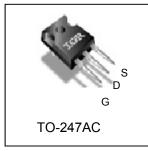


HEXFET® Power MOSFET

Application


- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

G S

V _{DSS}	300V		
R _{DS(on) typ.}	56m Ω		
max	69mΩ		
I _D	38A		

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

G	D	s
Gate	Drain	Source

Base next number	Dookogo Tymo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	
IRFP4137PbF	TO-247AC	Tube	25	IRFP4137PbF

	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V	38	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	27	Α
I _{DM}	Pulsed Drain Current ①	152	
P _D @T _C = 25°C	Maximum Power Dissipation	341	W
Linear Derating Factor		2.3	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
dv/dt	Peak Diode Recovery dv/dt®	8.9	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	°C
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	541	mJ				

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.44	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.24		°C/W
$R_{ heta JA}$	Junction-to-Ambient ⑦®		40	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	300			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.24		V/°C	Reference to 25°C, I _D = 3.5mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		56	69	mΩ	V _{GS} = 10V, I _D = 24A ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
	Drain to Course Leakage Current			20		V _{DS} =300 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 300V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
R_G	Gate Resistance		1.3		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

_ ,						
gfs	Forward Transconductance	45			S	$V_{DS} = 50V, I_{D} = 24A$
Q_g	Total Gate Charge		83	125		I _D = 24A
Q_{gs}	Gate-to-Source Charge		28	42	nC	V _{DS} = 150V
Q_{gd}	Gate-to-Drain Charge		26	39		V _{GS} = 10V
$t_{d(on)}$	Turn-On Delay Time		18			V _{DD} = 195V
t _r	Rise Time		23			I _D = 24A
$t_{d(off)}$	Turn-Off Delay Time		34		ns	$R_G = 2.2\Omega$
t _f	Fall Time		20			V _{GS} = 10V
C _{iss}	Input Capacitance		5168			V _{GS} = 0V
Coss	Output Capacitance		300			V _{DS} = 50V
C_{rss}	Reverse Transfer Capacitance		77		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		196			V_{GS} = 0V, VDS = 0V to 240V See Fig.11
Coss eff.(TR)	Output Capacitance (Time Related)		265			V _{GS} = 0V, VDS = 0V to 240VS

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode) ①	_		40		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			160		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 24A, V_{GS} = 0V $ ④
4	Poverse Pecovery Time		302		no	$T_J = 25^{\circ}C$ $V_{DD} = 255V$
t _{rr}	Reverse Recovery Time		379		ns	$T_J = 125^{\circ}C$ $I_F = 24A$,
0	Daverse Dassyery Charge		1739		2	$T_J = 25^{\circ}C$ di/dt = 100A/µs @
Q_{rr}	Reverse Recovery Charge		2497		nC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		13		Α	T _J = 25°C

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Recommended max EAS limit, starting $T_J = 25^{\circ}C$, L = 2.05 mH, $R_G = 50\Omega$, $I_{AS} = 24A$, $V_{GS} = 10V$.
- $\label{eq:local_spin_spin} \mbox{3} \quad I_{SD} \leq 24 \mbox{A}, \ di/dt \leq 1771 \mbox{A}/\mu \mbox{s}, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 175 \mbox{°C}.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \circ C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $^{\circ}$ C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- Rθ is measured at T_J approximately 90°C

