C8051F58x/F59x

Analog Peripherals

- 12-Bit ADC

- Up to 200 ksps
- Up to 32 external single-ended inputs
- VREF from on-chip VREF, external pin or V_{DD}
- Internal or external start of conversion source
- Built-in temperature sensor
- Three Comparators
- Programmable hysteresis and response time
- Configurable as interrupt or reset source - Low current

On-Chip Debug

- On-chip debug circuitry facilitates full speed, nonintrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping, inspect/modify memory and registers
- Superior performance to emulation systems using ICE-chips, target pods, and sockets
- Low cost, complete development kit

Supply Voltage 1.8 to 5.25 V

- Typical operating current: 15 mA at 50 MHz ; Typical stop mode current: $230 \mu \mathrm{~A}$
High-Speed 8051μ C Core
- Pipelined instruction architecture; executes 70\% of instructions in 1 or 2 system clocks
- Up to 50 MIPS throughput with 50 MHz clock
- Expanded interrupt handler

Automotive Qualified

- Temperature Range: -40 to $+125^{\circ} \mathrm{C}$

Memory

- 8448 bytes internal data RAM $(256+8192$ XRAM $)$
- 128 or 96 kB Banked Flash; In-system programmable in 512-byte Sectors
- External 64 kB data memory interface programmable for multiplexed or non-multiplexed mode
Digital Peripherals
- 40,33 , or 25 Port I/O; All 5 V push-pull with high sink current
- CAN 2.0 Controller-no crystal required
- LIN 2.1 Controller (Master and Slave capable); no crystal required
- Two Hardware enhanced UARTs, SMBus ${ }^{\text {TM }}$, and enhanced SPI ${ }^{\text {TM }}$ serial ports
- Six general purpose 16-bit counter/timers
- Two 16-Bit programmable counter array (PCA) peripherals with six capture/compare modules each and enhanced PWM functionality

Clock Sources

- Internal 24 MHz with $\pm 0.5 \%$ accuracy for CAN and master LIN operation.
- External oscillator: Crystal, RC, C, or clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly; useful in power saving modes
Packages
- $\quad 48-P i n ~ Q F P / Q F N ~(C 8051 F 580 / 1 / 4 / 5) ~$

- 32-Pin QFP/QFN (C8051F582/3/6/7)

C8051F58x/F59x

Table of Contents

1. System Overview 18
2. Ordering Information 22
3. Pin Definitions 24
4. Package Specifications 32
4.1. QFP-48 Package Specifications 32
4.2. QFN-48 Package Specifications 34
4.3. QFN-40 Package Specifications 36
4.4. QFP-32 Package Specifications 38
4.5. QFN-32 Package Specifications 40
5. Electrical Characteristics 42
5.1. Absolute Maximum Specifications 42
5.2. Electrical Characteristics 43
6. 12-Bit ADC (ADC0) 54
6.1. Modes of Operation 55
6.1.1. Starting a Conversion 55
6.1.2. Tracking Modes 55
6.1.3. Timing 56
6.1.4. Burst Mode 57
6.2. Output Code Formatting 59
6.2.1. Settling Time Requirements 59
6.3. Selectable Gain 60
6.3.1. Calculating the Gain Value 60
6.3.2. Setting the Gain Value 62
6.4. Programmable Window Detector 68
6.4.1. Window Detector In Single-Ended Mode 70
6.5. ADC0 Analog Multiplexer 72
7. Temperature Sensor 74
8. Voltage Reference 75
9. Comparators 77
9.1. Comparator Multiplexer 85
10. Voltage Regulator (REG0) 89
11. CIP-51 Microcontroller 91
11.1. Performance 91
11.2. Instruction Set 93
11.2.1. Instruction and CPU Timing 93
11.3. CIP-51 Register Descriptions 97
11.4. Serial Number Special Function Registers (SFRs) 101
12. Memory Organization 102
12.1. Program Memory 102
12.1.1. MOVX Instruction and Program Memory 104
12.2. Data Memory 104
12.2.1. Internal RAM 105
12.2.1.1. General Purpose Registers 105

C8051F58x/F59x

12.2.1.2. Bit Addressable Locations 105
12.2.1.3. Stack 105
13. Special Function Registers 106
13.1. SFR Paging 106
13.2. Interrupts and SFR Paging 106
13.3. SFR Page Stack Example 107
14. Interrupts 126
14.1. MCU Interrupt Sources and Vectors 126
14.1.1. Interrupt Priorities 127
14.1.2. Interrupt Latency 127
14.2. Interrupt Register Descriptions 129
14.3. External Interrupts INT0 and INT1 136
15. Flash Memory 138
15.1. Programming The Flash Memory 138
15.1.1. Flash Lock and Key Functions 138
15.1.2. Flash Erase Procedure 138
15.1.3. Flash Write Procedure 139
15.1.4. Flash Write Optimization 139
15.2. Non-volatile Data Storage 140
15.3. Security Options 140
15.4. Flash Write and Erase Guidelines 142
15.4.1. V_{DD} Maintenance and the V_{DD} monitor 142
15.4.2. PSWE Maintenance 142
15.4.3. System Clock 143
16. Power Management Modes 147
16.1. Idle Mode 147
16.2. Stop Mode 148
16.3. Suspend Mode 148
17. Reset Sources 150
17.1. Power-On Reset 151
17.2. Power-Fail Reset/VDD Monitor 152
17.3. External Reset 153
17.4. Missing Clock Detector Reset 153
17.5. ComparatorO Reset 154
17.6. PCA Watchdog Timer Reset 154
17.7. Flash Error Reset 154
17.8. Software Reset 154
18. External Data Memory Interface and On-Chip XRAM 156
18.1. Accessing XRAM 156
18.1.1. 16-Bit MOVX Example 156
18.1.2. 8-Bit MOVX Example 156
18.2. Configuring the External Memory Interface 157
18.3. Port Configuration 157
18.4. Multiplexed and Non-multiplexed Selection 162
18.4.1. Multiplexed Configuration 162
18.4.2. Non-multiplexed Configuration 163
18.5. Memory Mode Selection 164
18.5.1. Internal XRAM Only 164
18.5.2. Split Mode without Bank Select 164
18.5.3. Split Mode with Bank Select. 165
18.5.4. External Only 165
18.6. Timing 165
18.6.1. Non-Multiplexed Mode 167
18.6.1.1. 16-bit MOVX: EMIOCF[4:2] = 101, 110, or 111 167
18.6.1.2. 8-bit MOVX without Bank Select: EMIOCF[4:2] = 101 or 111 168
18.6.1.3. 8-bit MOVX with Bank Select: EMIOCF[4:2] = 110 169
18.6.2. Multiplexed Mode 170
18.6.2.1. 16-bit MOVX: EMIOCF[4:2] = 001, 010, or 011 170
18.6.2.2. 8-bit MOVX without Bank Select: EMIOCF[4:2] = 001 or 011 171
18.6.2.3. 8-bit MOVX with Bank Select: EMIOCF[4:2] = 010 172
19. Oscillators and Clock Selection 174
19.1. System Clock Selection 174
19.2. Programmable Internal Oscillator 176
19.2.1. Internal Oscillator Suspend Mode 176
19.3. Clock Multiplier 179
19.4. External Oscillator Drive Circuit 181
19.4.1. External Crystal Example 183
19.4.2. External RC Example 184
19.4.3. External Capacitor Example. 184
20. Port Input/Output 186
20.1. Port I/O Modes of Operation 188
20.1.1. Port Pins Configured for Analog I/O 188
20.1.2. Port Pins Configured For Digital I/O 188
20.1.3. Interfacing Port I/O in a Multi-Voltage System 189
20.2. Assigning Port I/O Pins to Analog and Digital Functions 189
20.2.1. Assigning Port I/O Pins to Analog Functions 189
20.2.2. Assigning Port I/O Pins to Digital Functions 189
20.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions 190
20.3. Priority Crossbar Decoder 190
20.4. Port I/O Initialization 193
20.5. Port Match 198
20.6. Special Function Registers for Accessing and Configuring Port I/O 202
21. Local Interconnect Network (LINO) 212
21.1. Software Interface with the LIN Controller 213
21.2. LIN Interface Setup and Operation 213
21.2.1. Mode Definition 213
21.2.2. Baud Rate Options: Manual or Autobaud 213
21.2.3. Baud Rate Calculations: Manual Mode 213
21.2.4. Baud Rate Calculations-Automatic Mode 215
21.3. LIN Master Mode Operation 216

