

v00.0213


GaAs MMIC SPDT SWITCH DC - 3 GHz

Typical Applications

The HMC190BMS8(E) is ideal for:

- MMDS & WirelessLAN
- Portable Wireless

Functional Diagram

Features

Low Insertion Loss: 0.4 dB Ultra Small Package: MSOP8 High Input IP3: +56 dBm Positive Control: 0/+3V @ 0.1 µA

General Description

The HMC190BMS8(E) is a low cost SPDT switch in a 8-lead MSOP package. The switch can control signals from DC to 3 GHz. It is especially suited for low and medium power applications using positive control voltages. The two control voltages require a minimal amount of DC current, which is optimal for battery powered radio systems at 0.9, 1.9, and 2.4 GHz. The HMC190BMS8(E) provides exceptional third order intermodulation performance of +56 dBm. The design has been optimized for the small MSOP package, and maintains a VSWR of better than 1.2:1 up to 2 GHz. This device is the positive control MSOP8 packaged version of our HMC239AS8(E) negative control device.

Electrical Specifications, $T_{A} = +25^{\circ}$ C, Vctl = 0/+3 to +8 Vdc

Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 1.0 GHz DC - 2.0GHz DC - 2.5GHz DC - 3.0 GHz		0.4 0.4 0.5 0.7	0.6 0.6 0.8 1.0	dB dB dB dB
Isolation	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	23 23 22 19	30 30 30 25		dB dB dB dB
Return Loss	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	24 20 15 10	30 24 20 16		dB dB dB dB
Input Power for 1 dB Compression (Vctl = 0/+5V)	0.5 - 1.0 GHz 0.5 - 3.0 GHz	25 23	30 29		dBm dBm
Input Third Order Intercept (Vctl = 0/+5V) Two-tone Input Power = +10 dBm Each Tone)	0.5 - 1.0 GHz 0.5 - 3.0 GHz	45 44	56 55		dBm dBm
Switching Characteristics	DC - 3.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			5 10		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

HMC190B* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

HMC190BMS8 Evaluation Board

DOCUMENTATION

Data Sheet

HMC190b Data Sheet

REFERENCE MATERIALS

Quality Documentation

• Semiconductor Qualification Test Report: PHEMT-J (QTR: 2013-00285)

DESIGN RESOURCES

- HMC190B Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC190B EngineerZone Discussions.

SAMPLE AND BUY

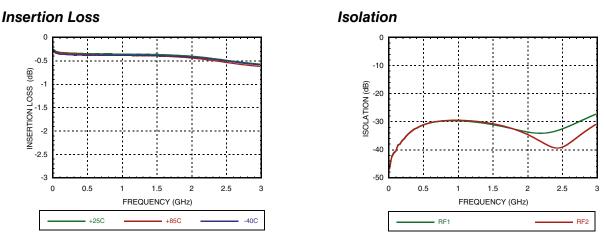
Visit the product page to see pricing options.

TECHNICAL SUPPORT

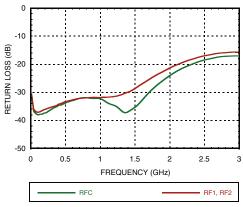
Submit a technical question or find your regional support number.

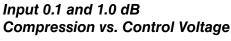
DOCUMENT FEEDBACK

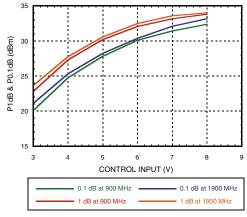
Submit feedback for this data sheet.



GaAs MMIC SPDT SWITCH


DC - 3 GHz


v00.0213



Input Third Order Intercept Point vs. Control Voltage

900 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

1900 MHz

v00.0213

GaAs MMIC SPDT SWITCH DC - 3 GHz

Distortion vs. Control Voltage

Control Input	Third Order Intercept (dBm) +10 dBm Each Tone		
(Vdc)	900 MHz	1900 MHz	
+5	58	56	
+8	56	55	

Compression vs. Control Voltage

	Carrier at 900 MHz		Carrier at 1900 MHz		
Control Input	Input Power for 0.1 dB Compression	Input Power for 1.0 dB Compression	Input Power for 0.1 dB Compression	Input Power for 1.0 dB Compression	
(Volts)	(dBm)	(dBm)	(dBm)	(dBm)	
+3	20	23	21	24	
+5	27	30	27	30	
+8	32	34	32	34	

Truth Table *Control Input Voltage Tolerances are ± 0.2 Vdc.