www.irf.com

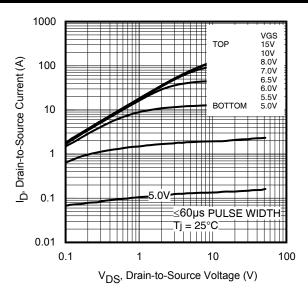


Fig 1. Typical Output Characteristics

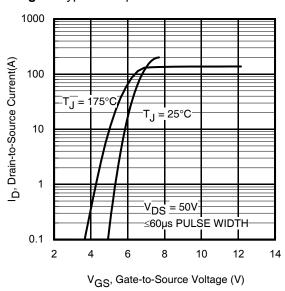


Fig 3. Typical Transfer Characteristics

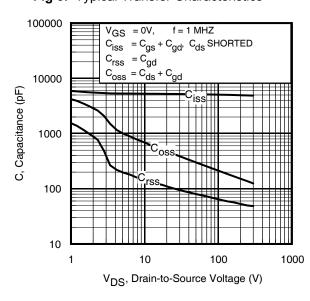


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

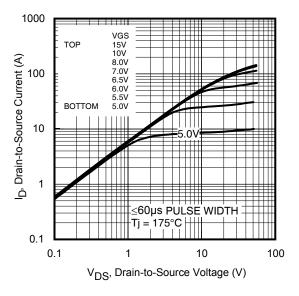


Fig 2. Typical Output Characteristics

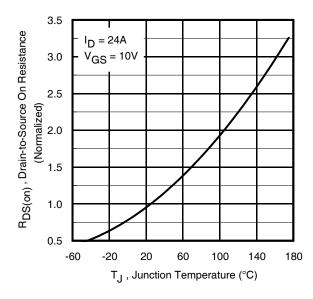


Fig 4. Normalized On-Resistance vs. Temperature

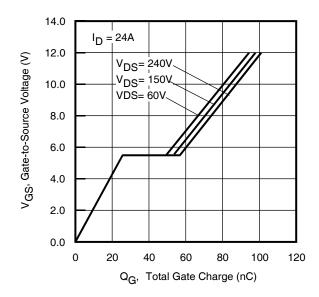
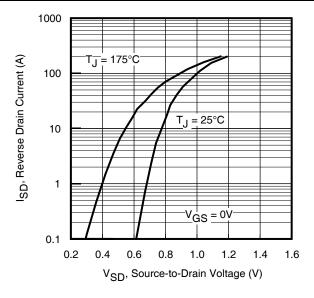