C8051F58x/F59x

21.4. LIN Slave Mode Operation 217
21.5. Sleep Mode and Wake-Up 218
21.6. Error Detection and Handling 218
21.7. LIN Registers 219
21.7.1. LIN Direct Access SFR Registers Definitions 219
21.7.2. LIN Indirect Access SFR Registers Definitions 221
22. Controller Area Network (CANO) 229
22.1. Bosch CAN Controller Operation 230
22.1.1. CAN Controller Timing 230
22.1.2. CAN Register Access 231
22.1.3. Example Timing Calculation for $1 \mathrm{Mbit} / \mathrm{Sec}$ Communication 231
22.2. CAN Registers 233
22.2.1. CAN Controller Protocol Registers 233
22.2.2. Message Object Interface Registers 233
22.2.3. Message Handler Registers 233
22.2.4. CAN Register Assignment 234
23. SMBus 237
23.1. Supporting Documents 238
23.2. SMBus Configuration 238
23.3. SMBus Operation 238
23.3.1. Transmitter Vs. Receiver 239
23.3.2. Arbitration 239
23.3.3. Clock Low Extension 239
23.3.4. SCL Low Timeout 239
23.3.5. SCL High (SMBus Free) Timeout 240
23.4. Using the SMBus 240
23.4.1. SMBus Configuration Register 240
23.4.2. SMBOCN Control Register 244
23.4.3. Data Register 247
23.5. SMBus Transfer Modes 247
23.5.1. Write Sequence (Master) 248
23.5.2. Read Sequence (Master) 249
23.5.3. Write Sequence (Slave) 250
23.5.4. Read Sequence (Slave) 251
23.6. SMBus Status Decoding 251
24. UARTO 254
24.1. Baud Rate Generator 254
24.2. Data Format 256
24.3. Configuration and Operation 257
24.3.1. Data Transmission 257
24.3.2. Data Reception 257
24.3.3. Multiprocessor Communications 258
25. UART1 263
25.1. Enhanced Baud Rate Generation 264
25.2. Operational Modes 265
25.2.1. 8-Bit UART 265
25.2.2. 9-Bit UART 265
25.3. Multiprocessor Communications 266
26. Enhanced Serial Peripheral Interface (SPIO) 270
26.1. Signal Descriptions 271
26.1.1. Master Out, Slave In (MOSI) 271
26.1.2. Master In, Slave Out (MISO) 271
26.1.3. Serial Clock (SCK) 271
26.1.4. Slave Select (NSS) 271
26.2. SPIO Master Mode Operation 272
26.3. SPIO Slave Mode Operation 274
26.4. SPIO Interrupt Sources 274
26.5. Serial Clock Phase and Polarity 275
26.6. SPI Special Function Registers 276
27. Timers 283
27.1. Timer 0 and Timer 1 285
27.1.1. Mode 0: 13-bit Counter/Timer 285
27.1.2. Mode 1: 16-bit Counter/Timer 286
27.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload 286
27.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only) 287
27.2. Timer 2 293
27.2.1. 16-bit Timer with Auto-Reload 293
27.2.2. 8-bit Timers with Auto-Reload 293
27.2.3. External Oscillator Capture Mode 294
27.3. Timer 3 299
27.3.1. 16-bit Timer with Auto-Reload 299
27.3.2. 8-bit Timers with Auto-Reload 299
27.3.3. External Oscillator Capture Mode 300
27.4. Timer 4 and Timer 5 305
27.4.1. Configuring Timer 4 and 5 to Count Down 305
27.4.2. Capture Mode 305
27.4.3. Auto-Reload Mode 306
27.4.4. Toggle Output Mode 307
28. Programmable Counter Array 0 (PCAO) 312
28.1. PCAO Counter/Timer 313
28.2. PCAO Interrupt Sources 314
28.3. Capture/Compare Modules 315
28.3.1. Edge-triggered Capture Mode 315
28.3.2. Software Timer (Compare) Mode 316
28.3.3. High-Speed Output Mode 317
28.3.4. Frequency Output Mode 318
28.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes 319
28.3.5.1. 8-bit Pulse Width Modulator Mode 319
28.3.5.2. 9/10/11-bit Pulse Width Modulator Mode 320
28.3.6. 16-Bit Pulse Width Modulator Mode 321

C8051F58x/F59x

28.4. Watchdog Timer Mode 322
28.4.1. Watchdog Timer Operation 322
28.4.2. Watchdog Timer Usage 323
28.5. Register Descriptions for PCAO 325
29. Programmable Counter Array 1 (PCA1) 331
29.1. PCA1 Counter/Timer 332
29.2. PCA1 Interrupt Sources 333
29.3. Capture/Compare Modules 334
29.3.1. Edge-triggered Capture Mode 335
29.3.2. Software Timer (Compare) Mode 336
29.3.3. High-Speed Output Mode 337
29.3.4. Frequency Output Mode 338
29.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes 339
29.3.5.1. 8-bit Pulse Width Modulator Mode 339
29.3.5.2. 9/10/11-bit Pulse Width Modulator Mode 341
29.3.6. 16-Bit Pulse Width Modulator Mode 342
29.4. Register Descriptions for PCA1 343
30. C2 Interface 349
30.1. C2 Interface Registers 349
30.2. C2 Pin Sharing 353
Document Change List 354
Contact Information 356

