

Product Highlights

- Integrated 700 V/800 V avalanche rugged CoolMOS™
- Novel Quasi-Resonant operation and proprietary implementation for low EMI
- Enhanced Active Burst Mode with selectable entry and exit standby power
- Active Burst Mode to reach the lowest standby power <100 mW
- Fast startup achieved with cascode configuration
- Digital frequency reduction for better overall system efficiency
- Robust line protection with input OVP and brownout
- Comprehensive protection
- Pb-free lead plating, halogen free mold compound, RoHS compliant

Features

- Integrated 700 V/800 V avalanche rugged CoolMOS™
- Minimum switching frequency difference between low & high line for higher efficiency & better EMI
- Enhanced Active Burst Mode with selectable entry and exit standby power
- Active Burst Mode to reach the lowest standby power <100 mW
- Fast startup achieved with cascode configuration
- Digital frequency reduction up to 10 zero crossings
- Built-in digital soft start
- Cycle-by-cycle peak current limitation
- Maximum on/off time limitation to avoid audible noise during start up and power down
- Robust line protection with input OVP and brownout
- Auto restart mode protection for VCC Over Voltage, VCC Under Voltage, Over load/Open Loop, Output Over Voltage, Over Temperature and CS (Current Sense) short to GND
- Limited charging current for VCC short to GND
- Pb-free lead plating, halogen free mold compound, RoHS compliant

® ® RoHS

PG-DIP-7

PG-DSO-12

Applications

- Auxiliary power supply for Home Appliances/white Goods, TV, PC & Server
- Blu-ray player, Set-top box & LCD/LED Monitor

Description

The Quasi-Resonant CoolSET™- (ICE5QRxxxxAx) is the 5th generation of Quasi-Resonant integrated power IC optimized for off-line switch power supply in cascode configuration. It is housed in single package with 2 separate chips; one is controller chip and other is HV MOSFET chips. The IC can achieve lower EMI and higher efficiency with improved digital frequency reduction through the proprietary novel Quasi-Resonant operation. The enhanced Active Burst Mode enables flexibility in standby power range selection. The product has a wide operation range (10 ~ 25.5 V) of IC power supply and lower power consumption. The numerous protection functions including the robust line protection (both input OVP and brownout) to support the protections of the power supply system in failure situations. All of these make the CoolSET™ (ICE5QRxxxxAx) series an outstanding integrated power device in Quasi-Resonant flyback converter in the market.

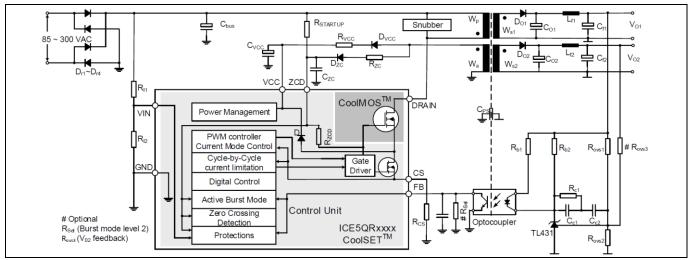


Figure 1 Typical application

Output Power of 5th generation Quasi-Resonant CoolSET™

Table 1 Output Power of 5th generation Quasi-Resonant CoolSET™

Туре	Package	Marking	V _{DS}	R _{DSon} ¹	220V _{AC} ±20% ²	85-300 V _{AC} ²
ICE5QR4770AZ	PG-DIP-7	5QR4770AZ	700 V	4.73 Ω	27 W	15 W
ICE5QR4780AZ	PG-DIP-7	5QR4780AZ	800 V	4.13 Ω	28 W	15 W
ICE5QR2270AZ	PG-DIP-7	5QR2270AZ	700 V	2.13 Ω	41 W	22 W
ICE5QR2280AZ	PG-DIP-7	5QR2280AZ	800 V	2.13 Ω	41 W	22 W
ICE5QR1070AZ	PG-DIP-7	5QR1070AZ	700 V	1.15 Ω	58 W	32 W
ICE5QR0680AZ	PG-DIP-7	5QR0680AZ	800 V	0.71 Ω	74 W	41 W
ICE5QR4770AG	PG-DSO-12	5QR4770AG	700 V	4.73 Ω	27 W	15 W
ICE5QR1680AG	PG-DSO-12	5QR1680AG	800 V	1.53 Ω	50 W	27 W
ICE5QR0680AG	PG-DSO-12	5QR0680AG	800 V	0.71 Ω	77 W	42 W

¹ Typ. at T_J =25°C (inclusive of low side MOSFET)

² Calculated maximum output power rating in an open frame design at T_a=50°C, T_J=125°C (integrated high voltage MOSFET) and using minimum drain pin copper area in a 2 oz copper single sided PCB. The output power figure is for selection purpose only. The actual power can vary depending on particular designs. Please contact to a technical expert from Infineon for more information.

Table of Contents

Product Highlights	1
Features	1
Applications	1
Description	1
•	
-	
•	
•	
·	
• •	
·	
· · · · · · · · · · · · · · · · · · ·	
·	
<u> </u>	
G	
•	
·	
Output Power Curve	1 2
	Features Applications Description wer of 5 th generation Quasi-Resonant CoolSET™ Pin Configuration and Functionality Representative Block Diagram Functional Description ∀ac Pre-Charging and Typical Vac Voltage during Start-up Soft-start Normal Operation Digital Frequency Reduction Minimum ZC Count Determination Up/down counter Zero crossing (ZC counter) Ringing suppression time Switch on determination Switch of determination Modulated gate drive Current limitation Active Burst Mode with selectable power level Entering Active Burst Mode Operation During Active Burst Mode Operation During Active Burst Mode Operation Protection Functions Electrical Characteristics Absolute Maximum Ratings Operating Range Operating Conditions Internal Voltage Refreence. PWM Section Current Sense Soft Start. Digital Zero Crossing Active Burst Mode Line Over Voltage Protection Dvacy Over Voltage Protection Thermal Protection Vac Over Voltage Protection Over Load Protection Over Load Protection Thermal Protection ColMOS™ Performance Characteristics Output Ower Volvage Protection CoolMOS™ Performance Characteristics Output Ower Curve. 4.4

7	Outline Dimension	.51
8	Marking	.53
	Revision History	.54

1 Pin Configuration and Functionality

The pin configuration is shown in Figure 2 and the functions are described in Table 2.

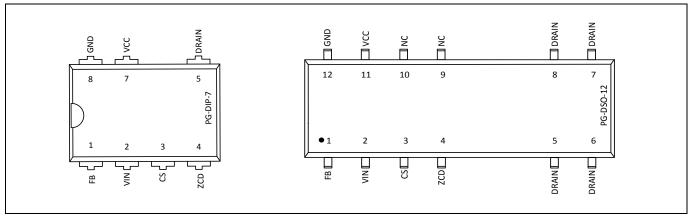


Figure 2 Pin Configuration

Table 2 Pin Definitions and Functions

Pin		Symbol	Function
DIP-7	DSO-12		
1	1	FB	Feedback & Burst entry/exit control
			FB pin combines the functions of feedback control, selectable burst entry/exit control and overload/open loop protection.
2	2	VIN	Input Line OVP & Brownout
			VIN pin is connected to the bus via resistor divider (see Figure 1) to sense the line voltage. This pin combines the functions of input Line OVP, Brownout and minimum ZC count setting between low and high line.
3	3	CS	Current Sense
			The CS pin is connected to the shunt resistor for the primary current sensing externally and to the PWM signal generator block for switch-off determination (together with the feedback voltage) internally. Moreover, CS pin short to ground protection is sensed by this pin.
4	4	ZCD	Zero Crossing Detection
			ZCD pin combines the functions of start up, zero crossing detection and output over voltage protection. During the start up, it is used to provide a voltage level to the gate of power switch $CoolMOS^{TM}$ to charge V_{CC} capacitor.
5	5, 6, 7, 8	DRAIN	Drain
			The DRAIN pin is connected to the drain of the integrated CoolMOS™.
7	11	VCC	VCC(Positive Voltage Supply)
			The VCC pin is the positive voltage supply to the IC. The operating range is between V_{VCC_OFF} and V_{VCC_OVP} .
8	12	GND	Ground
			The GND pin is the common ground of the CoolSET™.
-	9, 10	NC	Not connected.

2 Representative Block Diagram

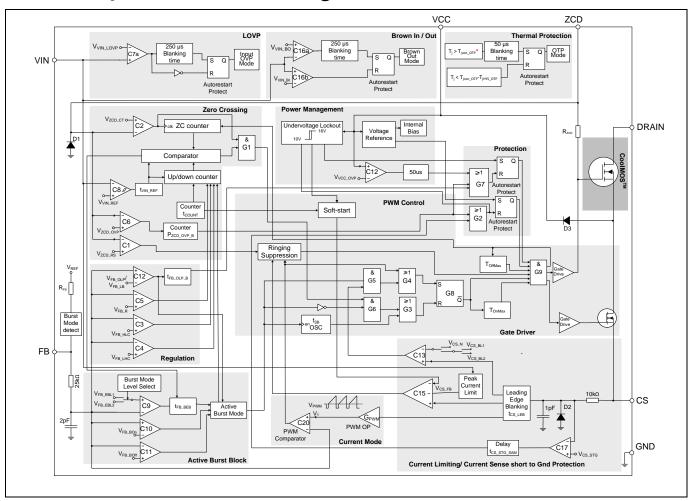


Figure 3 Representative Block Diagram

Note: * Junction temperature of the controller chip is sensed for over temperature protection. The CoolMOS $^{\text{TM}}$ is a separated chip from the controller chip in the same package. Please refer to the design guide and/or consult a technical expert from Infineon for the proper thermal design.

3 Functional Description

3.1 V_{cc} Pre-Charging and Typical V_{cc} Voltage during Start-up

As shown in Figure 1, once the line input voltage is applied, a rectified voltage appears across the capacitor $C_{BUS.}$ The pull up resistor $R_{STARTUP}$ provides a current to charge the C_{iss} (input capacitance) of $CoolMOS^{TM}$ and gradually generate one voltage level. If the voltage over C_{iss} is high enough, $CoolMOS^{TM}$ on and V_{CC} capacitor will be charged through primary inductance of transformer $L_{P,}$ $CoolMOS^{TM}$ and internal diode D_3 with two steps constant current source $I_{VCC_Charge3}^{1}$ and $I_{VCC_Charge3}^{1}$.

A very small constant current source ($I_{VCC_Charge1}$) is charged to the V_{CC} capacitor till V_{CC} reach V_{CC_SCP} to protect the controller from V_{CC} pin short to ground during the start up. After this, the second step constant current source ($I_{VCC_Charge3}$) is provided to charge the V_{CC} capacitor further, until the V_{CC} voltage exceeds the turned-on threshold V_{VCC_ON} . As shown in the time phase I in Figure 4, the V_{CC} voltage increase almost linearly with two steps.

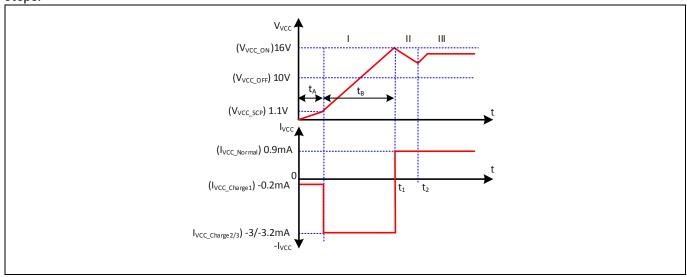


Figure 4 VCC voltage and current at start up

The time taking for the V_{CC} pre-charging can then be approximately calculated as:

$$t_{1} = t_{A} + t_{B} = \frac{V_{VCC_SCP} \cdot C_{VCC}}{I_{VCC_Charge1}} + \frac{(V_{VCC_ON} - V_{VCC_SCP}) \cdot C_{VCC}}{I_{VCC_Charge3}}$$

$$(1)$$

When the V_{CC} voltage exceeds the V_{CC} turned on threshold V_{VCC_ON} at time t_1 , the IC begins to operate with soft start. Due to power consumption of the IC and the fact that there is still no energy from the auxiliary winding to charge the V_{CC} capacitor before the output voltage is built up, the V_{CC} voltage drops (Phase II). Once the output voltage is high enough, the V_{CC} capacitor receives the energy from the auxiliary winding from the time t_2 onward and delivering the $I_{VCC_Normal}^2$ to the CoolSETTM. The V_{CC} then will reach a constant value depending on output load.

¹ I_{VCC_Charge1/2/3} is charging current from the controller to VCC capacitor during start up

² I_{VCC_Normal} is supply current from VCC capacitor or auxiliary winding to the CoolSET[™] during normal operation
Data Sheet

7

3.2 Soft-start

As shown in Figure 5, at the time t_{on} , the IC begins to operate with a soft-start. By this soft-start the switching stresses for the MOSFET, diode and transformer are minimized. The soft-start implemented in ICE5QRxxxxAx is a digital time-based function. The preset soft-start time is t_{ss} (12 ms) with 4 steps. If not limited by other functions, the peak voltage on CS pin will increase step by step from 0.3 V to 1 V finally. During the first 3 ms of soft start, the ringing suppression time is set to 25 μ s to avoid irregular switching due to switch off oscillation noise.

