 0 to 7 of the Propeller

are available to the user out of a possible 32, the others being committed to EEPROM

busses, etc. on this demo board. The Propeller is a +3.3V device although both +3.3V and

+5V regulated supplies are available. Hence the logic of the L293D works off the +3.3V

supply, while its separate motor supply pin is connected to +5V. A small but very useful

feature is the Ground or 0V post which takes the croc clip from a ‘scope probe.

Listing 1. PWM generator using just Wait statements

'' ***

'' * Simple DC motor speed controller for the Parallax Propeller *

'' * W.G.Marshall 2010 *

'' ***

''Port 0 = PWM output

''Port 1 = Speed Up button input

''Port 2 = Speed Down button input

CON

_clkmode = xtal1 + PLL4X

_clkfreq = 20_000_000

VAR

 word Ratio 'Ratio links the routines in COGs 0 & 1

 long Stack[9] 'Make stack space for COG 1

PUB Main

''Initialisation of ports and program start

 dira[0..2] := %100 'Set Ports 0 = output, 1 & 2 = input

 Ratio := 10000 'Initial PWM 50% with frequency = 1 kHz

 cognew(Buttons, @Stack) 'Start COG 1 running Buttons routine

 Toggle 'while COG 0 runs PWM generator routine

PUB Toggle | Time

''COG 0 produces PWM signal with Mark/Space ratio set by variable Ratio

 Time := cnt 'Set base time from system counter

 repeat 'Repeat next 4 lines forever

 waitcnt(Time += 20000 - Ratio) 'Wait for interval set by Ratio

 outa[0]~~ 'Set Port 0 = 1

 waitcnt(Time += Ratio) 'Wait for interval set by Ratio

 outa[0]~ 'Set Port 0 = 0

PUB Buttons | Width

''COG 1 monitors two pushbuttons to derive value for Ratio

 repeat 'Repeat next 8 lines forever

 Width := Ratio

 waitpne(%110, %110, 0) 'Wait for button press

 if ina[1] == 0 'If Speed UP button pressed

 Width := Width + 1 <# 17500 'then increment Width to max 17500

 else 'Speed DOWN button pressed

 Width := Width - 1 #> 2500 'so decrement Width to min 2500

 Ratio := Width

 waitcnt(10000 + cnt) 'Wait before checking buttons again

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 5 of 8

Programming in Spin

A first attempt for the program to drive the motor is given in Listing 1. It is not presented as

optimal solution but does illustrate some of the key features of Propeller programming. The

aim is to use two COGs; one driving the PWM output with a mark/space ratio set by the

global variable Ratio, the second monitoring two push button inputs and setting the value

of Ratio. The PWM frequency is to be 1kHz.

The CON statements set up two system constants and fix the clock speed. We decided on

a 20 MHz clock so the internal PLL multiplier is set to 4 given the 5 MHz crystal supplied

with the board. Next, the VAR statements set up global variables: Ratio as mentioned, and

Stack which assigns stack space for the second COG.

The first public method, PUB Main performs the usual initialization tasks including setting

an initial value of Ratio equivalent to 50% PWM. Now comes the first really interesting

instruction: COGNEW. This is what launches the second COG. Up to now COG 0 has

been doing everything, running the boot-loader and then the first part of our program.

COGNEW tells it to load the public method Buttons into the next free COG, in this case

COG 1, and set it running. Once it has done that it launches the Toggle method and runs

that from now on. A feature peculiar to the Propeller is the sharing of the 32 GPIO port

lines by all processors. Each COG has its own Port Direction register, each output of

which is ‘OR-ed’ with the next COG’s register (see Fig.1). A COG requiring an output port

needs to set the appropriate bit in its Direction register to logic 1. Once set it also enables

the corresponding output from the COG I/O register to drive the I/O pin. Care must be

taken to ensure that two COGs don’t try and use the same port line for output, as program

operation will not be as expected! Port input is completely independent and any COG may

read the state of any port pin at any time. A COG can check its own output or indeed

monitor what other COGs are doing on port pins they have set as outputs.

The Propeller has no interrupt system so there are a number of Wait instructions which

cause program execution to pause until some event takes place. WAITCNT suspends

operation for the specified number of system clock cycles by checking the value of a target

figure against the value of the System Counter CNT. This is how the PWM waveform on

Port 0 is generated by Toggle.

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 6 of 8

Listing 2. Improved PWM generator using a hardware counter

The WAITPNE instruction in the Buttons method waits for Port 1 or Port 2 (or both) to go to

a logic 0. In other words it waits for a button to be pressed. The beauty of these Wait

instructions is that the COG operation is suspended with its power consumption reduced

by over 85%. You can see that the COG running Buttons spends most of its time ‘asleep’,