C8051F58x/F59x

List of Figures
Figure 1.1. C8051F580/1/4/5 Block Diagram 19
Figure 1.2. C8051F588/9-F590/1 Block Diagram 20
Figure 1.3. C8051F582/3/6/7 Block Diagram 21
Figure 3.1. QFP-48 Pinout Diagram (Top View) 27
Figure 3.2. QFN-48 Pinout Diagram (Top View) 28
Figure 3.3. QFN-40 Pinout Diagram (Top View) 29
Figure 3.4. QFP-32 Pinout Diagram (Top View) 30
Figure 3.5. QFN-32 Pinout Diagram (Top View) 31
Figure 4.1. QFP-48 Package Drawing 32
Figure 4.2. QFP-48 Landing Diagram 33
Figure 4.3. QFN-48 Package Drawing 34
Figure 4.4. QFN-48 Landing Diagram 35
Figure 4.5. Typical QFN-40 Package Drawing 36
Figure 4.6. QFN-40 Landing Diagram 37
Figure 4.7. QFP-32 Package Drawing 38
Figure 4.8. QFP-32 Package Drawing 39
Figure 4.9. QFN-32 Package Drawing 40
Figure 4.10. QFN-32 Package Drawing 41
Figure 5.1. Maximum System Clock Frequency vs. VDD Voltage 46
Figure 6.1. ADC0 Functional Block Diagram 54
Figure 6.2. ADC0 Tracking Modes 56
Figure 6.3. 12-Bit ADC Tracking Mode Example 57
Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4 58
Figure 6.5. ADCO Equivalent Input Circuit 60
Figure 6.6. ADC Window Compare Example: Right-Justified Data 71
Figure 6.7. ADC Window Compare Example: Left-Justified Data 71
Figure 6.8. ADCO Multiplexer Block Diagram 72
Figure 7.1. Temperature Sensor Transfer Function 74
Figure 8.1. Voltage Reference Functional Block Diagram 75
Figure 9.1. Comparator Functional Block Diagram 77
Figure 9.2. Comparator Hysteresis Plot 78
Figure 9.3. Comparator Input Multiplexer Block Diagram 85
Figure 10.1. External Capacitors for Voltage Regulator Input/Output—Regulator En- abled 89
Figure 10.2. External Capacitors for Voltage Regulator Input/Output—Regulator Disabled 90
Figure 11.1. CIP-51 Block Diagram 92
Figure 12.1. C8051F58x/F59x Memory Map 102
Figure 12.2. Flash Program Memory Map 103
Figure 12.3. Address Memory Map for Instruction Fetches 103
Figure 13.1. SFR Page Stack 107
Figure 13.2. SFR Page Stack While Using SFR Page 0x0 To Access SPIODAT 108
Figure 13.3. SFR Page Stack After CANO Interrupt Occurs 109

C8051F58x/F59x

Figure 13.4. SFR Page Stack Upon PCA Interrupt Occurring During a CANO ISR 110
Figure 13.5. SFR Page Stack Upon Return From PCA Interrupt 111
Figure 13.6. SFR Page Stack Upon Return From CANO Interrupt 112
Figure 15.1. Flash Program Memory Map ... 141
Figure 17.1. Reset Sources ... 152
Figure 17.2. Power-On and VDD Monitor Reset Timing 153
Figure 19.1. Oscillator Options .. 176
Figure 19.2. Example Clock Multiplier Output .. 181
Figure 19.3. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram 186
Figure 20.1. Port I/O Functional Block Diagram ... 189
Figure 20.2. Port I/O Cell Block Diagram .. 190
Figure 20.3. Peripheral Availability on Port I/O Pins .. 193
Figure 20.4. Crossbar Priority Decoder in Example Configuration 194
Figure 21.1. LIN Block Diagram ... 214
Figure 22.1. Typical CAN Bus Configuration ... 231
Figure 22.2. CAN Controller Diagram .. 232
Figure 22.3. Four segments of a CAN Bit .. 234
Figure 23.1. SMBus Block Diagram ... 239
Figure 23.2. Typical SMBus Configuration ... 240
Figure 23.3. SMBus Transaction .. 241
Figure 23.4. Typical SMBus SCL Generation ... 243
Figure 23.5. Typical Master Write Sequence ... 250
Figure 23.6. Typical Master Read Sequence .. 251
Figure 23.7. Typical Slave Write Sequence ... 252
Figure 23.8. Typical Slave Read Sequence ... 253
Figure 24.1. UARTO Block Diagram ... 256
Figure 24.2. UARTO Timing Without Parity or Extra Bit ... 258
Figure 24.3. UART0 Timing With Parity .. 258
Figure 24.4. UARTO Timing With Extra Bit .. 258
Figure 24.5. Typical UART Interconnect Diagram ... 259
Figure 24.6. UART Multi-Processor Mode Interconnect Diagram 260
Figure 26.1. SPI Block Diagram .. 272
Figure 26.2. Multiple-Master Mode Connection Diagram 275
Figure 26.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram 275

Figure 26.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram 275
Figure 26.5. Master Mode Data/Clock Timing ... 277
Figure 26.6. Slave Mode Data/Clock Timing (CKPHA = 0) 278
Figure 26.7. Slave Mode Data/Clock Timing (CKPHA = 1) 278
Figure 26.8. SPI Master Timing (CKPHA = 0) ... 282
Figure 26.9. SPI Master Timing (CKPHA = 1) ... 282
Figure 26.10. SPI Slave Timing (CKPHA = 0) .. 283
Figure 26.11. SPI Slave Timing (CKPHA = 1) .. 283
Figure 27.1. T0 Mode 0 Block Diagram ... 288

C8051F58x/F59x

Figure 27.2. T0 Mode 2 Block Diagram 289
Figure 27.3. T0 Mode 3 Block Diagram 290
Figure 27.4. Timer 2 16-Bit Mode Block Diagram 295
Figure 27.5. Timer 2 8-Bit Mode Block Diagram 296
Figure 27.6. Timer 2 External Oscillator Capture Mode Block Diagram 297
Figure 27.7. Timer 3 16-Bit Mode Block Diagram 301
Figure 27.8. Timer 3 8-Bit Mode Block Diagram 302
Figure 27.9. Timer 3 External Oscillator Capture Mode Block Diagram 303
Figure 27.10. Timer 4 and 5 Capture Mode Block Diagram 308
Figure 27.11. Timer 4 and 5 Auto Reload and Toggle Mode Block Diagram 309
Figure 28.1. PCAO Block Diagram 314
Figure 28.2. PCAO Counter/Timer Block Diagram 315
Figure 28.3. PCAO Interrupt Block Diagram 316
Figure 28.4. PCAO Capture Mode Diagram 318
Figure 28.5. PCAO Software Timer Mode Diagram 319
Figure 28.6. PCAO High-Speed Output Mode Diagram 320
Figure 28.7. PCAO Frequency Output Mode 321
Figure 28.8. PCAO 8-Bit PWM Mode Diagram 322
Figure 28.9. PCAO 9, 10 and 11-Bit PWM Mode Diagram 323
Figure 28.10. PCAO 16-Bit PWM Mode 324
Figure 28.11. PCAO Module 5 with Watchdog Timer Enabled 325
Figure 29.1. PCA1 Block Diagram 333
Figure 29.2. PCA1 Counter/Timer Block Diagram 334
Figure 29.3. PCA1 Interrupt Block Diagram 335
Figure 29.4. PCA1 Capture Mode Diagram 337
Figure 29.5. PCA1 Software Timer Mode Diagram 338
Figure 29.6. PCA1 High-Speed Output Mode Diagram 339
Figure 29.7. PCA1 Frequency Output Mode 340
Figure 29.8. PCA1 8-Bit PWM Mode Diagram 342
Figure 29.9. PCA1 9, 10 and 11-Bit PWM Mode Diagram 343
Figure 29.10. PCA1 16-Bit PWM Mode 344
Figure 30.1. Typical C2 Pin Sharing 355