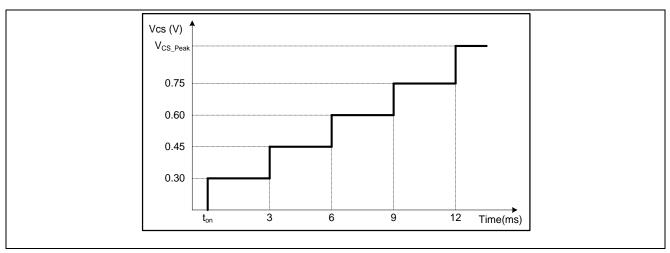


Figure 5 Maximum current sense voltage during soft start

3.3 Normal Operation

During normal operation, the ICE5QRxxxxAx works with a digital signal processing circuit composing an up/down counter, a zero-crossing counter (ZC counter) and a comparator, and an analog circuit composing a current measurement unit and a comparator. The switch-on and -off time points are each determined by the digital circuit and the analog circuit, respectively. The input information of the zero-crossing signal and the value of the up/down counter are needed to determine the switch-on while the feedback signal V_{FB} and the current sensing signal V_{CS} are necessary for the switch-off determination. Details about the full operation of the CoolSET™ in normal operation are illustrated in the following paragraphs.

3.3.1 Digital Frequency Reduction

As mentioned above, the digital signal processing circuit consists of an up/down counter, a ZC counter and a comparator. These three parts are key to implement digital frequency reduction with decreasing load. In addition, a ringing suppression time controller is implemented to avoid mis-triggering by the high frequency oscillation when the output voltage is very low under conditions such as soft start period or output short circuit. Functionality of these parts is described as in the following.

3.3.1.1 Minimum ZC Count Determination

To reduce the switching frequency difference between low and high line, minimum ZC count determination is implemented. Minimum ZC count is set to 1 if VIN less than $V_{\text{VIN_REF}}$ which represents for low line. For high line, minimum ZC count is set to 3 after VIN higher than $V_{\text{VIN_REF}}$. There is also a hysteresis $V_{\text{VIN_REF}}$ with certain blanking time $t_{\text{VIN_REF}}$ for stable AC line selection between low and high line.

3.3.1.2 Up/down counter

The up/down counter stores the number of the zero crossing where the main power switch is switched on after demagnetization of the transformer. This value is fixed according to the feedback voltage, V_{FB} , which contains information about the output power. Indeed, in a typical peak current mode control, a high output power results in a high feedback voltage, and a low output power leads to a low regulation voltage. Hence, according to V_{FB} , the value in the up/down counter is changed to vary the power MOSFET off-time according to the output power. In the following, the variation of the up/down counter value according to the feedback voltage is explained.

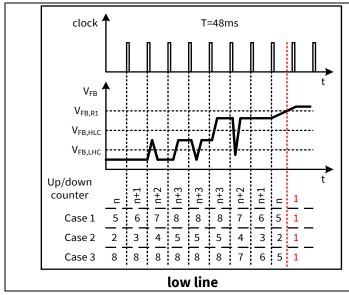

The feedback voltage V_{FB} is internally compared with three threshold voltages V_{FB_LHC} , V_{FB_HLC} and V_{FB_R} at each clock period of 48 ms. The up/down counter counts then upward, keep unchanged or count downward, as shown in Table 3.

Table 3 Operation of up/down counter

V _{FB}	up/down counter action
Always lower than V _{FB_LHC}	Count upwards till n=8/10 ¹
Once higher than V _{F_LHC} , but always lower than V _{FB_HLC}	Stop counting, no value changing
Once higher than V _{FB_HLC} , but always lower than V _{FB_R}	Count downwards till n=1/3 ²
Once higher than V _{FB_R}	Set up/down counter to n=1/3 ²

The number of zero crossing is limited and therefore, the counter varies among 1 to 8 (for low line) 3 to 10 (for high line) and any attempt beyond this range is ignored. When V_{FB} exceeds V_{FB_R} voltage, the up/down counter is reset to 1 (low line) and 3 (high line) in order to allow the system to react rapidly to a sudden load increase. The up/down counter value is also reset to 1 (low line) and 3 (high line) at the start-up time, to ensure an efficient maximum load start up. Figure 6 shows some examples on how up/down counter is changed according to the feedback voltage over time.

The use of two different thresholds V_{FB_LHC} and V_{FB_HLC} to count upward or downward is to prevent frequency jittering when the feedback voltage is close to the threshold point.

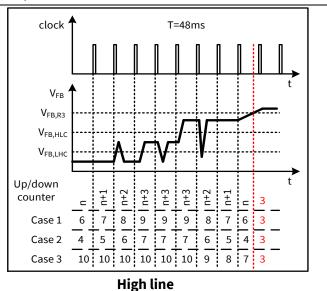


Figure 6 Up/down counter operation

¹ n=8 (for low line) and n=10 (for high line)

² n=1 (for low line) and n=3 (for high line)

3.3.1.3 Zero crossing (ZC counter)

In the system, the voltage from the auxiliary winding is applied to the ZCD pin through a RC network, which provides a time delay to the voltage from the auxiliary winding. Internally this pin is connected to a clamping network, a zero-crossing detector, an output overvoltage detector and a ringing suppression time controller. During on-state of the power switch a negative voltage applies to the ZCD pin. Through the internal clamping network, the voltage at the pin is clamped to certain level.

The ZC counter has a minimum value of 1 (for low line) or 3 (for high line) and maximum value of 8 (for low line) or 10 (for high line). After the internal high voltage CoolMOS™ is turned off, every time when the falling voltage ramp of on SOURCE pin crosses the V_{ZCD_CT} threshold, a zero crossing is detected and ZC counter will increase by 1. It is reset every time after the DRIVER output is changed to high.

The voltage V_{ZCD} is also used for the output over voltage protection. Once the voltage at this pin is higher than the threshold V_{ZCD_OVP} during off time of the main switch for 10 consecutive pulses, the IC enters output over voltage protection mode.

To achieve the switch on at voltage valley, the voltage from the auxiliary winding is fed to a time delay network (the RC network consists of R_{ZC} and C_{ZC} as shown in Figure 1) before it is applied to the zero-crossing detector through the ZCD pin. The needed time delay to the main oscillation signal Δt should be approximately one fourth of the oscillation period, T_{OSC} (by transformer primary inductor and drain-source capacitor) minus the propagation delay from the detected zero-crossing to the switch-on of the main switch t_{delay} , theoretically:

$$\Delta t = \frac{T_{OSC}}{4} - t_{delay} \tag{2}$$

This time delay should be matched by adjusting the time constant of the RC network which is calculated as:

$$\tau_{\rm td} = C_{ZC} \cdot \frac{R_{ZC} \cdot R_{ZCD}}{R_{ZC} + R_{ZCD}} \tag{3}$$

3.3.2 Ringing suppression time

After CoolMOSTM is turned off, there will be some oscillation on V_{DS} , which will also appear on V_{ZCD} . To avoid mistriggering by such oscillations to turn on the CoolMOSTM, a ringing suppression timer is implemented. This suppression time is depended on the voltage V_{ZCD} . If the voltage V_{ZCD} is lower than the threshold V_{ZCD_RS} , a longer preset time t_{ZCD_RS2} is applied. However, if the voltage V_{ZCD} is higher than the threshold, a shorter time t_{ZCD_RS1} is set.

3.3.2.1 Switch on determination

After the gate drive goes to low, it cannot be changed to high during ring suppression time.

After ring suppression time, the gate drive can be turned on when the ZC counter value is higher or equal to up/down counter value.

However, it is also possible that the oscillation between primary inductor and drain-source capacitor damps very fast and IC cannot detect enough zero crossings and ZC counter value will not be high enough to turn on the gate drive. In this case, a maximum off time is implemented. After gate drive has been remained off for the period of T_{OffMax} , the gate drive will be turned on again regardless of the counter values and V_{ZCD} . This function can effectively prevent the switching frequency from going lower than 20 kHz. Otherwise it will cause audible noise during start up.

3.3.3 Switch off determination

In the converter system, the primary current is sensed by an external shunt resistor, which is connected between the internal low side MOSFET and the common ground. The sensed voltage across the shunt resistor V_{CS} is applied to an internal current measurement unit, and its output voltage V_1 is compared with the regulation voltage V_{FB} . Once the voltage V_1 exceeds the voltage V_{FB} , the output flip-flop is reset. As a result, the main power switch is switched off. The relationship between the V_1 and the V_{CS} is described by (see Figure 3):

$$V_1 = G_{PWM} \cdot V_{CS} + V_{PWM} \tag{4}$$

To avoid mis-triggering caused by the voltage spike across the shunt resistor at the turn on of the main power switch, a leading edge blanking time, t_{LEB} , is applied to the output of the comparator. In other words, once the gate drive is turned on, the minimum on time of the gate drive is the leading edge blanking time.

In addition, there is a maximum on time, t_{OnMax} , limitation implemented in the IC. Once the gate drive has been in high state longer than the maximum on time, it will be turned off to prevent the switching frequency from going too low because of long on time.

3.3.4 Modulated gate drive

The drive-stage is optimized for EMI consideration. The switch on speed is slowed down before it reaches the CoolMOS[™] turn on threshold. That is a slope control of the rising edge at the output of driver (see Figure 7). Thus the leading switch spike during turn on is minimized.

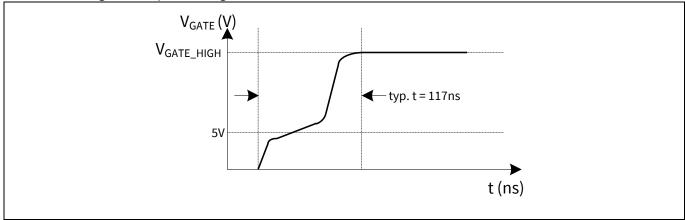


Figure 7 Gate rising waveform

3.4 Current limitation

There is a cycle by cycle current limitation realized by the current limit comparator to provide over-current detection. The source current of the CoolMOSTM is sensed via a sense resistor R_{CS} . By means of R_{CS} the source current is transformed to a sense voltage V_{CS} which is fed into the pin CS. If the voltage V_{CS} exceeds an internal voltage limit, adjusted according to the Line voltage, the comparator immediately turns off the gate drive.

To prevent the Current Limitation process from distortions caused by leading edge spikes, a Leading Edge Blanking time (t_{LEB}) is integrated in the current sensing path.

When the main bus voltage increases, the switch on time becomes shorter and therefore the operating frequency is also increased. As a result, for a constant primary current limit, the maximum possible output power is increased which is beyond the converter design limit.

To avoid such a situation, both the internal peak current limit circuit (V_{cs}) and the ZC count varies with the bus voltage according to Figure 8.

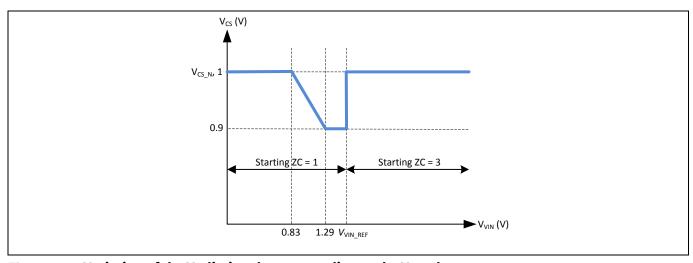


Figure 8 Variation of the V_{CS} limit voltage according to the V_{IN} voltage

3.5 Active Burst Mode with selectable power level

At light load condition, the IC enters Active Burst Mode operation to minimize the power consumption. Details about Active Burst Mode operation are explained in the following paragraphs.

The burst mode entry level can be selected by changing the different resistor R_{Sel} at FB pin. There are 2 levels to be selected with different resistor which are targeted for low range of active burst mode power (Level 1) and high range of active burst mode power (Level 2). The following table shows the control logic for the entry and exit level with the FB voltage.

Table 4 Operation of the up/down counter

Level	V _{FB}	V _{cs}	Entry level	Exit level
			V _{FB_EBLX}	V_{FB_LB}
1	$V_{FB} > V_{REF_B}$	V _{CS_BL1} = 0.31 V	0.90 V	2.75 V
2	$V_{FB} < V_{REF_B}$	V _{CS_BL2} = 0.35 V	1.05 V	2.75 V

During IC first startup, the internal Ref_{GOOD} signal is logic low when $V_{CC} < 4 \text{ V}$. It will reset the Burst Mode level Detection latch. When the Burst Mode Level Detection latch is low and IC is in OFF state, the FB resistor is isolated from the FB pin and a current source I_{sel} is turned on instead.

From Vcc=4 V to Vcc on threshold, the FB pin will start to charge to a voltage level associated with R_{Sel} resistor. When Vcc reaches Vcc on threshold, the FB voltage is sensed. The burst mode thresholds are then chosen according to the FB voltage level. The Burst Mode Level Detection latch is then set to high. Once the detection latch is set high, any change of the FB level will not change the threshold level. When Vcc reaches Vcc on threshold, a timer of 2 μ s is started. After the 2 μ s timer ends, the current source is turned off while the FB resistor is connected to FB pin (see Figure 9).