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

 $\textbf{Fig 7.} \ \ \textbf{Typical Source-Drain Diode Forward Voltage}$

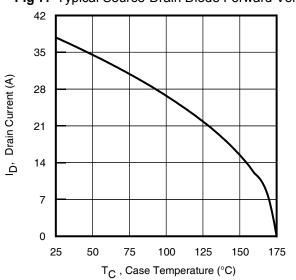


Fig 9. Maximum Drain Current vs. Case Temperature

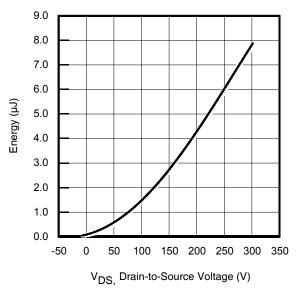


Fig 11. Typical Coss Stored Energy

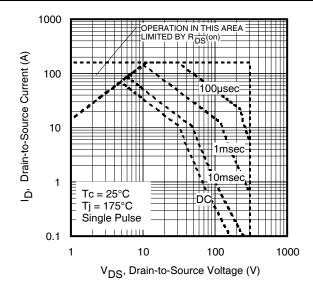


Fig 8. Maximum Safe Operating Area

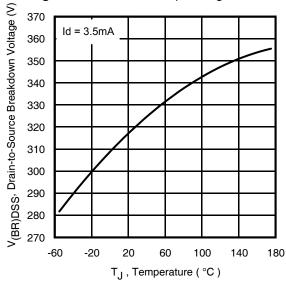


Fig 10. Drain-to-Source Breakdown Voltage

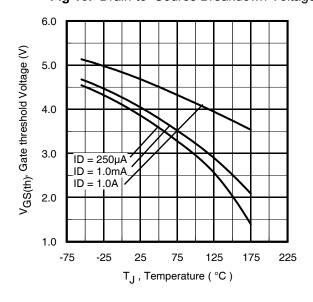


Fig 12. Threshold Voltage vs. Temperature

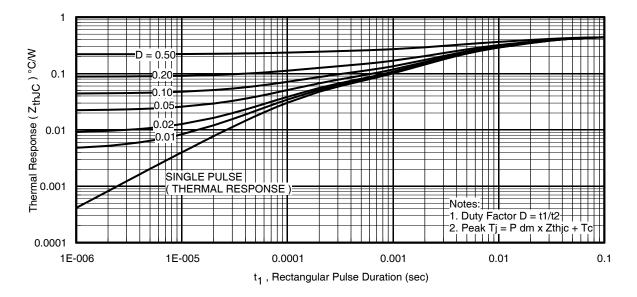


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

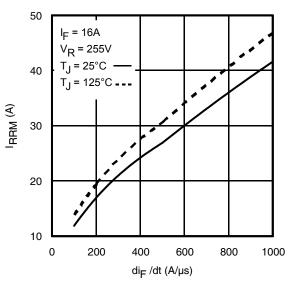


Fig 14. Typical Recovery Current vs. dif/dt

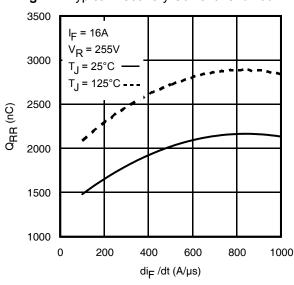


Fig 15. Typical Recovery Current vs. dif/dt

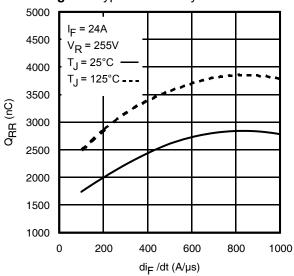


Fig 16. Typical Stored Charge vs. dif/dt

Fig 17. Typical Stored Charge vs. dif/dt

www.irf.com

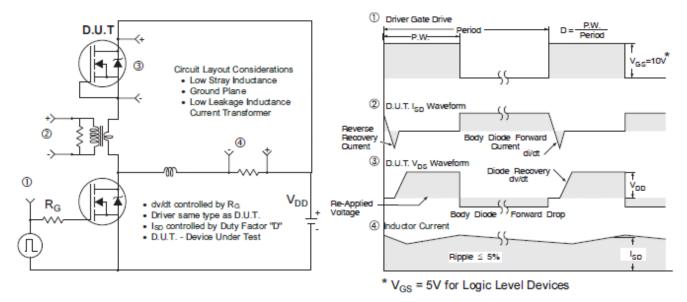


Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

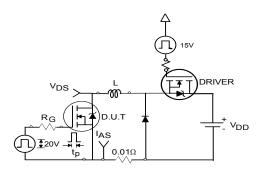


Fig 19a. Unclamped Inductive Test Circuit

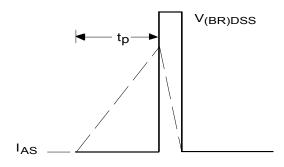


Fig 19b. Unclamped Inductive Waveforms

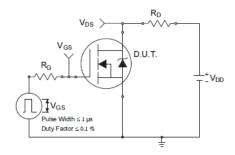


Fig 20a. Switching Time Test Circuit

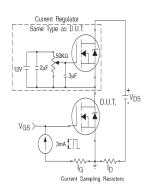


Fig 21a. Gate Charge Test Circuit

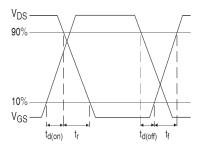


Fig 20b. Switching Time Waveforms

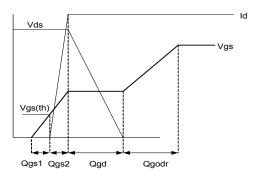
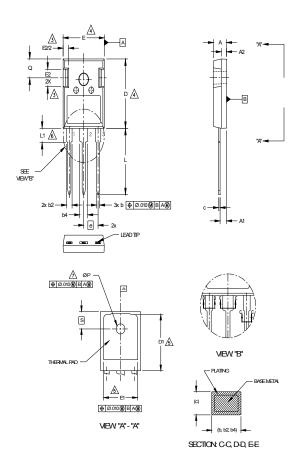



Fig 21b. Gate Charge Waveform

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

SYMBOL	INC	INCHES MILLIMETE			NOTES
	MIN.	MAX.	MIN.	MAX.	
A	.190	.204	4.83	5.20	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.042	.052	1.07	1.33	
b2	.075	.094	1.91	2.41	
b4	.113	.133	2.87	3.38	
С	.022	.026	0.55	0.68	
D	.819	.830	20.80	21.10	4
D1	.640	694	16.25	17.65	5
E	.620	.635	15.75	16.13	4
E1	.512	.570	13.00	14.50	
E2	.145	.196	3.68	5.00	
e	.215	Typical	5.45	ypical	
L	.780	.800	19.80	20.32	
L1	.161	.173	4.10	4.40	
øΡ	.138	.143	3.51	3.65	
Q	.216	.236	5.49	6.00	
S	.238	.248	6.04	6.30	

LEAD ASSIGNMENTS

HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR
- 3.- EMITTER 4.- COLLECTOR

DIODES

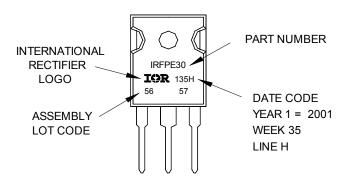
- 1.- ANODE/OPEN
- 2.- CATHODE
- 3.- ANODE

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES AND MILLIMETERS.
- CONTOUR OF SLOT OPTIONAL.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- Ø P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE

TO-247AC Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

EXAMPLE: THIS IS AN IRFPE30


WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2001

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Ovelification Level	Industrial				
Qualification Level	(per JEDEC JESD47F) ††				
Moisture Sensitivity Level	TO-247AC N/A				
RoHS Compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.