C8051F58x/F59x

List of Tables
Table 2.1. Product Selection Guide 23
Table 3.1. Pin Definitions for the C8051F58x/F59x 24
Table 4.1. QFP-48 Package Dimensions 32
Table 4.2. QFP-48 Landing Diagram Dimensions 33
Table 4.3. QFN-48 Package Dimensions 34
Table 4.4. QFN-48 Landing Diagram Dimensions 35
Table 4.5. QFN-40 Package Dimensions 36
Table 4.6. QFN-40 Landing Diagram Dimensions 37
Table 4.7. QFP-32 Package Dimensions 38
Table 4.8. QFP-32 Landing Diagram Dimensions 39
Table 4.9. QFN-32 Package Dimensions 40
Table 4.10. QFN-32 Landing Diagram Dimensions 41
Table 5.1. Absolute Maximum Ratings 42
Table 5.2. Global Electrical Characteristics 43
Table 5.3. Port I/O DC Electrical Characteristics 47
Table 5.4. Reset Electrical Characteristics 48
Table 5.5. Flash Electrical Characteristics 48
Table 5.6. Internal High-Frequency Oscillator Electrical Characteristics 49
Table 5.7. Clock Multiplier Electrical Specifications 50
Table 5.8. Voltage Regulator Electrical Characteristics 50
Table 5.9. ADC0 Electrical Characteristics 51
Table 5.10. Temperature Sensor Electrical Characteristics 52
Table 5.11. Voltage Reference Electrical Characteristics 52
Table 5.12. Comparator 0, 1 and 2 Electrical Characteristics 53
Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled) 94
Table 13.1. Special Function Register (SFR) Memory Map for Pages 0x00, 0x10, and 0x0F 117
Table 13.2. Special Function Register (SFR) Memory Map for Page 0x0C 119
Table 13.3. Special Function Registers 120
Table 14.1. Interrupt Summary 128
Table 15.1. Flash Security Summary 141
Table 18.1. EMIF Pinout (C8051F580/1/4/5) 158
Table 18.2. EMIF Pinout (C8051F588/9-F590/1) 159
Table 18.3. AC Parameters for External Memory Interface 173
Table 20.1. Port I/O Assignment for Analog Functions 189
Table 20.2. Port I/O Assignment for Digital Functions 189
Table 20.3. Port I/O Assignment for External Digital Event Capture Functions 190
Table 21.1. Baud Rate Calculation Variable Ranges 213
Table 21.2. Manual Baud Rate Parameters Examples 215
Table 21.3. Autobaud Parameters Examples 216
Table 21.4. LIN Registers* (Indirectly Addressable) 221
Table 22.1. Background System Information 231
Table 22.2. Standard CAN Registers and Reset Values 234

C8051F58x/F59x

Table 23.1. SMBus Clock Source Selection 241
Table 23.2. Minimum SDA Setup and Hold Times 242
Table 23.3. Sources for Hardware Changes to SMBOCN 246
Table 23.4. SMBus Status Decoding 252
Table 24.1. Baud Rate Generator Settings for Standard Baud Rates 255
Table 25.1. Timer Settings for Standard Baud Rates
Using The Internal 24 MHz Oscillator 269
Table 26.1. SPI Slave Timing Parameters 282
Table 28.1. PCAO Timebase Input Options 313
Table 28.2. PCAOCPM and PCAOPWM Bit Settings for PCAO Capture/Compare Modules 315
Table 28.3. Watchdog Timer Timeout Intervals1 324
Table 29.1. PCA1 Timebase Input Options 332
Table 29.2. PCA1CPM and PCA1PWM Bit Settings for PCA1 Capture/Compare Modules 334

C8051F58x/F59x

List of Registers
SFR Definition 6.4. ADCOCF: ADC0 Configuration 65
SFR Definition 6.5. ADCOH: ADC0 Data Word MSB 66
SFR Definition 6.6. ADCOL: ADCO Data Word LSB 66
SFR Definition 6.7. ADCOCN: ADCO Control 67
SFR Definition 6.8. ADCOTK: ADC0 Tracking Mode Select 68
SFR Definition 6.9. ADC0GTH: ADC0 Greater-Than Data High Byte 69
SFR Definition 6.10. ADCOGTL: ADC0 Greater-Than Data Low Byte 69
SFR Definition 6.11. ADCOLTH: ADC0 Less-Than Data High Byte 70
SFR Definition 6.12. ADCOLTL: ADCO Less-Than Data Low Byte 70
SFR Definition 6.13. ADCOMX: ADC0 Channel Select 73
SFR Definition 8.1. REFOCN: Reference Control 76
SFR Definition 9.1. CPTOCN: ComparatorO Control 79
SFR Definition 9.2. CPTOMD: ComparatorO Mode Selection 80
SFR Definition 9.3. CPT1CN: Comparator1 Control 81
SFR Definition 9.4. CPT1MD: Comparator1 Mode Selection 82
SFR Definition 9.5. CPT2CN: Comparator2 Control 83
SFR Definition 9.6. CPT2MD: Comparator2 Mode Selection 84
SFR Definition 9.7. CPTOMX: ComparatorO MUX Selection 86
SFR Definition 9.8. CPT1MX: Comparator1 MUX Selection 87
SFR Definition 9.9. CPT2MX: Comparator2 MUX Selection 88
SFR Definition 10.1. REG0CN: Regulator Control 90
SFR Definition 11.1. DPL: Data Pointer Low Byte 98
SFR Definition 11.2. DPH: Data Pointer High Byte 98
SFR Definition 11.3. SP: Stack Pointer 99
SFR Definition 11.4. ACC: Accumulator 99
SFR Definition 11.5. B: B Register 99
SFR Definition 11.6. PSW: Program Status Word 100
SFR Definition 11.7. SNn: Serial Number n 101
SFR Definition 12.1. PSBANK: Program Space Bank Select 104
SFR Definition 13.1. SFROCN: SFR Page Control 113
SFR Definition 13.2. SFRPAGE: SFR Page 114
SFR Definition 13.3. SFRNEXT: SFR Next 115
SFR Definition 13.4. SFRLAST: SFR Last 116
SFR Definition 14.1. IE: Interrupt Enable 130
SFR Definition 14.2. IP: Interrupt Priority 131
SFR Definition 14.3. EIE1: Extended Interrupt Enable 1 132
SFR Definition 14.4. EIP1: Extended Interrupt Priority 1 133
SFR Definition 14.5. EIE2: Extended Interrupt Enable 2 134
SFR Definition 14.6. EIP2: Extended Interrupt Priority Enabled 2 135
SFR Definition 14.7. IT01CF: INT0/INT1 Configuration 137
SFR Definition 15.1. PSCTL: Program Store R/W Control 143
SFR Definition 15.2. FLKEY: Flash Lock and Key 144
SFR Definition 15.3. FLSCL: Flash Scale 145

C8051F58x/F59x

SFR Definition 15.4. CCHOCN: Cache Control 146
SFR Definition 15.5. ONESHOT: Flash Oneshot Period 146
SFR Definition 16.1. PCON: Power Control 149
SFR Definition 17.1. VDMOCN: VDD Monitor Control 153
SFR Definition 17.2. RSTSRC: Reset Source 155
SFR Definition 18.1. EMIOCN: External Memory Interface Control 160
SFR Definition 18.2. EMIOCF: External Memory Configuration 161
SFR Definition 18.3. EMIOTC: External Memory Timing Control 166
SFR Definition 19.1. CLKSEL: Clock Select 175
SFR Definition 19.2. OSCICN: Internal Oscillator Control 177
SFR Definition 19.3. OSCICRS: Internal Oscillator Coarse Calibration 178
SFR Definition 19.4. OSCIFIN: Internal Oscillator Fine Calibration 178
SFR Definition 19.5. CLKMUL: Clock Multiplier 180
SFR Definition 19.6. OSCXCN: External Oscillator Control 182
SFR Definition 20.1. XBRO: Port I/O Crossbar Register 0 194
SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1 195
SFR Definition 20.3. XBR2: Port I/O Crossbar Register 2 196
SFR Definition 20.4. XBR3: Port I/O Crossbar Register 3 197
SFR Definition 20.5. POMASK: Port 0 Mask Register 198
SFR Definition 20.6. POMAT: Port 0 Match Register 198
SFR Definition 20.7. P1MASK: Port 1 Mask Register 199
SFR Definition 20.8. P1MAT: Port 1 Match Register 199
SFR Definition 20.9. P2MASK: Port 2 Mask Register 200
SFR Definition 20.10. P2MAT: Port 2 Match Register 200
SFR Definition 20.11. P3MASK: Port 3 Mask Register 201
SFR Definition 20.12. P3MAT: Port 3 Match Register 201
SFR Definition 20.13. P0: Port 0 202
SFR Definition 20.14. POMDIN: Port 0 Input Mode 203
SFR Definition 20.15. POMDOUT: Port 0 Output Mode 203
SFR Definition 20.16. POSKIP: Port 0 Skip 204
SFR Definition 20.17. P1: Port 1 204
SFR Definition 20.18. P1MDIN: Port 1 Input Mode 205
SFR Definition 20.19. P1MDOUT: Port 1 Output Mode 205
SFR Definition 20.20. P1SKIP: Port 1 Skip 206
SFR Definition 20.21. P2: Port 2 206
SFR Definition 20.22. P2MDIN: Port 2 Input Mode 207
SFR Definition 20.23. P2MDOUT: Port 2 Output Mode 207
SFR Definition 20.24. P2SKIP: Port 2 Skip 208
SFR Definition 20.25. P3: Port 3 208
SFR Definition 20.26. P3MDIN: Port 3 Input Mode 209
SFR Definition 20.27. P3MDOUT: Port 3 Output Mode 209
SFR Definition 20.28. P3SKIP: Port 3Skip 210
SFR Definition 20.29. P4: Port 4 210
SFR Definition 20.30. P4MDOUT: Port 4 Output Mode 211
SFR Definition 21.1. LINOADR: LINO Indirect Address Register 219