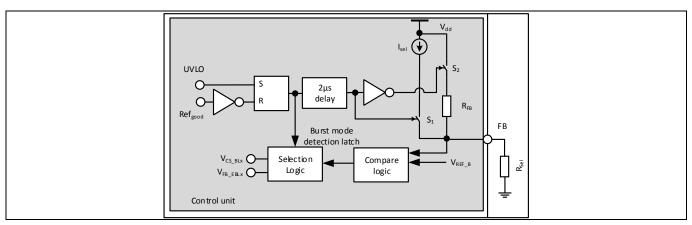


Figure 9 Burst mode detect and adjust

3.5.1 Entering Active Burst Mode Operation

For determination of entering Active Burst Mode operation, three conditions apply:

- the feedback voltage is lower than the threshold of V_{FB_EBLX}
- the up/down counter is 8 for low line and 10 for high line and
- a certain blanking time t_{FB_BEB} (20 ms).

Once all of these conditions are fulfilled, the Active Burst Mode flip-flop is set and the controller enters Active Burst Mode operation. This multi-condition determination for entering Active Burst Mode operation prevents mis-triggering of entering Active Burst Mode operation, so that the controller enters Active Burst Mode operation only when the output power is really low during the preset blanking time.

3.5.2 During Active Burst Mode Operation

After entering the Active Burst Mode the feedback voltage rises as V_0 starts to decrease due to the inactive PWM section. One comparator observes the feedback signal if the voltage level V_{FB_BOn} is exceeded. In that case the internal circuit is again activated by the internal bias to start with switching.

Turn-on of the power MOSFET is triggered by ZC counter with a fixed value of 8 ZC for low line and 10 ZC for high line. Turn-off is resulted if the voltage across the shunt resistor at CS pin hits the threshold V_{CS_BLX} . If the output load is still low, the feedback signal decreases as the PWM section is operating. When feedback signal reaches the low threshold V_{FB_BOff} , the internal bias is reset again and the PWM section is disabled until next time regulation signal increases beyond the V_{FB_BOff} threshold. In Active Burst Mode, the feedback signal is changing like a saw tooth between V_{FB_BOff} and V_{FB_BOff} (see Figure 10).

3.5.3 Leaving Active Burst Mode Operation

The feedback voltage immediately increases if there is a high load jump. This is observed by a comparator. As the current limit is V_{CS_BLX} (31% or 35%) during Active Burst Mode, a certain load is needed so that feedback voltage can exceed V_{FB_LB} . After leaving active burst mode, maximum current V_{CS_N} (100%) can now be provided to stabilize output voltage. In addition, the up/down counter will be set to 1 (low line) or 3 (high line) immediately after leaving Active Burst Mode. This is helpful to decrease the output voltage undershoot.

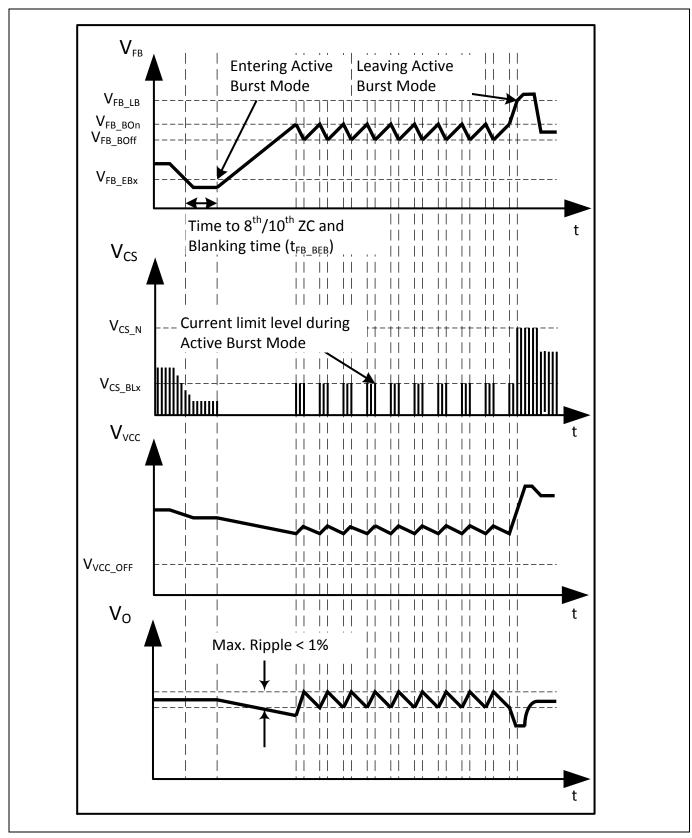


Figure 10 Signals in Active Burst Mode

3.6 Protection Functions

The ICE5QRxxxxAx provides numerous protection functions which considerably improve the power supply system robustness, safety and reliability. The following table summarizes these protection functions. There are 3 different kinds of protection mode; non switch auto restart, auto restart and odd skip auto restart. The details can refer to the Figure 11, Figure 12 and Figure 13.

Table 5 Protection functions

Protection Functions	Normal Mode	Burs	t Mode	Protection Mode	
		Burst ON	Burst OFF		
Line Over Voltage	V	٧	٧	Non switch Auto Restart	
Brownout	٧	٧	٧	Non switch Auto Restart	
V _{cc} Over Voltage	٧	٧	NA ¹	Odd skip Auto Restart	
V _{cc} Under Voltage	٧	٧	٧	Auto Restart	
Over Load	٧	NA^1	NA ¹	Odd skip Auto Restart	
Output Over Voltage	٧	٧	NA ¹	Odd skip Auto Restart	
Over Temperature	٧	٧	٧	Non switch Auto Restart	
CS Short to GND	٧	٧	NA^1	Odd skip Auto Restart	

The AC **Line Over Voltage** Protection is detected by sensing bus capacitor voltage through VIN pin via 2 potential divider resistors, R_{I1} and R_{I2} (see Figure 1). Once V_{VIN} voltage is higher than the line over voltage threshold V_{VIN_LOVP} , the controller enters Line Over Voltage Protection and it releases the protection mode after V_{VIN} is lower than V_{VIN_LOVP} .

The **Brownout** protection is observed by VIN pin similar to line over voltage Protection method with a different voltage threshold level. When V_{VIN} voltage is lower than the brownout threshold (V_{VIN_BO}), the controller enters Brownout Protection and it releases the protection mode after V_{VIN} higher than brownin threshold (V_{VIN_BI}).

During operation, the V_{CC} voltage is continuously monitored. In case of a V_{CC} **Under Voltage** or **Over Voltage**, the IC is reset and the main power switch is then kept off. After the V_{CC} voltage falls below the threshold V_{VCC_OFF} , the new start up sequence is activated. The V_{CC} capacitor is then charged up. Once the voltage exceeds the threshold V_{VCC_ON} , the IC begins to operate with a new soft-start.

In case of open control loop or output **Over Load**, the feedback voltage will be pulled up and exceed V_{FB_OLP} . After a blanking time of $t_{FB_OLP_B}$, the IC enters auto restart mode. The blanking time here enables the converter to provide a peak power in case the increase in V_{FB} is due to a sudden load increase.

During off-time of the power MOSFET, the voltage at the ZCD pin is monitored for **Output Over Voltage** detection. If the voltage is higher than the preset threshold V_{ZCD_OVP} for 10 consecutive pulses, the IC enters Output Over Voltage Protection.

If the junction temperature of controller chip exceeds T_{jcon_OTP} , the IC enters into **Over Temperature** protection (OTP) auto restart mode. The controller implements with a 40 °C hysteresis. In another word, the controller/IC can only resume from OTP if its junction temperature drops 40 °C from OTP trigger point. Please be noted that the separated CoolMOSTM chip may have different temperature (mostly higher) from the controller chip.

If the voltage at the current sense pin is shorted and lower than the preset threshold V_{CS_STG} with certain blanking time $t_{CS_STG_B}$ for 3 consecutive pulses during on-time of the power MOSFET, the IC enters **CS Short to GND** Protection.

1

¹ Not Applicable Data Sheet

There is also a maximum on time limitation implemented inside the ICE5QRxxxxAx. Once the gate voltage is high and longer than t_{OnMax} , the switch is turned off immediately.

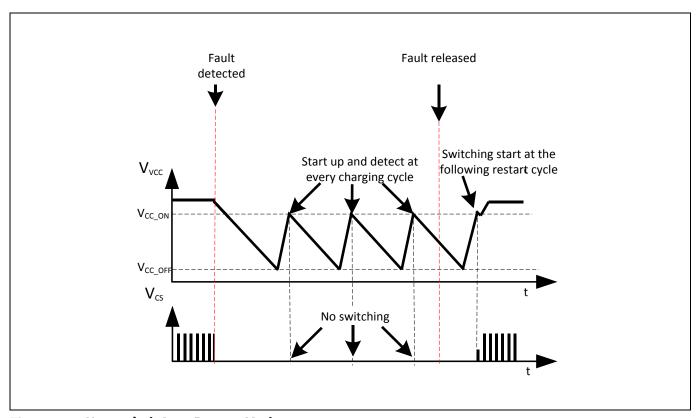


Figure 11 Non switch Auto Restart Mode

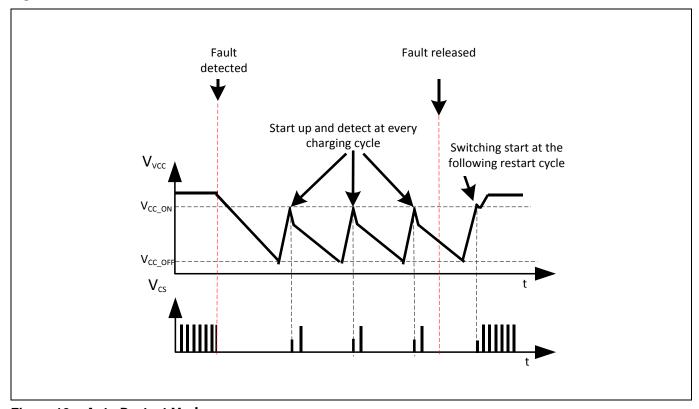


Figure 12 Auto Restart Mode

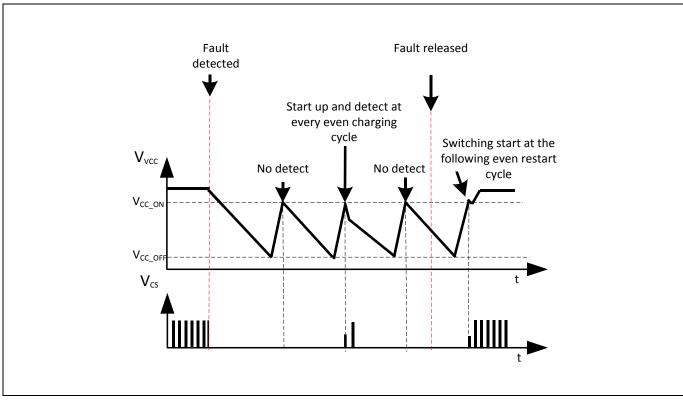


Figure 13 Odd skip Auto Restart Mode

Electrical Characteristics 4

Attention: All voltages are measured with respect to ground (Pin 8 for DIP-7 and Pin12 for DSO-12). The voltage levels are valid if other ratings are not violated.

Absolute Maximum Ratings 4.1

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. System design needs to ensure not to exceed the maximum limit.