Contro	I Input*	Control Current		Signal Path State		
A (Vdc)	B (Vdc)	la (μA)	lb (μA)	RF to RF1	RF to RF2	
0	+3	-0.1	0.1	ON	OFF	
+3	0	0.1	-0.1	OFF	ON	
0	+5	-1	1	ON	OFF	
+5	0	1	-1	OFF	ON	
0	+8	-5	5	ON	OFF	
+8	0	5	-5	OFF	ON	

Caution: Do not operate in 1 dB compression at power levels above +31 dBm (VctI = +5 Vdc) and do not "hot switch" power levels greater than +20dBm (VctI = +5 Vdc).

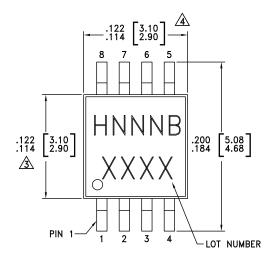
DC blocks are required at ports RFC, RF1 and RF2.

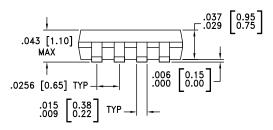
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

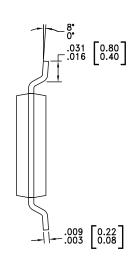
v00.0213

GaAs MMIC SPDT SWITCH DC - 3 GHz

HMC190BMS8 / 190BMS8E


Absolute Maximum Ratings


Max. Input Power V _{CTL} = 0/+8V	0.5 GHz 0.5 - 2 GHz	+27 dBm +34 dBm	
Control Voltage Range (A & B)		-0.2 to +12 Vdc	
Storage Temperature		-65 to +150 °C	
Operating Temperature		-40 to +85 °C	
ESD Sensitivity (HBM)		Class 1A	



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC190BMS8	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H190B XXXX
HMC190BMS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H190B</u> XXXX

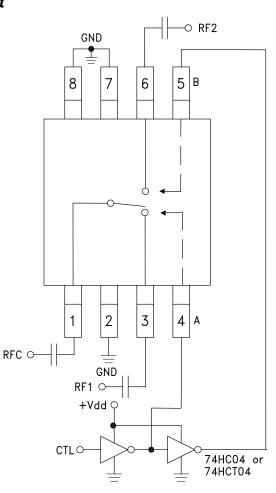
[1] Max peak reflow temperature of 235 °C

[2] Max peak reflow temperature of 260 $^\circ\text{C}$

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


v00.0213

GaAs MMIC SPDT SWITCH DC - 3 GHz

Typical Application Circuit

SWITCHES - SPDT - SMT

Notes:

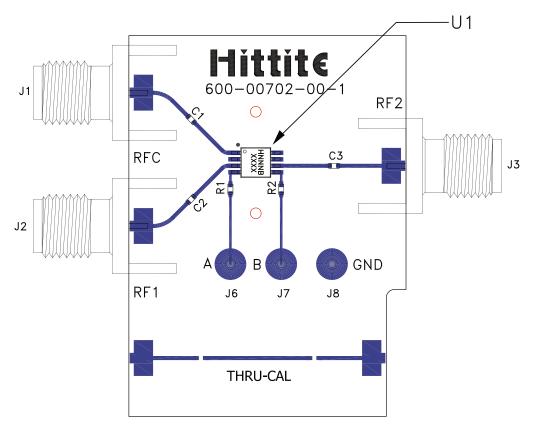
1. Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.

2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of 5 to 8 Volts applied to the CMOS logic gates.

3. DC blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.

4. Highest RF signal power capability is achieved with Vdd = +8V and A/B set to 0/+8V.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.0213

GaAs MMIC SPDT SWITCH DC - 3 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB EVAL01-HMC190BMS8^[1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J6 - J8	DC Pin
C1 - C3	330 pF Capacitor, 0402 Pkg.
R1 - R2	1 KOhm Resistor, 0402 Pkg.
U1	HMC190BMS8(E) SPDT Switch
PCB [2]	600-00702-00-01 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D