C8051F58x/F59x

SFR Definition 21.2. LINODAT: LIN0 Indirect Data Register 219
SFR Definition 21.3. LINOCF: LINO Control Mode Register 220
SFR Definition 22.1. CANOCFG: CAN Clock Configuration 236
SFR Definition 23.1. SMB0CF: SMBus Clock/Configuration 243
SFR Definition 23.2. SMB0CN: SMBus Control 245
SFR Definition 23.3. SMBODAT: SMBus Data 247
SFR Definition 24.1. SCONO: Serial Port 0 Control 259
SFR Definition 24.2. SMOD0: Serial Port 0 Control 260
SFR Definition 24.3. SBUF0: Serial (UART0) Port Data Buffer 261
SFR Definition 24.4. SBCONO: UARTO Baud Rate Generator Control 261
SFR Definition 24.6. SBRLLO: UART0 Baud Rate Generator Reload Low Byte 262
SFR Definition 24.5. SBRLHO: UARTO Baud Rate Generator Reload High Byte 262
SFR Definition 25.1. SCON1: Serial Port 1 Control 267
SFR Definition 25.2. SBUF1: Serial (UART1) Port Data Buffer 268
SFR Definition 26.1. SPIOCFG: SPIO Configuration 277
SFR Definition 26.2. SPIOCN: SPIO Control 278
SFR Definition 26.3. SPIOCKR: SPIO Clock Rate 279
SFR Definition 26.4. SPIODAT: SPIO Data 279
SFR Definition 27.1. CKCON: Clock Control 284
SFR Definition 27.2. TCON: Timer Control 289
SFR Definition 27.3. TMOD: Timer Mode 290
SFR Definition 27.4. TLO: Timer 0 Low Byte 291
SFR Definition 27.5. TL1: Timer 1 Low Byte 291
SFR Definition 27.6. TH0: Timer 0 High Byte 292
SFR Definition 27.7. TH1: Timer 1 High Byte 292
SFR Definition 27.8. TMR2CN: Timer 2 Control 296
SFR Definition 27.9. TMR2RLL: Timer 2 Reload Register Low Byte 297
SFR Definition 27.10. TMR2RLH: Timer 2 Reload Register High Byte 297
SFR Definition 27.11. TMR2L: Timer 2 Low Byte 298
SFR Definition 27.12. TMR2H Timer 2 High Byte 298
SFR Definition 27.13. TMR3CN: Timer 3 Control 302
SFR Definition 27.14. TMR3RLL: Timer 3 Reload Register Low Byte 303
SFR Definition 27.15. TMR3RLH: Timer 3 Reload Register High Byte 303
SFR Definition 27.16. TMR3L: Timer 3 Low Byte 304
SFR Definition 27.17. TMR3H Timer 3 High Byte 304
SFR Definition 27.18. TMRnCN: Timer 4 and 5 Control 308
SFR Definition 27.19. TMRnCF: Timer 4 and 5 Configuration 309
SFR Definition 27.20. TMRnCAPL: Timer 4 and 5 Capture Register Low Byte 310
SFR Definition 27.21. TMRnCAPH: Timer 4 and 5 Capture Register High Byte 310
SFR Definition 27.22. TMRnL: Timer 4 and 5 Low Byte 311
SFR Definition 27.23. TMRnH Timer 4 and 5 High Byte 311
SFR Definition 28.1. PCA0CN: PCAO Control 325
SFR Definition 28.2. PCAOMD: PCA0 Mode 326
SFR Definition 28.3. PCAOPWM: PCAO PWM Configuration 327
SFR Definition 28.4. PCA0CPMn: PCA0 Capture/Compare Mode 328
SFR Definition 28.5. PCAOL: PCAO Counter/Timer Low Byte 329
SFR Definition 28.6. PCAOH: PCAO Counter/Timer High Byte 329
SFR Definition 28.7. PCA0CPLn: PCAO Capture Module Low Byte 330
SFR Definition 28.8. PCA0CPHn: PCAO Capture Module High Byte 330
SFR Definition 29.1. PCA1CN: PCA1 Control 343
SFR Definition 29.2. PCA1MD: PCA1 Mode 344
SFR Definition 29.3. PCA1PWM: PCA1 PWM Configuration 345
SFR Definition 29.4. PCA1CPMn: PCA1 Capture/Compare Mode 346
SFR Definition 29.5. PCA1L: PCA1 Counter/Timer Low Byte 347
SFR Definition 29.6. PCA1H: PCA1 Counter/Timer High Byte 347
SFR Definition 29.7. PCA1CPLn: PCA1 Capture Module Low Byte 348
SFR Definition 29.8. PCA1CPHn: PCA1 Capture Module High Byte 348

1. System Overview

C8051F58x/F59x devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

- High-speed pipelined 8051-compatible microcontroller core (up to 50 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- Controller Area Network (CAN 2.0B) Controller with 32 message objects, each with its own indentifier mask (C8051F580/2/4/6/8-F590)
- LIN 2.1 peripheral (fully backwards compatible, master and slave modes) (C8051F580/2/4/6/8-F590)
- True 12 -bit 200 ksps 32 -channel single-ended ADC with analog multiplexer
- Precision programmable 24 MHz internal oscillator that is within $\pm 0.5 \%$ across the temperature range and for VDD voltages greater than or equal to the on-chip voltage regulator minimum output at the low setting. The oscillator is within $\pm 1.0 \%$ for VDD voltages below this minimum output setting.
- On-chip Clock Multiplier to reach up to 50 MHz
- 128 kB (C8051F580/1/2/3/8/9) or 96 kB (C8051F584/5/6/7-F590/1) of on-chip Flash memory
- 8448 bytes of on-chip RAM
- SMBus/I2C, Two Enhanced UARTs, and Enhanced SPI serial interfaces implemented in hardware
- Six general-purpose 16 -bit timers
- External Data Memory Interface (C8051F580/1/4/5) with 64 kB address space
- Two Programmable Counter/Timer Array (PCA) modules with six capture/compare modules each and one with a Watchdog Timer function
- Three Voltage Comparators
- On-chip Voltage Regulator
- On-chip Power-On Reset, V_{DD} Monitor, and Temperature Sensor
- 40, 33 or 25 Port I/O (5 V push-pull)

With an on-chip Voltage Regulator, Power-On Reset and V_{DD} monitors, Watchdog Timer, and clock oscillator, the C8051F58x/F59x devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.
The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

The devices are specified for 1.8 V to 5.25 V operation over the automotive temperature range (-40 to $+125^{\circ} \mathrm{C}$). The Port I/O and RST pins can interface to 5 V logic by setting the VIO pin to 5 V . The C8051F580/1/4/5 devices are available in 48-pin QFP and QFN packages, and the C8051F588/9-F590/1 devices are available in a 40-pin QFN package, and the C8051F582/3/6/7 devices are available in 32-pin QFP and QFN packages. All package options are lead-free and RoHS compliant. See Table 2.1 for ordering information. Block diagrams are included in Figure 1.1 and Figure 1.3.