Table 6 **Absolute Maximum Ratings**

Parameter	Symbol	Limit Values		Unit	Note / Test Condition	
		Min.	Max.			
Drain Source Voltage	V_{DS}	700	-	V	T _j = 25 °C	
ICE5QRxx70Ax						
Drain Source Voltage	V_{DS}	800	-	V	T _j = 25 °C	
ICE5QRxx80Ax						
Pulse drain current	I _{D_Pulse}			А	T _C = 25 °C	
ICE5QR4770AZ ¹		-	2.2			
ICE5QR4780AZ ¹		-	2.6			
ICE5QR2270AZ ²		-	5.8			
ICE5QR2280AZ ²		-	5.8			
ICE5QR1070AZ ²		-	5.8			
ICE5QR0680AZ ²		-	5.8			
ICE5QR4770AG ¹		-	2.2			
ICE5QR1680AG ²		-	5.8			
ICE5QR0680AG ²		-	5.8			
Avalanche energy, repetitive	E _{AR}			mJ		
ICE5QR4770AZ		-	0.02		I _D =0.14 A, V _{DD} =50 V	
ICE5QR4780AZ		-	0.02		$I_D=0.2 A, V_{DD}=50 V$	
ICE5QR2270AZ		-	0.07		I _D =0.4 A, V _{DD} =50 V	
ICE5QR2280AZ		-	0.05		I _D =0.4 A, V _{DD} =50 V	
ICE5QR1070AZ		-	0.06		$I_D=0.38 A, V_{DD}=50 V$	
ICE5QR0680AZ		-	0.22		$I_D=1.8 A, V_{DD}=50 V$	
ICE5QR4770AG		-	0.02		I _D =0.14 A, V _{DD} =50 V	
ICE5QR1680AG		-	0.07		$I_D=0.6 A, V_{DD}=50 V$	
ICE5QR0680AG		-	0.22		$I_D=1.8 A, V_{DD}=50 V$	

¹ Pulse width t_P limited by T_{j,Max}

Data Sheet

 $^{^2}$ Pulse width t_P =20 μs and limited by $T_{j,Max}$

Avalanche current, repetitive	I _{AR}			Α	
ICE5QR4770AZ		-	0.14		
ICE5QR4780AZ		-	0.2		
ICE5QR2270AZ		-	0.4		
ICE5QR2280AZ		-	0.4		
ICE5QR1070AZ		-	0.82		
ICE5QR0680AZ		-	1.8		
ICE5QR4770AG		-	0.14		
ICE5QR1680AG		-	0.6		
ICE5QR0680AG		-	1.8		
VCC Supply Voltage	V_{cc}	-0.3	27.0	V	
FB Voltage	V_{FB}	-0.3	3.6	V	
ZCD Voltage	V_{ZCD}	-0.3	27	V	
CS Voltage	V _{cs}	-0.3	3.6	V	
VIN Voltage	V_{IN}	-0.3	3.6	V	
Maximum DC current on any pin except DRAIN & CS pins		-10.0	10.0	mA	
ESD robustness HBM	V _{ESD_HBM}	-	2000	V	According to
ESD robustness CDM	V _{ESD_CDM}	-	500	V	EIA/JESD22
Junction temperature range	TJ	-40	150	°C	Controller & CoolMOS
Storage Temperature	T _{STORE}	-55	150	°C	
Thermal Resistance (Junction-	R _{thJA}			K/W	Setup according to the
Ambient)					JESD51 standard and
ICE5QR4770AZ		-	106		using minimum drain
ICE5QR4780AZ		-	107		pin copper area in a 2 oz copper single sided
ICE5QR2270AZ		-	103		PCB
ICE5QR2280AZ		-	104		. 55
ICE5QR1070AZ		-	100		
ICE5QR0680AZ		-	100		
ICE5QR4770AG		-	104		
ICE5QR1680AG		-	95		
ICE5QR0680AG		-	94		

4.2 Operating Range

Note: Within the operating range the IC operates as described in the functional description.

Table 7 Operating Range

Parameter	Symbol	Limit Values		Unit	Remark	
		Min.	Max.			
VCC Supply Voltage	V _{VCC}	$V_{ m VCC_OFF}$	$V_{ m VCC_OVP}$			
Junction Temperature of controller	T _{jCon_op}	-40	T _{jCon_OTP}	°C	Max value limited due to OTP of controller chip	
Junction Temperature of CoolMOS	T _{jCoolMOS_op}	-40	150	°C		

4.3 Operating Conditions

Note: The electrical characteristics involve the spread of values within the specified supply voltage and junction temperature range T_J from – 40 °C to 125 °C. Typical values represent the median values, which are related to 25 °C. If not otherwise stated, a supply voltage of V_{CC} = 18 V is assumed.

Table 8 Operating Conditions

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
VCC Charge Current	I _{VCC_Charge1}	-0.35	-0.2	0.09	mA	V_{VCC} =0V, $R_{StartUp}$ =50M Ω and V_{DRAIN} =90V
	I _{VCC_Charge2}	-	-3.2	-	mA	V_{VCC} =3V, $R_{StartUp}$ =50M Ω and V_{DRAIN} =90V
	I _{VCC_Charge3}	-5	-3	-1	mA	V_{VCC} =15V, R_{StartUp} =50M Ω and V_{DRAIN} =90V
Current Consumption, Startup Current	I _{VCC_Startup}	-	0.19	-	mA	V _{vcc} =15V
Current Consumption, Normal	I _{VCC_Normal}	-	0.9	-	mA	I _{FB} =0A (No gate switching)
Current Consumption, Auto Restart	I _{VCC_AR}	-	320	-	μΑ	
Current Consumption, Burst Mode	I _{VCC_Burst Mode}	-	0.5	-	mA	V _{FB} =1.8V
VCC Turn-on Threshold Voltage	V _{VCC_ON}	15.3	16	16.5	V	
VCC Turn-off Threshold Voltage	$V_{ m VCC_OFF}$	9.5	10	10.5	V	
VCC Short Circuit Protection	V _{VCC_SCP}	-	1.1	1.9	V	
VCC Turn-off blanking	t _{VCC_OFF_B}	-	50	-	μs	

4.4 Internal Voltage Reference

 Table 9
 Internal Voltage Reference

Parameter	Symbol	Limit Values		Limit Values		Unit	Note / Test Condition
		Min.	Тур.	Max.			
Internal Reference Voltage	V_{REF}	3.2	3.3	3.39	V	Measured at pin FB I _{FB} =0	

4.5 PWM Section

Table 10 PWM Section

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Feedback Pull-Up Resistor	R_{FB}	11	15	20	kΩ	
PWM-OP Gain	G_{PWM}	1.95	2.05	2.15	-	
Offset for Voltage Ramp	V_{PWM}	0.42	0.5	0.58	V	
Maximum on time in normal operation	t _{OnMax}	20	35	60	μs	
Maximum off time in normal operation	t _{OffMax}	24	42.5	71	μs	

4.6 Current Sense

Table 11 Current Sense

Parameter	Symbol	Limit V	Limit Values			Note / Test Condition
		Min.	Тур.	Max.		
Peak current limitation in normal operation	$V_{\rm CS_N}$	0.94	1.00	1.06	V	
Leading Edge Blanking time	$t_{ extsf{CS_LEB}}$	118	220	462	ns	
Peak Current Limitation in Active Burst Mode – Level 1	V _{CS_BL1}	0.26	0.31	0.36	V	
Peak Current Limitation in Active Burst Mode – Level 2	V _{CS_BL2}	0.3	0.35	0.4	V	

4.7 Soft Start

Table 12 Soft Start

Parameter	Symbol	Limit V	Limit Values			Note / Test Condition
		Min.	Тур.	Max.		
Soft-Start time	t_{SS}	8.5	12	-	ms	
Soft-start time step	$t_{SS_S}^{1}$	-	3	-	ms	
Internal regulation voltage at first step	V _{SS1} ¹	-	0.30	-	V	CS peak voltage
Internal regulation voltage step at soft start	V _{SS_S} ¹	-	0.15	-	V	CS peak voltage

4.8 Digital Zero Crossing

Table 13 Digital Zero Crossing

Parameter	Symbol	Limit Va	lues		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Zero crossing threshold voltage	V_{ZCD_CT}	60	100	150	mV	
Zero crossing Ringing suppression threshold	$V_{\sf ZCD_RS}$	-	0.45	-	V	
Minimum ringing suppression time	$t_{ exttt{ZCD_RS1}}$	1.5	2.5	4.1	μs	$V_{ZCD} > V_{ZCD,RS}$
Maximum ringing suppression time	$t_{\sf ZCD_RS2}$	-	25.00	-	μs	$V_{ZCD} < V_{ZCD,RS}$
Threshold to reset Up/Down Counter	$V_{FB_{R}}$	-	2.80	-	V	
Threshold for downward counting	V_{FB_HLC}	-	2.05	-	V	
Threshold for upward counting	V_{FB_LHC}	-	1.55	-	V	
Counter Time	t_{COUNT}	-	48	-	ms	
ZCD resistance	R_{ZCD}	2.5	3.0	3.5	kΩ	Internal resistor at ZCD pin
VIN voltage threshold for line selection	V _{VIN_REF}	1.48	1.52	1.58	V	
Blanking time for VIN voltage threshold for line selection	t _{VIN_REF}	-	16.00	-	ms	

 $^{^{\}rm 1}$ The parameter is not subjected to production test - verified by design/characterization Data Sheet \$22\$

4.9 Active Burst Mode

Table 14 Active Burst Mode

Parameter	Symbol	Limit Va	Limit Values			Note / Test Condition
		Min.	Тур.	Max.]	
Charging current to select burst mode	I _{sel}	2.1	3	3.9	μΑ	
Burst mode selection reference voltage	V_{REF_B}	2.65	2.75	2.85	V	
Feedback voltage for entering Active Burst Mode for level 1	V _{FB_EBL1}	0.86	0.90	0.94	V	
Feedback voltage for entering Active Burst Mode for level 2	V _{FB_EBL2}	1.0	1.05	1.1	V	
Blanking time for entering Active Burst Mode	t _{FB_BEB}	-	20	-	ms	
Feedback voltage for leaving Active Burst Mode	$V_{ extsf{FB_LB}}$	2.65	2.75	2.85	V	
Feedback voltage for burst-on	V_{FB_BOn}	2.3	2.40	2.5	V	
Feedback voltage for burst-off	V_{FB_BOff}	1.9	2.00	2.1	V	

4.10 Line Over Voltage Protection

Table 15 Line OVP

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Line Over Voltage threshold	$V_{ m VIN_LOVP}$	2.8	2.9	3.0	V	
Line Over Voltage Blanking	$t_{ extsf{VIN_LOVP_B}}$	-	250	-	μs	

4.11 Brownout Protection

Table 16 Brownout Protection

Parameter	Symbol	Limit V	alues		Unit	Note / Test Condition
		Min.	Тур.	Max.		
BrownIn threshold	$V_{ extsf{VIN_BI}}$	0.63	0.66	0.69	V	
BrownIn Blanking	t _{VIN_BI_B}	-	250	-	μs	
BrownOut threshold	$V_{ m VIN_BO}$	0.37	0.40	0.43	V	
BrownOut Blanking	t _{VIN_BO_B}	-	250	-	μs	

4.12 V_{cc} Over Voltage Protection

Table 17 Vcc Over Voltage Protection

Parameter	Symbol Limit Values				Unit	Note / Test Condition
		Min.	Тур.	Max.		Note / Test Condition
VCC Over Voltage threshold	$V_{ m VCC_OVP}$	24	25.50	27	V	
VCC Over Voltage blanking	t _{VCC_OVP_B}	-	50.00	-	μs	

4.13 Over Load Protection

Table 18 Overload Protection

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Over Load Detection threshold for OLP protection at FB pin	V_{FB_OLP}	2.65	2.75	2.85	V	
Over Load Protection Blanking Time	t _{FB_OLP_B}	-	30	-	ms	

4.14 Output Over Voltage Protection

Table 19 Output OVP

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Output Over Voltage threshold	$V_{\sf ZCD_OVP}$	1.9	2.0	2.1	V	
Output Over Voltage Blanking Pulse	P _{ZCD_OVP_B}	-	10	-	pulse	Consecutive Pulse

4.15 Thermal Protection

Table 20 Thermal Protection

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Over temperature protection ¹	T_{jcon_OTP}	129	140	150	°C	Junction temperature of the controller chip
Over temperature Hysteresis	$T_{\rm jHYS_OTP}$	-	40	-	°C	(not the CoolMOS™
Over temperature Blanking Time	$t_{ m jcon_OTP_B}$	-	50	-	μs	chip)

 $^{^{1}}$ The parameter is not subjected to production test - verified by design/characterization Data Sheet 24

4.16 CS Short to GND Protection

Table 21 CS Short to GND Protection

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
CS Short to Gnd Protection	$V_{\text{CS_STG}}$	0.06	0.10	0.15	V	
CS Short to Gnd Consecutive Trigger	P _{CS_STG}	-	3	-	cycle	
CS Short to Gnd Sample period	tcs_stg_sam	2.3	5	-	μs	

4.17 CoolMOS™ Section

Table 22 ICE5QRxxxxAx

Parameter	Symbol	Limit Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Drain Source Breakdown Voltage	$V_{(BR)DSS}$				V	$T_j = 25^{\circ}C$
ICE5QRxx70Ax		700	-	-		
ICE5QRxx80Ax		800	-	-		
Drain Source On-Resistance (inclusive of low side MOSFET)	R _{DSon}				Ω	
ICE5QR4770AZ		-	4.73	5.18		<i>T</i> j = 25°C
		-	8.73	-		$T_{\rm j}=125^{\circ}{\rm C}^{\scriptscriptstyle 1},I_{\rm D}=0.4{\rm A}$
ICE5QR4780AZ		-	4.13	4.85		<i>T</i> j = 25°C
		-	8.69	-		$T_{\rm j}=125^{\circ}{\rm C}^{1}, I_{\rm D}=0.4{\rm A}$
ICE5QR2270AZ		-	2.13	2.33		<i>T</i> j = 25°C
		-	4.31	-		$T_{\rm j}=125^{\circ}{\rm C}^{1}, I_{\rm D}=1{\rm A}$
ICE5QR2280AZ		-	2.13	2.35		<i>T</i> j = 25°C
		-	4.31	-		$T_{\rm j}=125^{\circ}{\rm C}^{1},I_{\rm D}=1{\rm A}$
ICE5QR1070AZ		-	1.15	1.25		<i>T</i> j = 25°C
		-	1.85			$T_{\rm j}=125^{\circ}{\rm C}^{1}, I_{\rm D}=1.1{\rm A}$
ICE5QR0680AZ		-	0.71	0.80		<i>T</i> j = 25°C
		-	1.27	-		$T_{j}=125^{\circ}C^{1}, I_{D}=2A$
ICE5QR4770AG		-	4.73	5.18		<i>T</i> j = 25°C
		-	8.73	-		Tj=125°C ¹ , I _D =0.4A
ICE5QR1680AG		-	1.53	1.75		<i>T</i> j = 25°C
		-	3.01	-		$T_{\rm j}=125^{\circ}{\rm C}^{1}, I_{\rm D}=1.4{\rm A}$
ICE5QR0680AG		-	0.71	0.80		<i>T</i> j = 25°C
		-	1.27	-		$T_{\rm j}=125^{\circ}{\rm C}^{1}, I_{\rm D}=2{\rm A}$
Effective output capacitance, energy related ¹	$C_{o(er)}$				pF	
ICE5QR4770AZ		-	3.4	-		V _{GS} =0V,V _{DS} =0~480V
ICE5QR4780AZ		-	3	-		V_{GS} =0V, V_{DS} =0~500V
ICE5QR2270AZ		-	10	-		V _{GS} =0V,V _{DS} =0~480V
ICE5QR2280AZ		-	7	-		V _{GS} =0V,V _{DS} =0~500V
ICE5QR1070AZ		-	13	-		V _{GS} =0V,V _{DS} =0~400V
ICE5QR0680AZ		-	24	-		V _{GS} =0V,V _{DS} =0~500V
ICE5QR4770AG		-	3.4	-		V _{GS} =0V,V _{DS} =0~480V
ICE5QR1680AG		-	8	-		V _{GS} =0V,V _{DS} =0~500V