'' **

'' * Simple DC motor speed controller using counters for timing *

'' * PWM mark/space ratio from 0 to 100% *

'' * W.G.Marshall 2010 *

'' **

''Port 0 = PWM output

''Port 1 = Speed Up button input

''Port 2 = Speed Down button input

CON

_clkmode = xtal1 + PLL4X

_clkfreq = 20_000_000

VAR

 word Ratio 'Ratio = PWM pulse width

 word Period 'Period = PWM period

 long Stack[9] 'Make stack space for COG 1

PUB Main

''Initialisation of ports, counters and program start

 Ratio := 10000 'Initial PWM 50%

 Period := 20000 'Set PWM period

 ctra[30..26] := %00100 'Configure Counter A to NCO/PWM mode

 ctra[5..0] := %00000 'Direct Counter APIN to Port 0

 frqa := 1 'Set counter increment to 1

 dira[0..2] := %100 'Set Ports 0 = output, 1 & 2 = input

 cognew(Buttons, @Stack) 'Start COG 1 running Buttons routine

 Toggle 'COG 0 runs PWM generator routine

PUB Toggle | Time

''COG 0 produces PWM signal with pulse width set by variable Ratio

 Time := cnt 'Set base time from System Counter

 repeat 'Repeat next 3 lines forever

 phsa := -Ratio 'Load negated Pulse width into PHS

 Time += Period 'Time = Time + Period

 waitcnt(Time) 'Wait for interval set by Time

PUB Buttons | Width

''COG 1 monitors two pushbuttons to derive value for Ratio

 repeat 'Repeat next 8 lines forever

 Width := Ratio

 waitpne(%110, %110, 0) 'Wait for button press

 if ina[1] == 0 'If Speed UP button pressed

 Width := Width + 1 <# Period 'then increment Width to max Period

 else 'Speed DOWN button pressed

 Width := Width - 1 #> 0 'so decrement Width to min 0

 Ratio := Width

 waitcnt(6000 + cnt) 'Wait before checking buttons again

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 7 of 8

only waking when necessary. Because of instruction overheads the value of the parameter

in the WAITCNT instructions of Toggle must not be less than 2500. This imposes a

maximum and minimum for the PWM mark/space ratio. Hence the max (<#) and min (#>)

statements in Buttons.

Using the COG’s counters

The program in Listing 1 is one solution, but it has a major drawback: because of the

minimum size requirement for the parameter of WAITCNT statements the PWM range is

limited from about 10% to 90% mark/space ratio. Suppose we need the full 0 to 100%

range? Each COG does have a simple ‘Count/Capture Unit’ made from some registers

and a few bits of logic. There are two identical counters, A and B each consisting of three

registers CTR, FRQ and PHS. CTR sets the operational mode, PHS is the accumulator

holding the current value and FRQ is added to PHS when required. Refer to Listing 2 to

see how Counter A of COG 0 helps generate the PWM signal.

The counter is set up in PUB Main. First, the CTRA register is set to select PWM mode

and Bit 31 of PHSA connected to output Port 0. FRQA is set to 1 so that PHSA is

incremented by one for each cycle of System Clock.

In PUB Toggle PHSA is loaded with the negative (2’s complement) value of Ratio. This of

course sets Bit 31 or the ‘sign-bit’ of PHSA to logic 1. As this bit is connected to Port 0, the

PWM output also goes high. PHSA is now automatically incremented at the System Clock

rate by having FRQA added to it. After Ratio clock cycles, PHSA reaches zero and Bit 31

changes to logic 0. That is the end of the PWM pulse. While all this is happening the COG

is sat in the WAITCNT statement for the duration of Period. Of course PHSA continues to

increment, but the end of Period will be reached long before PHSA reaches a value setting

Bit 31 high again. When WAITCNT times out the cycle repeats, with PHSA being reloaded

with –Ratio. We have thus added some more parallel operation by having the Counter

determine the pulse width, while independently the COG program is setting the period.

The max and min limits in PUB Buttons can now be set to Period and zero respectively as

the WAITCNT restriction is removed.

Parallax Propeller Starter Kit W.G.Marshall Rev.1.3 Page 8 of 8

Adding more features

Supposing you want to add a serial output feature that dumps data when a button is

pressed? Just add a new public method that acts as a software UART and contains the

WAITPNE instruction to monitor a third pushbutton. Then add a COGNEW calling this

method after the existing COGNEW in the Main method. When this executes, the next free

COG, in this COG 2 will be loaded with the new method and set running. COG 2 will then

power down waiting for the dump data button to be pressed. When it is pressed, the serial

out routine will run with no impact on the other two methods running in COGs 0 and 1.

Speeding it up

You would normally expect programs run by an on-board interpreter, in this case SPIN, to

be slower than those in native assembler. The unique architecture of the Propeller does to

some extent widen the speed gap. This is because user SPIN code is held in shared

central RAM while each COG runs the interpreter in its own local memory. The hub

provides access to central resources in a strict time sequence and a particular COG may

be held up waiting its turn. Machine code from the assembler is stored and run in the COG

local memory resulting in a considerable increase in throughput.

Summary

 Eight 32-bit processors (COGs) running independently at a maximum 20 MIPS

each, giving a maximum for the whole chip of 160 MIPS.

 A hub controller allows COGs access to shared RAM/ROM in a fixed time sequence

which means that all timing is predictable.

 32 GPIO port lines are shared by all COGs.

 Each COG has simple Count/Capture hardware that can be linked to the GPIO lines.

 No interrupt system, extensive use of Wait instructions for software timing.

 Makes programming parallel processes extremely simple.

 Programming in both high-level language (SPIN) and assembler possible.

Essential reading

Propeller Application Note AN001 – Propeller counters v1.0

Downloadable from Parallax.com

Programming and Customizing the Multicore Propeller Microcontroller

Shane Avery et al ISBN 978-0-07-166450-9 McGraw Hill