C8051F58x/F59x

Figure 1.1. C8051F580/1/4/5 Block Diagram

Figure 1.2. C8051F588/9-F590/1 Block Diagram

C8051F58x/F59x

Figure 1.3. C8051F582/3/6/7 Block Diagram

2. Ordering Information

The following features are common to all devices in this family:

- 50 MHz system clock and 50 MIPS throughput (peak)
- 8448 bytes of RAM (256 internal bytes and 8192 XRAM bytes
- SMBus $/ I^{2} \mathrm{C}$, Enhanced SPI, Two UARTs
- Six Timers
- 12 Programmable Counter Array channels
- 12-bit, 200 ksps ADC

■ Internal 24 MHz oscillator

- Internal Voltage Regulator
- Internal Voltage Reference and Temperature Sensor
- Three Analog Comparators

Table 2.1 shows the feature that differentiate the devices in this family.

C8051F58x/F59x

Table 2.1. Product Selection Guide

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: The suffix of the part number indicates the device rating and the package. All devices are RoHS compliant.
All of these devices are also available in an automotive version. For the automotive version, the -1 in the ordering part number is replaced with -A. For example, the automotive version of the C8051F580-IM is the C8051F580-AM.

The -AM and -AQ devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS) and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account. The -AM and -AQ devices enable high volume automotive OEM applications with their enhanced testing and processing. Please contact Silicon Labs sales for more information regarding $-A M$ and -AQ devices for your automotive project.

C8051F58x/F59x
3. Pin Definitions

Table 3.1. Pin Definitions for the C8051F58x/F59x

Name	Pin F580/1/4/5 (48-pin)	Pin F588/9- F590/1 (40-pin)	Pin F52/3/6/7 (32-pin)	Type	Description			
VDD	4	4	4		Digital Supply Voltage. Must be connected.			
GND	6	6	6		Digital Ground. Must be connected.			
VDDA	5	5	5		Analog Supply Voltage. Must be connected.			
GNDA	7	7	7		Analog Ground. Must be connected.			
VREGIN	3	3	3		Voltage Regulator Input			
VIO	2	2	2		Port I/O Supply Voltage. Must be connected.	$	$	RST/
:---								
12								
10								
C2CK								

C8051F58x/F59x

Table 3.1. Pin Definitions for the C8051F58x/F59x (Continued)

Name	Pin F580/1/4/5 (48-pin)	$\begin{aligned} & \text { Pin } \\ & \text { F588/9- } \\ & \text { F590/1 } \\ & \text { (40-pin) } \end{aligned}$	$\begin{gathered} \text { Pin } \\ \text { F582/3/6/7 } \\ \\ \text { (32-pin) } \end{gathered}$	Type	Description
P0.6	44	36	28	D I/O or A In	Port 0.6
P0.7	43	35	27	D I/O or A In	Port 0.7
P1.0	42	34	26	D I/O or A In	Port 1.0. See SFR Definition 20.17 for a description.
P1.1	41	33	25	D I/O or A In	Port 1.1.
P1.2	40	32	24	D I/O or A In	Port 1.2.
P1.3	39	31	23	D I/O or A In	Port 1.3.
P1.4	38	30	22	D I/O or A In	Port 1.4.
P1.5	37	29	21	D I/O or A In	Port 1.5.
P1.6	36	28	20	D I/O or A In	Port 1.6.
P1.7	35	27	19	D I/O or A In	Port 1.7.
P2.0	34	26	18	D I/O or A In	Port 2.0. See SFR Definition 20.21 for a description.
P2.1	33	25	17	D I/O or A In	Port 2.1.
P2.2	32	24	16	D I/O or A In	Port 2.2.
P2.3	31	23	15	D I/O or A In	Port 2.3.
P2.4	30	22	14	D I/O or A In	Port 2.4.
P2.5	29	21	13	D I/O or A In	Port 2.5.
P2.6	28	20	12	D I/O or A In	Port 2.6.
P2.7	27	19	11	D I/O or A In	Port 2.7.
P3.0	26	18	-	D I/O or A In	Port 3.0. See SFR Definition 20.25 for a description.
P3.1	25	17	-	D I/O or A In	Port 3.1.
P3.2	24	16	-	D I/O or A In	Port 3.2.
P3.3	23	15	-	D I/O or A In	Port 3.3.
P3.4	22	14	-	D I/O or A In	Port 3.4.
P3.5	21	13	-	D I/O or A In	Port 3.5.
P3.6	20	12	-	D I/O or A In	Port 3.6.

C8051F58x/F59x

Table 3.1. Pin Definitions for the C8051F58x/F59x (Continued)

Name	Pin F580/1/4/5 (48-pin)	Pin F588/9-1 (40-pin)	Pin F582/3/6/7 (32-pin)	Type	Description
P3.7	19	11	-	D I/O or A In	Port 3.7.
P4.0	18	-	-	D I/O	Port 4.0. See SFR Definition 20.29 for a description.
P4.1	17	-	-	D I/O	Port 4.1.
P4.2	16	-	-	D I/O	Port 4.2.
P4.3	15	-	-	D I/O	Port 4.3.
P4.4	14	-	-	D I/O	Port 4.4.
P4.5	13	-	-	D I/O	Port 4.5.
P4.6	10	-	-	D I/O	Port 4.6.
P4.7	9	-	-	D I/O	Port 4.7.

Figure 3.1. QFP-48 Pinout Diagram (Top View)

Figure 3.2. QFN-48 Pinout Diagram (Top View)

Figure 3.3. QFN-40 Pinout Diagram (Top View)

Figure 3.4. QFP-32 Pinout Diagram (Top View)

Figure 3.5. QFN-32 Pinout Diagram (Top View)

4. Package Specifications

4.1. QFP-48 Package Specifications

Figure 4.1. QFP-48 Package Drawing
Table 4.1. QFP-48 Package Dimensions

Dimension	Min	Typ	Max	Dimension	Min	Typ	Max
A	-	-	1.20	E	9.00 BSC.		
A1	0.05	-	0.15	E1	7.00 BSC.		
A2	0.95	1.00	1.05	L	0.45	0.60	0.75
b	0.17	0.22	0.27	aaa	0.20		
c	0.09	-	0.20	bbb	0.20		
D	9.00 BSC .			ccc	0.08		
D1	7.00 BSC .			ddd	0.08		
e	0.50 BSC.			θ	0°	3.5°	7°

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC outline MS-026, variation ABC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F58x/F59x