ICE5QR0680AG		-	24	-		V _{GS} =0V,V _{DS} =0~500V
Rise Time ¹	t_{rise}	-	30	-	ns	
Fall Time ²	t_{fall}	-	30	-	ns	

5 CoolMOS™ Performance Characteristics

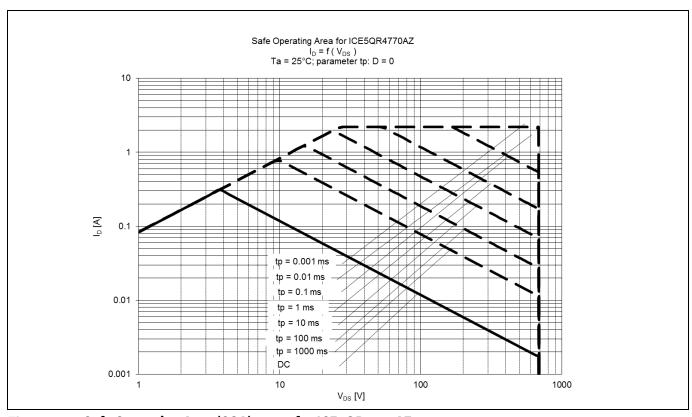


Figure 14 Safe Operating Area (SOA) curve for ICE5QR4770AZ

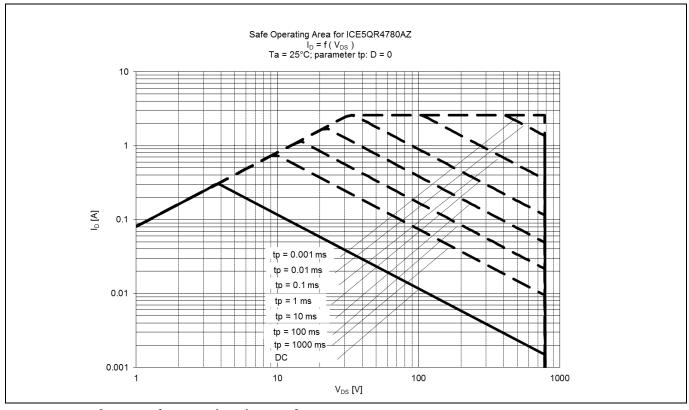


Figure 15 Safe Operating Area (SOA) curve for ICE5QR4780AZ

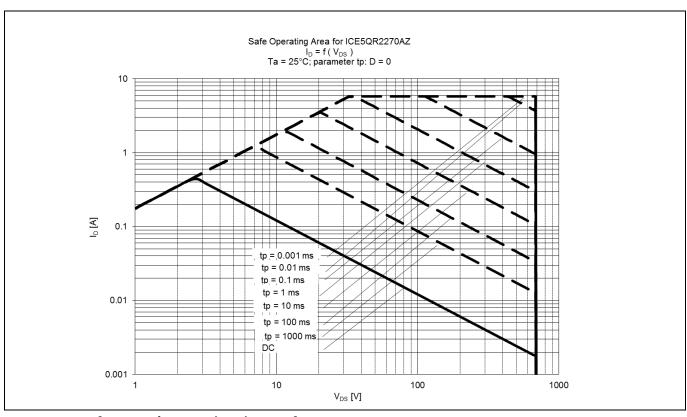


Figure 16 Safe Operating Area (SOA) curve for ICE5QR2270AZ

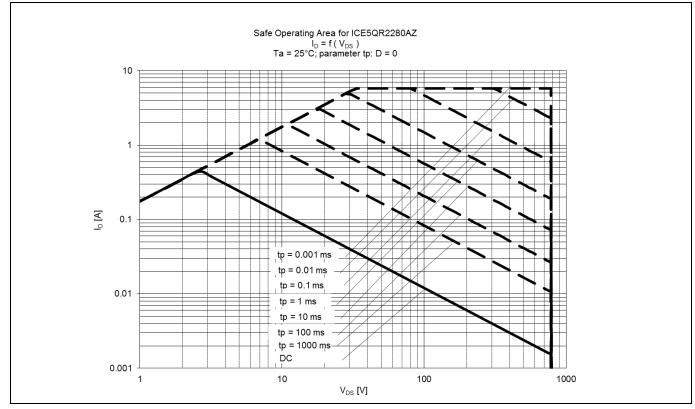


Figure 17 Safe Operating Area (SOA) curve for ICE5QR2280AZ

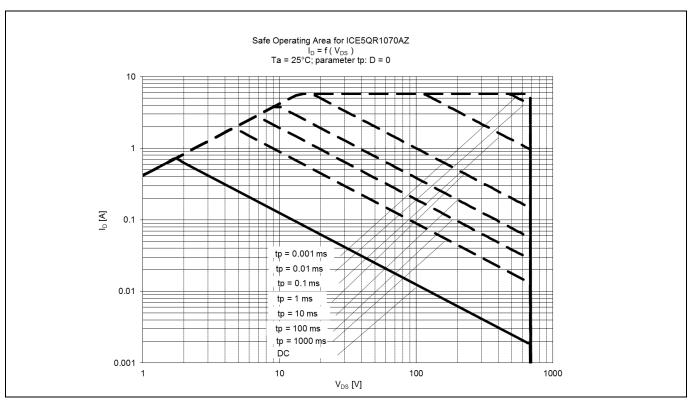


Figure 18 Safe Operating Area (SOA) curve for ICE5QR1070AZ

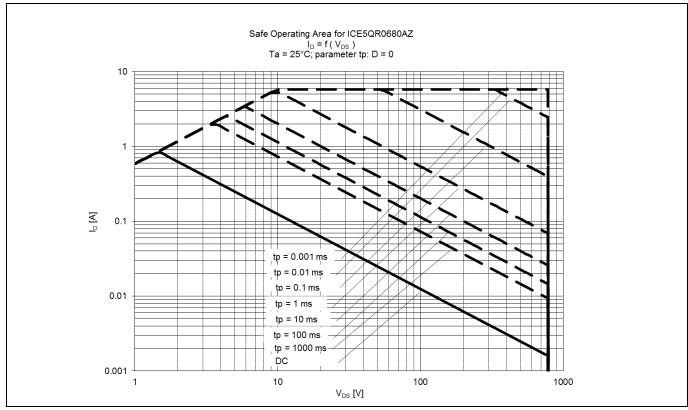
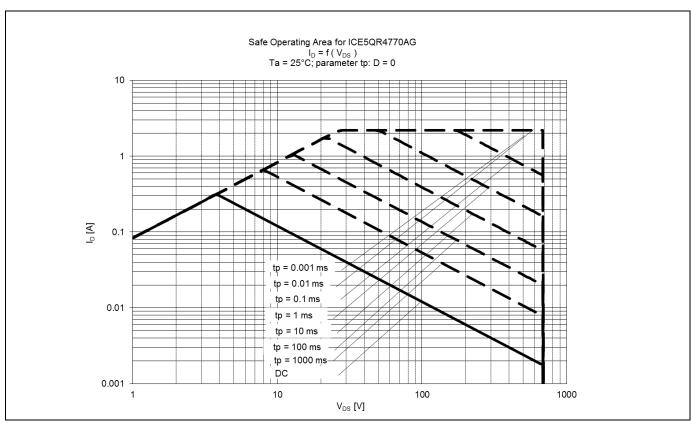
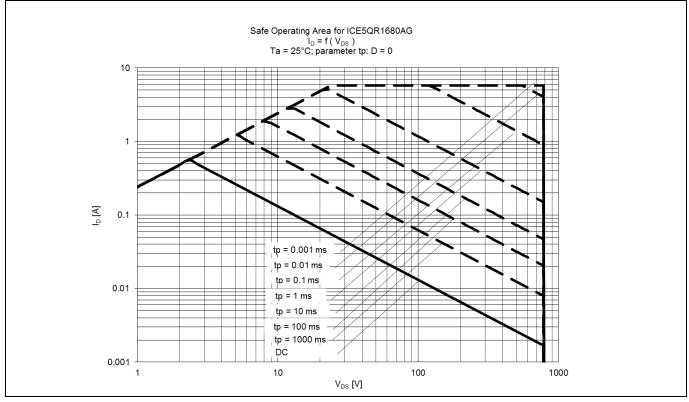




Figure 19 Safe Operating Area (SOA) curve for ICE5QR0680AZ

Safe Operating Area (SOA) curve for ICE5QR4770AG Figure 20

Safe Operating Area (SOA) curve for ICE5QR1680AG

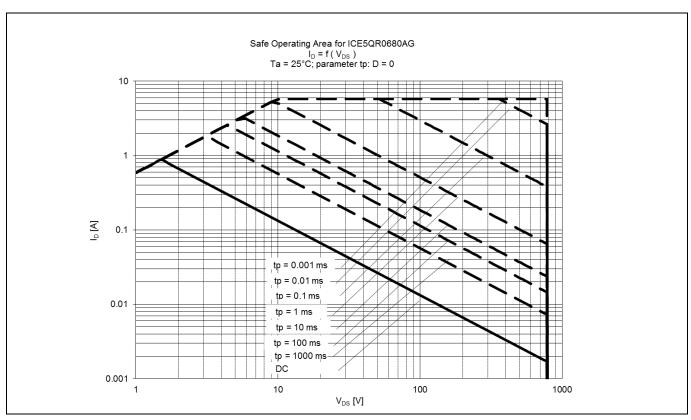


Figure 22 Safe Operating Area (SOA) curve for ICE5QR0680AG

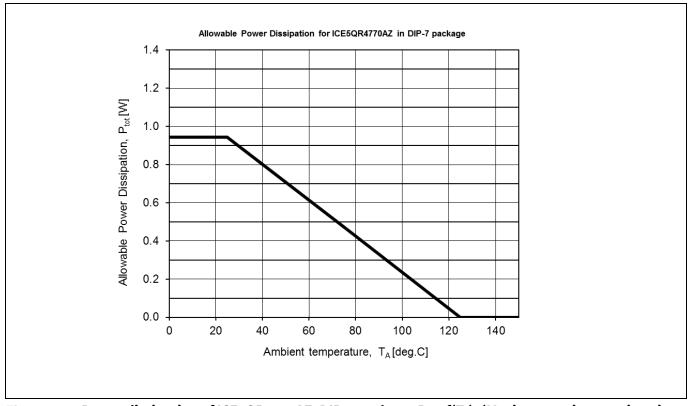


Figure 23 Power dissipation of ICE5QR4770AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

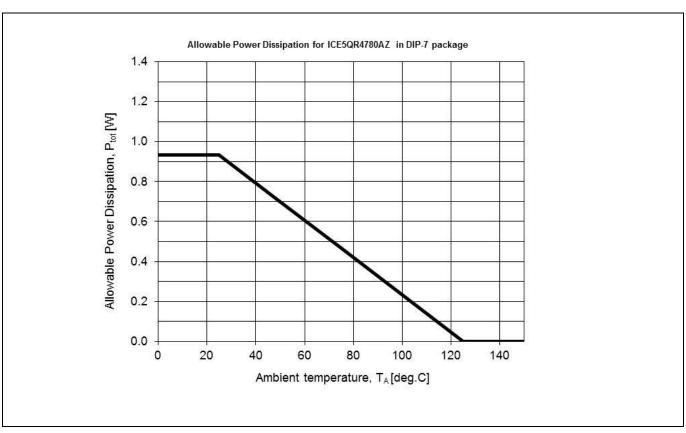


Figure 24 Power dissipation of ICE5QR4780AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