Figure 4.2. QFP-48 Landing Diagram
Table 4.2. QFP-48 Landing Diagram Dimensions

Dimension	Min	Max
C1	8.30	8.40
C2	8.30	8.40
E	0.50 BSC	

Dimension	Min	Max
X 1	0.20	0.30
Y 1	1.40	1.50

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

7. A No-Clean, Type-3 solder paste is recommended.
8. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.2. QFN-48 Package Specifications

Figure 4.3. QFN-48 Package Drawing

Table 4.3. QFN-48 Package Dimensions

Dimension	Min	Typ	Max	Dimension	Min	Typ	Max
A	0.80	0.90	1.00	E2	3.90	4.00	4.10
A1	0.00	-	0.05	L	0.30	0.40	0.50
b	0.18	0.23	0.30	L1	0.00	-	0.10
D	7.00 BSC			aaa	-	-	0.10
D2	3.90	4.00	4.10	bbb	-	-	0.10
e	0.50 BSC			ddd	-	-	0.05
E	7.00 BSC			eee	-	-	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VKKD-4 except for features D2 and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F58x/F59x

Figure 4.4. QFN-48 Landing Diagram
Table 4.4. QFN-48 Landing Diagram Dimensions

Dimension	Min	Max
C1	6.80	6.90
C2	6.80	6.90
e	0.50 BSC	
X1	0.20	0.30

Notes:
General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimension and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-SM-7351 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm .

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
9. A 3×3 array of $1.20 \mathrm{~mm} \times 1.10 \mathrm{~mm}$ openings on a 1.40 mm pitch should be used for the center pad.

Card Assembly

10. A No-Clean, Type-3 solder paste is recommended.
11. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.3. QFN-40 Package Specifications

Figure 4.5. Typical QFN-40 Package Drawing

Table 4.5. QFN-40 Package Dimensions

Dimension	Min	Typ	Max	Dimension	Min	Typ	Max
A	0.80	0.85	0.90	E2	4.00	4.10	4.20
A1	0.00		0.05	L	0.35	0.40	0.45
b	0.18	0.23	0.28	L1			0.10
D	6.00 BSC			aaa			0.10
D2	4.00	4.10	4.20	bbb			0.10
e	0.50 BSC			ddd			0.05
E	6.00 BSC			eee			0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VJJD-5, except for features A, D2, and E2 which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F58x/F59x

Figure 4.6. QFN-40 Landing Diagram
Table 4.6. QFN-40 Landing Diagram Dimensions

Dimension	Min	Max			
C1	5.80	5.90	Dimension	Min	Max
C2	5.80	5.90			
e	0.50		BSC	4.10	4.20
X 1	0.15	0.25	Y 1	0.75	0.85
		4.10	4.20		

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimension and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-SM-7351 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm .

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
9. A 4×4 array of 0.80 mm square openings on a 1.05 mm pitch should be used for the center ground pad.

Card Assembly

10. A No-Clean, Type-3 solder paste is recommended.
11. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F58x/F59x

4.4. QFP-32 Package Specifications

Figure 4.7. QFP-32 Package Drawing
Table 4.7. QFP-32 Package Dimensions

Dimension	Min	Typ	Max	Dimension	Min	Typ	Max
A	-	-	1.60	E	9.00 BSC.		
A1	0.05	-	0.15	E1	7.00 BSC.		
A2	1.35	1.40	1.45	L	0.45	0.60	0.75
b	0.30	0.37	0.45	aaa	0.20		
c	0.09	-	0.20	bbb	0.20		
D	9.00 BSC.			CCC	0.10		
D1	7.00 BSC.			ddd	0.20		
e	0.80 BSC.			θ	0°	3.5°	7°

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC outline MS-026, variation BBA.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 4.8. QFP-32 Package Drawing
Table 4.8. QFP-32 Landing Diagram Dimensions

Dimension	Min	Max	Dimension	Min	Max
C1	8.40	8.50	X1	0.40	0.50
C2	8.40	8.50	Y1	1.25	1.35
E	0.80 BSC				

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

Card Assembly

7. A No-Clean, Type-3 solder paste is recommended.
8. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.5. QFN-32 Package Specifications

SIDE VIEW

BOTTON VIEW

Detail 1
Pin-1 Identifier

Figure 4.9. QFN-32 Package Drawing
Table 4.9. QFN-32 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.9	1.00
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	5.00 BSC.		
D2	3.20	3.30	3.40
e	0.50 BSC.		
E	5.00 BSC.		

Dimension	Min	Typ	Max
E2	3.20	3.30	3.40
L	0.30	0.40	0.50
L1	0.00	-	0.15
aaa	-	-	0.15
bbb	-	-	0.15
ddd	-	-	0.05
eee	-	-	0.08

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation VGGD except for custom features D2, E2, and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F58x/F59x

Figure 4.10. QFN-32 Package Drawing
Table 4.10. QFN-32 Landing Diagram Dimensions

Dimension	Min	Max	Dimension	Min	Max
C1	4.80	4.90		X2	3.20
C2	4.80	4.90	Y1	0.75	0.85
e	0.50 BSC		Y2	3.20	3.40
X1	0.20	0.30			

Notes:
General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design

4. A stainless steel, laser-cut and electro-polished- stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size should be $1: 1$ for all perimeter pads.
7. A 3×3 array of 1.0 mm openings on a 1.20 mm pitch should be used for the center ground pad.

Card Assembly

8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Typ	Max	Units
Ambient Temperature under Bias		-55	-	135	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	-	150	${ }^{\circ} \mathrm{C}$
Voltage on $\mathrm{V}_{\text {REGIN }}$ with Respect to GND		-0.3	-	5.5	V
Voltage on $\mathrm{V}_{\text {DD }}$ with Respect to GND		-0.3	-	2.8	V
Voltage on VDDA with Respect to GND		-0.3	-	2.8	V
Voltage on V_{10} with Respect to GND		-0.3	-	5.5	V
Voltage on any Port I/O Pin or $\overline{\mathrm{RST}}$ with Respect to GND		-0.3	-	$\mathrm{V}_{1 \mathrm{O}}+0.3$	V
Maximum Total Current through $\mathrm{V}_{\text {REGIN }}$ or GND		-	-	500	mA
Maximum Output Current Sunk by $\overline{\mathrm{RST}}$ or any Port Pin		-	-	100	mA
Maximum Output Current Sourced by any Port Pin		-	-	100	mA
Note: Stresses outside of the range of the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.					

C8051F58x/F59x

5.2. Electrical Characteristics

Table 5.2. Global Electrical Characteristics
-40 to $+125^{\circ} \mathrm{C}, 24 \mathrm{MHz}$ system clock unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Supply Input Voltage ($\mathrm{V}_{\text {REGIN }}$)		1.8	-	5.25	V
Digital Supply Voltage (V_{DD})	System Clock $\leq 25 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{RST}}{ }^{1}$	-	2.75	V
	System Clock > 25 MHz	2		2.75	
Analog Supply Voltage (VDDA) (Must be connected to V_{DD})	System Clock $\leq 25 \mathrm{MHz}$	$\mathrm{V}_{\mathrm{RST}}{ }^{1}$	-	2.75	V
	System Clock > 25 MHz	2		2.75	
Digital Supply RAM Data Retention Voltage		-	1.5	-	
Port I/O Supply Voltage (V_{10})	Normal Operation	1.8^{2}	-	5.25	V
SYSCLK (System Clock) ${ }^{3}$		0	-	50	MHz
$\mathrm{T}_{\text {SYSH }}$ (SYSCLK High Time)		9	-	-	ns
TSYSL (SYSCLK Low Time)		9	-	-	ns
Specified Operating Temperature Range		-40	-	+125	${ }^{\circ} \mathrm{C}$
Digital Supply Current-CPU Active (Normal Mode, fetching instructions from Flash)					
IDD^{4}	$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}=200 \mathrm{kHz}$	-	150	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}=1.5 \mathrm{MHz}$	-	650	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}=25 \mathrm{MHz}$	-	8.5	11	mA
		-	15	21	mA