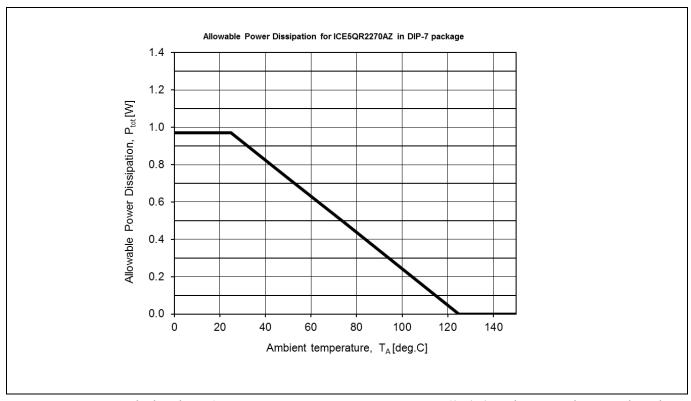


Figure 25 Power dissipation of ICE5QR2270AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

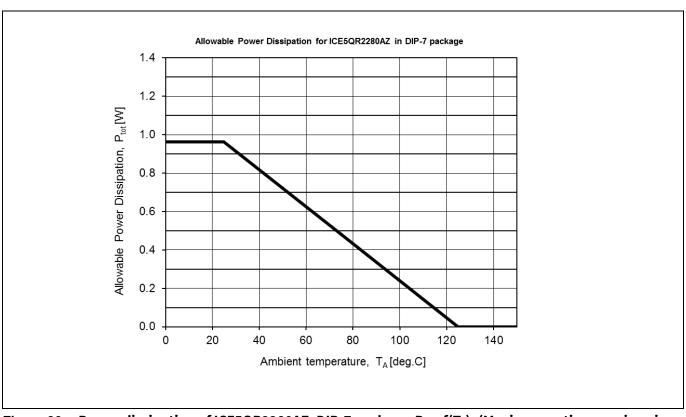


Figure 26 Power dissipation of ICE5QR2280AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

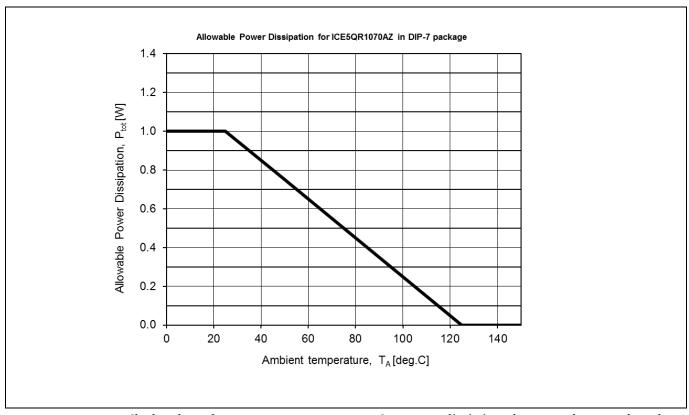


Figure 27 Power dissipation of ICE5QR1070AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

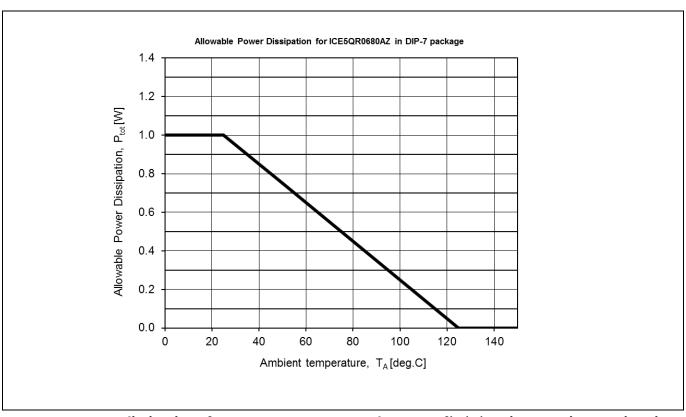


Figure 28 Power dissipation of ICE5QR0680AZ, DIP-7 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

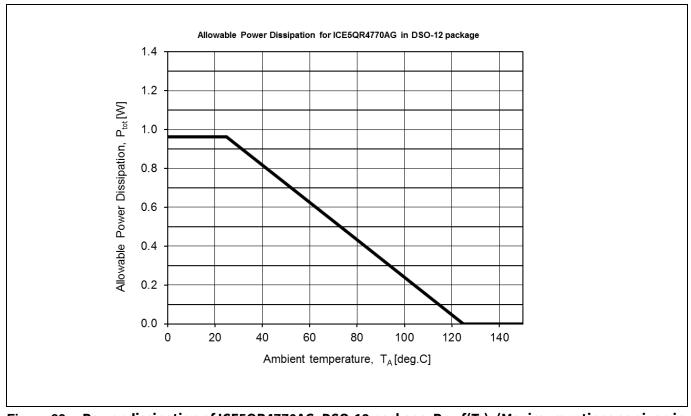


Figure 29 Power dissipation of ICE5QR4770AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

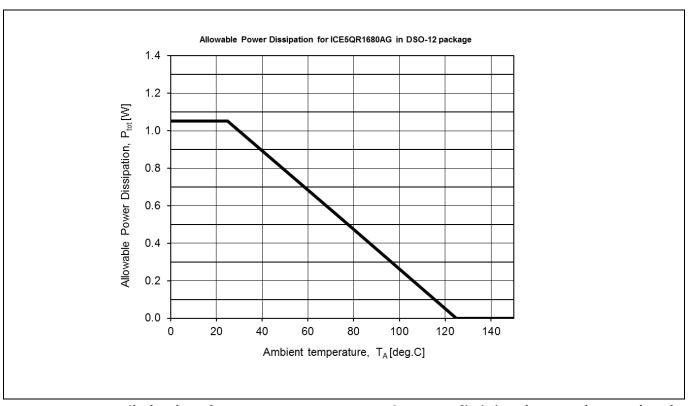


Figure 30 Power dissipation of ICE5QR1680AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

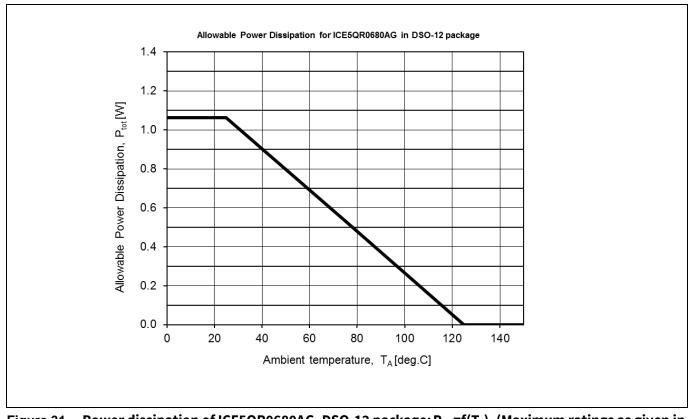
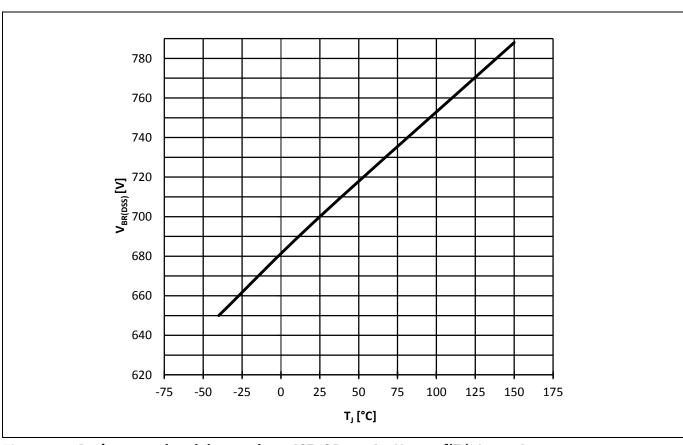
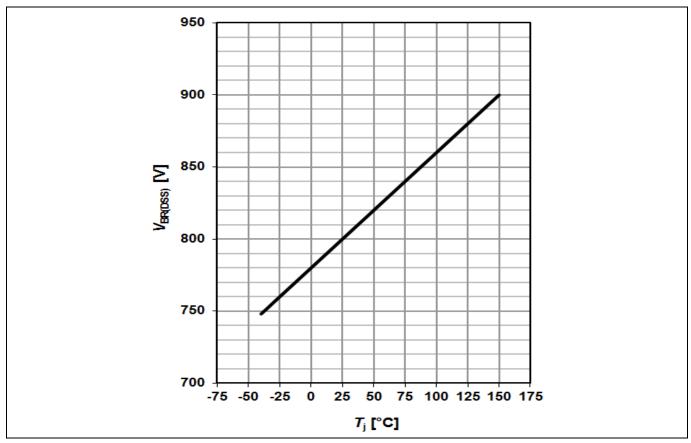




Figure 31 Power dissipation of ICE5QR0680AG, DSO-12 package; Ptot=f(Ta), (Maximum ratings as given in section 4.1 must not be exceeded)

Drain-source breakdown voltage ICE5QRxx70Ax; V_{BR(DSS)}=f(T_J), I_D=1 mA Figure 32

Drain-source breakdown voltage ICE5QRxx80Ax; V_{BR(DSS)}=f(T_J), I_D=1 mA Figure 33 **Data Sheet**

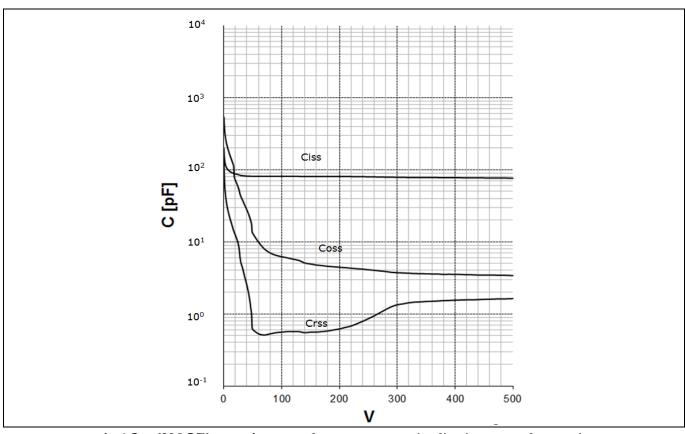


Figure 34 Typical CoolMOS™ capacitances of ICE5QR4770Ax (C=f(V_{DS});V_{GS}=0 V; f=1 MHz)

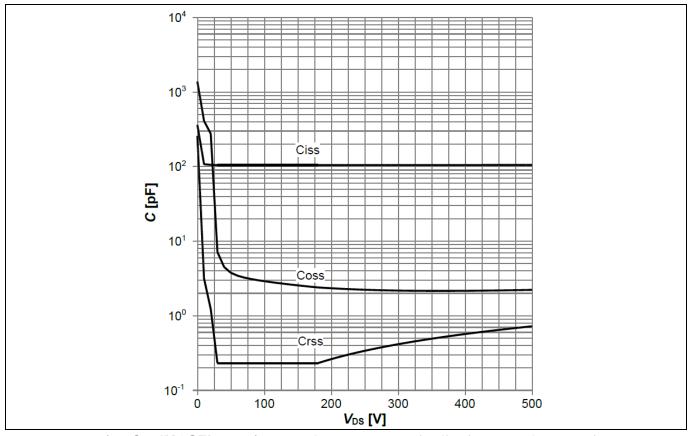


Figure 35 Typical CoolMOS™ capacitances of ICE5QR4780AZ (C=f(V_{DS});V_{GS}=0 V; f=250 kHz)

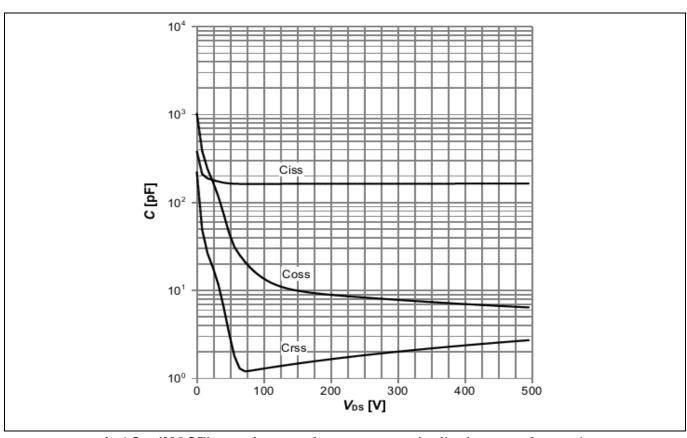


Figure 36 Typical CoolMOSTM capacitances of ICE5QR2270AZ (C= $f(V_{DS})$; V_{GS} =0 \overline{V} ; f=1 MHz)

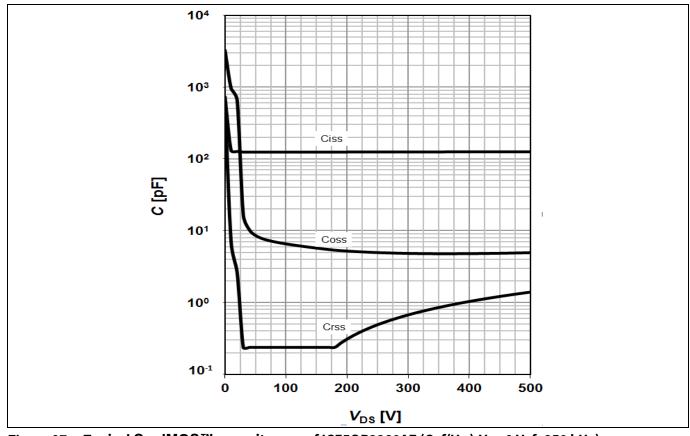


Figure 37 Typical CoolMOS™ capacitances of ICE5QR2280AZ (C=f(V_{DS});V_{GS}=0 V; f=250 kHz)

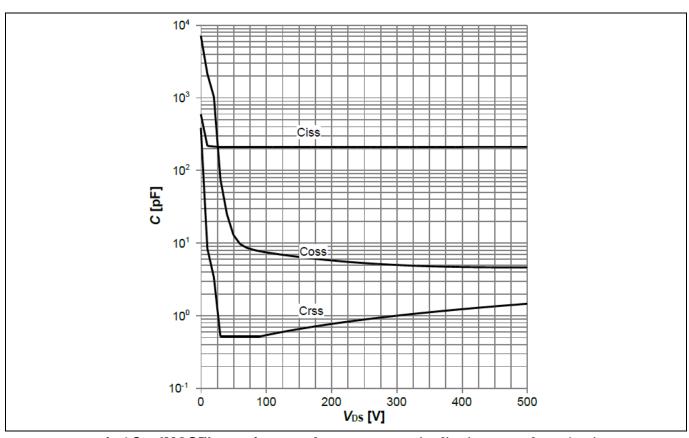


Figure 38 Typical CoolMOS™ capacitances of ICE5QR1070AZ (C=f(V_{DS});V_{GS}=0 V; f=250 kHz)

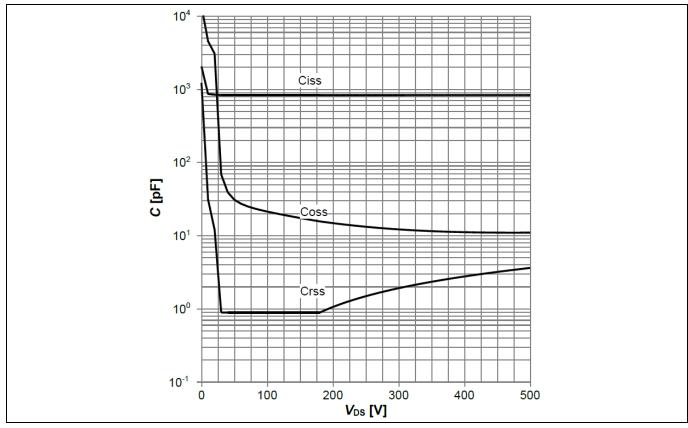


Figure 39 Typical CoolMOS™ capacitances of ICE5QR0680Ax (C=f(V_{DS});V_{GS}=0 V; f=250 kHz)

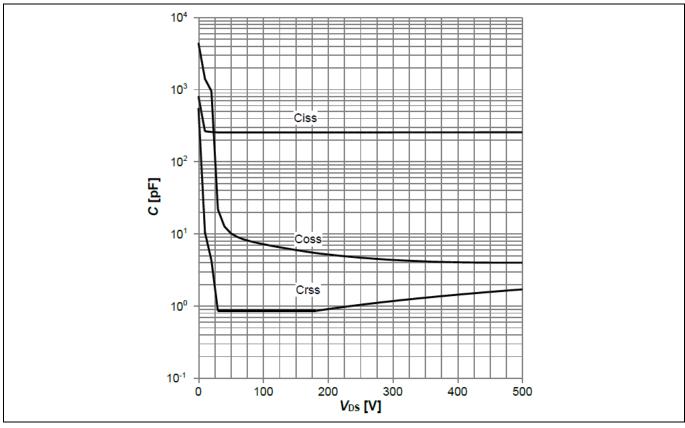


Figure 40 Typical CoolMOS™ capacitances of ICE5QR1680AG(C=f(V_{DS});V_{GS}=0 V; f=250 kHz)

6 Output Power Curve

The calculated output power curves giving the typical output power versus ambient temperature are shown below. The curves are derived based on a typical discontinuous mode flyback in an open frame design at T_a =50°C, T_J =125°C (integrated high voltage MOSFET), using minimum drain pin copper area in a 2 oz copper single sided PCB and steady state operation only (no design margins for abnormal operation modes are included). The output power figure is for selection purpose only. The actual power can vary depending on particular designs. In a power supply system, appropriate thermal design margins must be applied to make sure that the maximum ratings given in section 4.1are respected at all times.

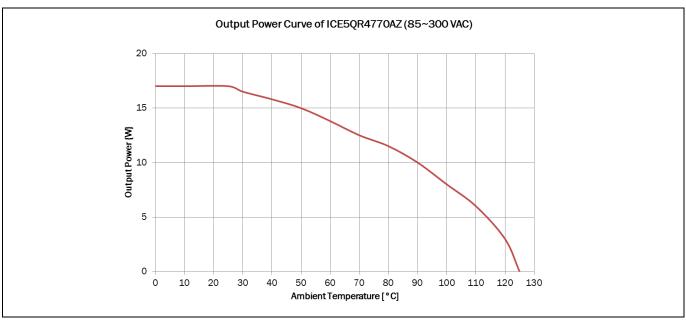


Figure 41 Output power curve of ICE5QR4770AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

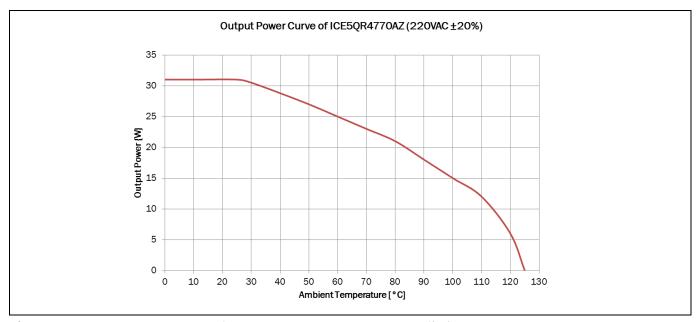


Figure 42 Output power curve of ICE5QR4770AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

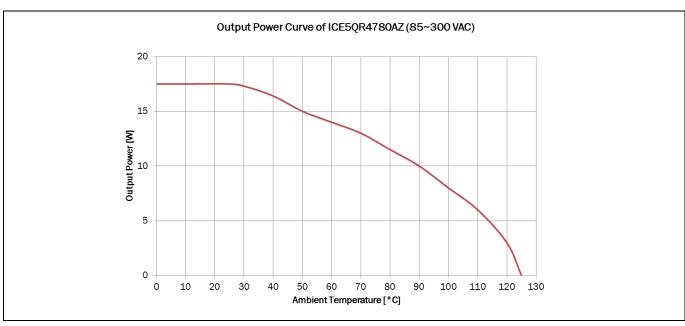


Figure 43 Output power curve of ICE5QR4780AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

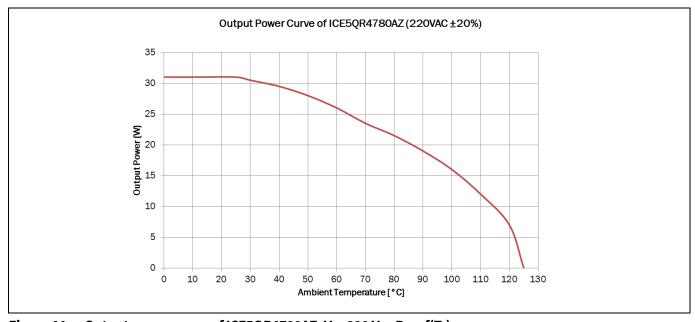


Figure 44 Output power curve of ICE5QR4780AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

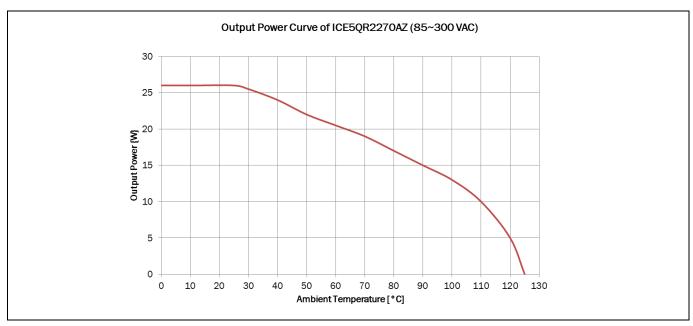


Figure 45 Output power curve of ICE5QR2270AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

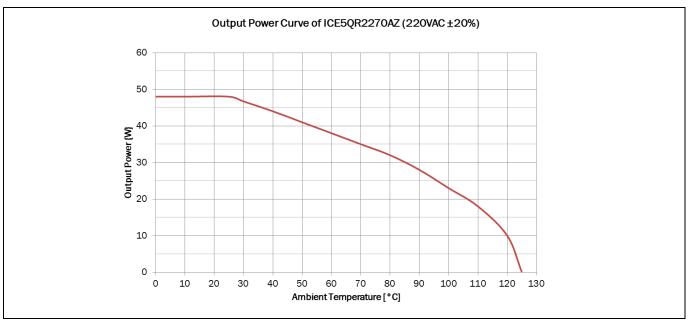


Figure 46 Output power curve of ICE5QR2270AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

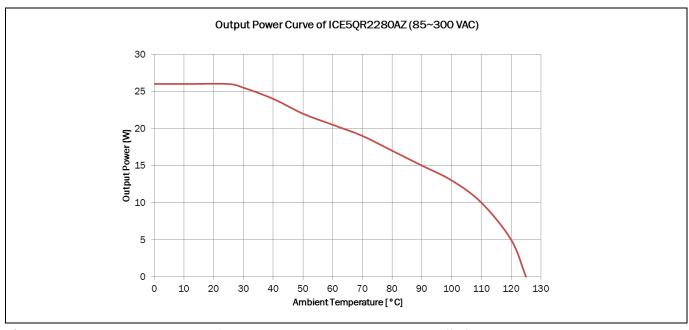


Figure 47 Output power curve of ICE5QR2280AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

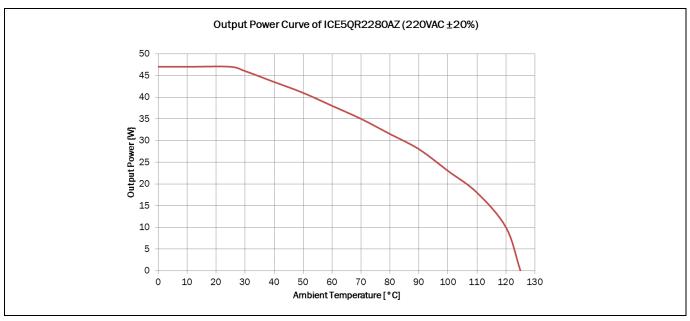


Figure 48 Output power curve of ICE5QR2280AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

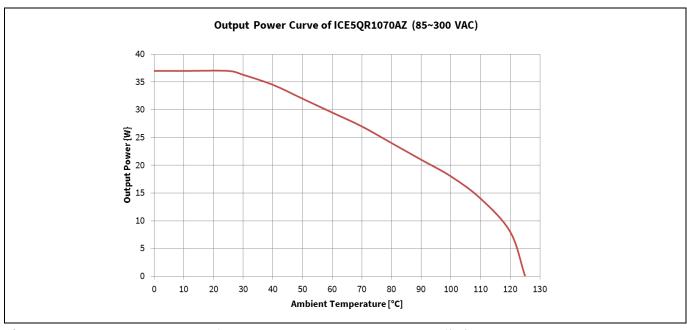


Figure 49 Output power curve of ICE5QR1070AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

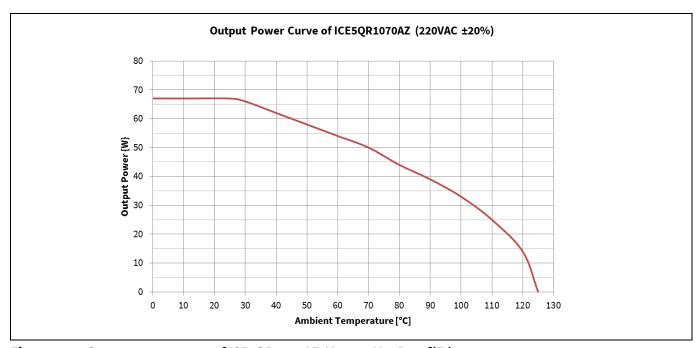


Figure 50 Output power curve of ICE5QR1070AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

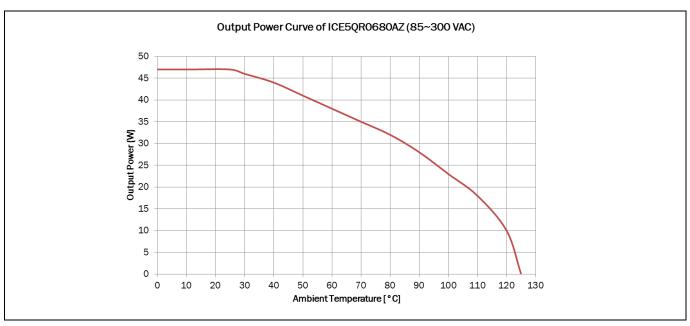


Figure 51 Output power curve of ICE5QR0680AZ, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

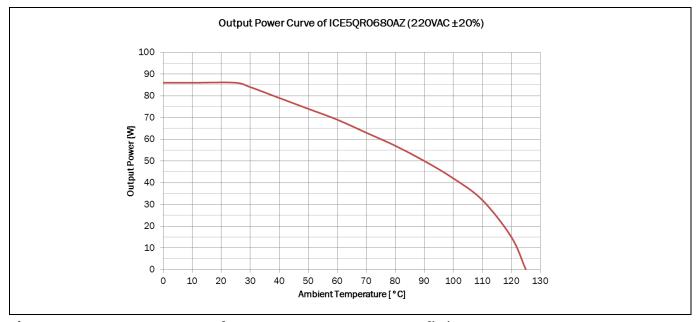


Figure 52 Output power curve of ICE5QR0680AZ, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

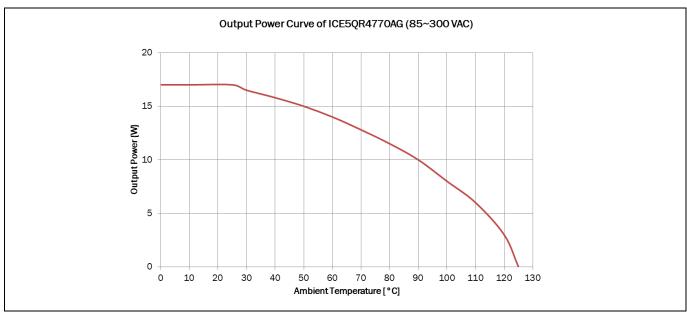


Figure 53 Output power curve of ICE5QR4770AG, VIN=85~300 VAC; Pout=f(Ta)

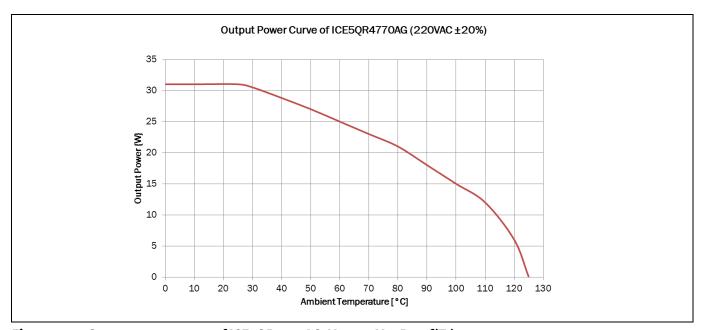


Figure 54 Output power curve of ICE5QR4770AG, VIN=220 VAC; Pout=f(Ta)

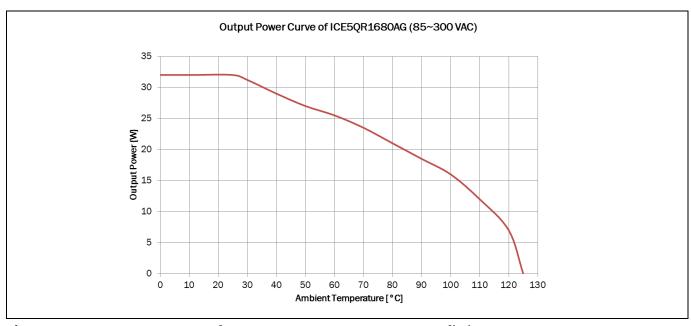


Figure 55 Output power curve of ICE5QR1680AG, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

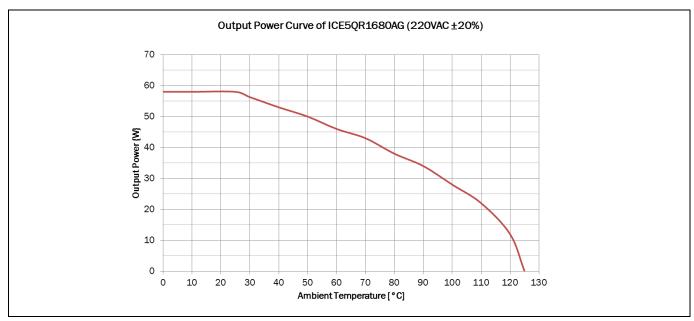


Figure 56 Output power curve of ICE5QR1680AG, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

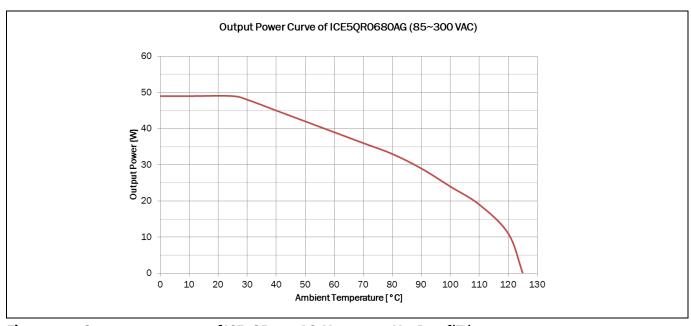


Figure 57 Output power curve of ICE5QR0680AG, V_{IN}=85~300 V_{AC}; P_{Out}=f(T_a)

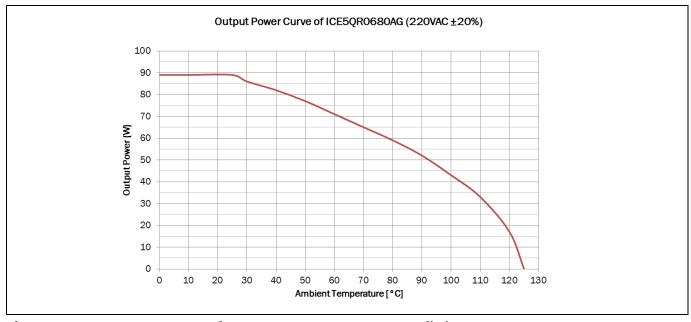
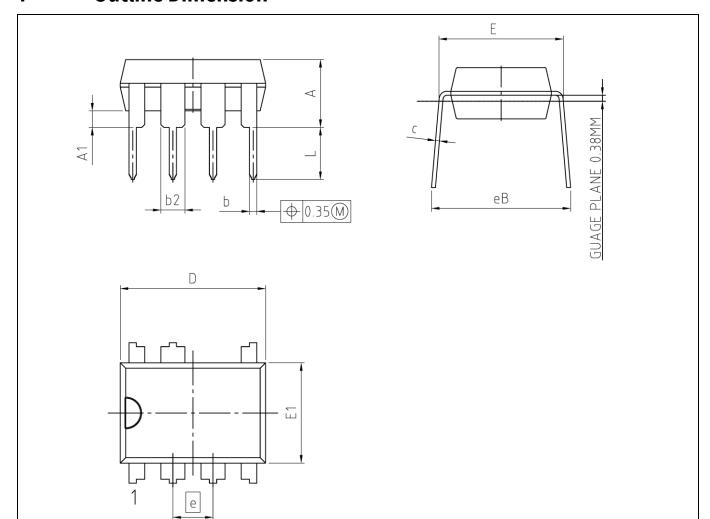



Figure 58 Output power curve of ICE5QR0680AG, V_{IN}=220 V_{AC}; P_{Out}=f(T_a)

Outline Dimension 7

1) DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
Α	-	4.57	-	0.180
A1	0.38	-	0.015	-
b	0.36	0.56	0.014	0.022
b2	-	1.70	-	0.067
С	0.20	0.36	0.008	0.014
D	9.10	9.77	0.358	0.385
E	7.49	8.26	0.295	0.325
E1	6.10	6.60	0.240	0.260
е	2.54 BSC		0.1 BSC	
N	7		7	
eB	7.90	10.90	0.311	0.429
L	2.92	-	0.115	-

DOCUMENT NO. Z8B00155542 SCALE 1.0 luuuuuluuuu **EUROPEAN PROJECTION** ISSUE DATE 22.07.2011 REVISION

Figure 59 PG-DIP-7

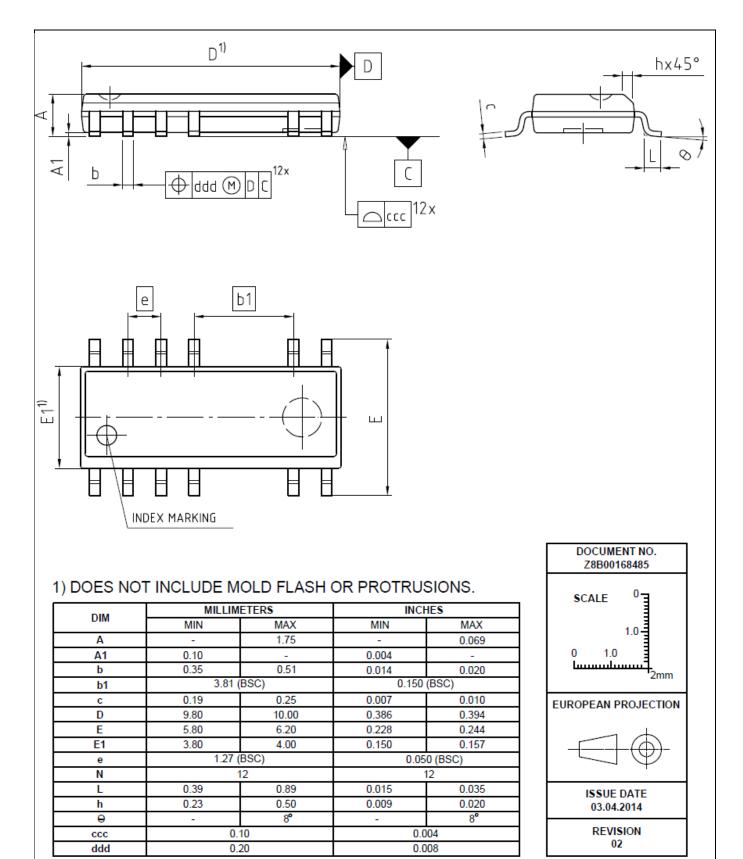


Figure 60 PG-DSO-12

8 Marking

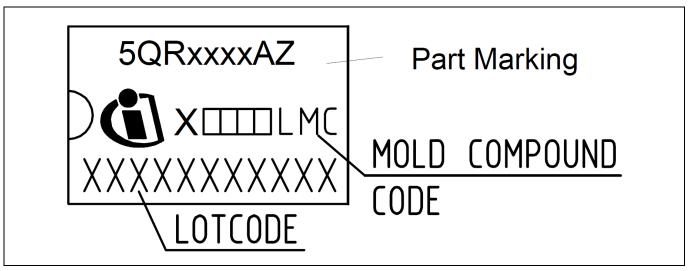


Figure 61 Marking of DIP-7

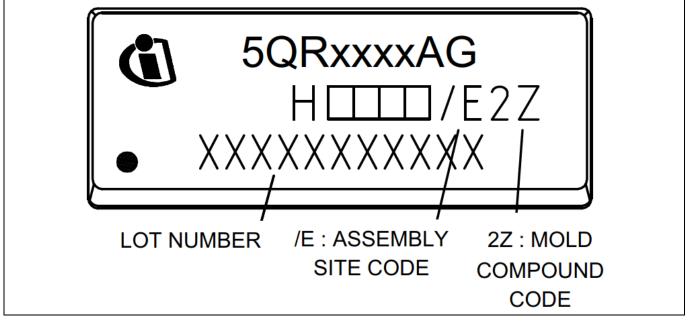


Figure 62 Marking of DSO-12

Revision History

Major changes since the last revision

Page or Reference	Description of change		
2, 18,19, 26~46	Addition of ICE5QR1070AZ		
37	Update of 700V CoolSET™ Drain-source breakdown voltage as shown in Figure 32 reference to errata sheet #10157AERRA		

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], Canpak[™], Cipos[™], Coolgan[™], Coolmos[™], Coolset[™], Coolsic[™], Corecontrol[™], Crossave[™], Dave[™], Di-Pol[™], Diblade[™], EasyPim[™], EconoBridge[™], EconoDual[™], EconoPack[™], EconoPim[™], Eicedriver[™], eupec[™], FCos[™], Hitfet[™], Hybridpack[™], Infineon[™], Isoface[™], i-Wafer[™], Mipaq[™], Modstack[™], my-d[™], Novalithic[™], Omnitune[™], Optiga[™], Optimos[™], Origa[™], Powercode[™], Primestack[™], Profet[™], Profet[™], Profet[™], Rasic[™], Reversave[™], Satric[™], Sieget[™], Sipmos[™], Smartlewis[™], Solid Flash[™], Spoc[™], Tempfet[™], thinQ![™], Trenchstop[™], Tricore[™].

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-07-04 **Published by** Infineon Technologies AG 81726 München, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by representatives Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.