Notes:

1. Given in Table 5.4 on page 48.
2. V_{10} should not be lower than the V_{DD} voltage.
3. SYSCLK must be at least 32 kHz to enable debugging.
4. Based on device characterization data; Not production tested. Does not include oscillator supply current.
5. IDD can be estimated for frequencies $\leq 15 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for $>15 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{I}_{\mathrm{DD}}=21 \mathrm{~mA}-(50 \mathrm{MHz}-$ $20 \mathrm{MHz})^{*} 0.46 \mathrm{~mA} / \mathrm{MHz}=7.2 \mathrm{~mA}$.
6. Idle IDD can be estimated for frequencies $\leq 1 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for $>1 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number.
For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle $\mathrm{I}_{\mathrm{DD}}=19 \mathrm{~mA}-(50 \mathrm{MHz}-5 \mathrm{MHz}) \times 0.38 \mathrm{~mA} / \mathrm{MHz}=1.9 \mathrm{~mA}$.

Table 5.2. Global Electrical Characteristics (Continued)
-40 to $+125^{\circ} \mathrm{C}, 24 \mathrm{MHz}$ system clock unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
${ }^{\text {IDD }}{ }^{4}$	$\mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}=200 \mathrm{kHz}$	-	220	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}=1.5 \mathrm{MHz}$	-	920	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}=25 \mathrm{MHz}$	-	12	21	mA
	$\mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}=50 \mathrm{MHz}$	-	21	33	mA
I_{DD} Supply Sensitivity ${ }^{4}$	$\mathrm{~F}=25 \mathrm{MHz}$	-	69	-	$\% / \mathrm{V}$
	$\mathrm{F}=1 \mathrm{MHz}$	-	75	-	$\% / \mathrm{V}$
IDD Frequency Sensitivity 4,5	$\mathrm{~V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F} \leq 12.5 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.44	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}>12.5 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.35	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F} \leq 12.5 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.62	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}>12.5 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.46	-	$\mathrm{mA} / \mathrm{MHz}$

Notes:

1. Given in Table 5.4 on page 48.
2. $\mathrm{V}_{I O}$ should not be lower than the V_{DD} voltage.
3. SYSCLK must be at least 32 kHz to enable debugging.
4. Based on device characterization data; Not production tested. Does not include oscillator supply current.
5. IDD can be estimated for frequencies $\leq 15 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for $>15 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{I}_{\mathrm{DD}}=21 \mathrm{~mA}-(50 \mathrm{MHz}-$ 20 MHz) * $0.46 \mathrm{~mA} / \mathrm{MHz}=7.2 \mathrm{~mA}$.
6. Idle IDD can be estimated for frequencies $\leq 1 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for $>1 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number.
For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle $\mathrm{I}_{\mathrm{DD}}=19 \mathrm{~mA}-(50 \mathrm{MHz}-5 \mathrm{MHz}) \times 0.38 \mathrm{~mA} / \mathrm{MHz}=1.9 \mathrm{~mA}$.

C8051F58x/F59x

Table 5.2. Global Electrical Characteristics (Continued)
-40 to $+125^{\circ} \mathrm{C}, 24 \mathrm{MHz}$ system clock unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Digital Supply Current-CPU Inactive (Idle Mode, not fetching instructions from Flash)					
IDD^{4}	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =2.1 \mathrm{~V}, \mathrm{~F}=200 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.1 \mathrm{~V}, \mathrm{~F}=1.5 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.1 \mathrm{~V}, \mathrm{~F}=25 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.1 \mathrm{~V}, \mathrm{~F}=50 \mathrm{MHz} \end{aligned}$	—	$\begin{gathered} 130 \\ 440 \\ 5.8 \\ 11 \end{gathered}$	$\begin{gathered} - \\ - \\ 8.0 \\ 16 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
$\mathrm{I}_{\mathrm{DD}}{ }^{4}$	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =2.6 \mathrm{~V}, \mathrm{~F}=200 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.6 \mathrm{~V}, \mathrm{~F}=1.5 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.6 \mathrm{~V}, \mathrm{~F}=25 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{DD}} & =2.6 \mathrm{~V}, \mathrm{~F}=50 \mathrm{MHz} \end{aligned}$	-	$\begin{gathered} \hline 170 \\ 570 \\ 7.3 \\ 15 \end{gathered}$	- - 15 25	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA mA
$\mathrm{I}_{\text {DD }}$ Supply Sensitivity ${ }^{4}$	$\begin{aligned} & \mathrm{F}=25 \mathrm{MHz} \\ & \mathrm{~F}=1 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 53 \\ & 60 \end{aligned}$	-	\%/V
$\mathrm{I}_{\text {DD }}$ Frequency Sensitivity 4.6	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F} \leq 12.5 \mathrm{MHz}, \mathrm{~T}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=2.1 \mathrm{~V}, \mathrm{~F}>12.5 \mathrm{MHz}, \mathrm{~T}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F} \leq 12.5 \mathrm{MHz}, \mathrm{~T}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}, \mathrm{~F}>12.5 \mathrm{MHz}, \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$	- - -	$\begin{aligned} & 0.28 \\ & 0.28 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	mA/MHz
Digital Supply Current ${ }^{4}$ (Stop or Suspend Mode)	Oscillator not running, V_{DD} Monitor Disabled Temp $=25^{\circ} \mathrm{C}$ Temp $=60^{\circ} \mathrm{C}$ Temp $=125^{\circ} \mathrm{C}$	-	$\begin{aligned} & 230 \\ & 230 \\ & 330 \end{aligned}$	-	$\mu \mathrm{A}$
Notes: 1. Given in Table 5.4 on page 48. 2. $\mathrm{V}_{I O}$ should not be lower than the V_{DD} voltage. 3. SYSCLK must be at least 32 kHz to enable debugging. 4. Based on device characterization data; Not production tested. Does not include oscillator supply current. 5. IDD can be estimated for frequencies $\leq 15 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for $>15 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{I}_{\mathrm{DD}}=21 \mathrm{~mA}-(50 \mathrm{MHz}-$ $20 \mathrm{MHz})^{*} 0.46 \mathrm{~mA} / \mathrm{MHz}=7.2 \mathrm{~mA} .$ 6. Idle IDD can be estimated for frequencies $\leq 1 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for $>1 \mathrm{MHz}$, the estimate should be the current at 50 MHz minus the difference in current indicated by the frequency sensitivity number. For example: $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle $\mathrm{I}_{\mathrm{DD}}=19 \mathrm{~mA}-(50 \mathrm{MHz}-5 \mathrm{MHz}) \times 0.38 \mathrm{~mA} / \mathrm{MHz}=1.9 \mathrm{~mA}$.					

Figure 5.1. Maximum System Clock Frequency vs. VDD Voltage

Note: With system clock frequencies greater than 25 MHz , the V_{DD} monitor level should be set to the high threshold (VDMLVL = 1b in SFR VDMOCN) to prevent undefined CPU operation. The high threshold should only be used with an external regulator powering V_{DD} directly. See Figure 10.2 on page 90 for the recommended power supply connections.

C8051F58x/F59x

Table 5.3. Port I/O DC Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Conditions	Min	Typ	Max	Units
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, Port I/O push-pull $\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$, Port I/O push-pull $\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$, Port I/O push-pull	$\begin{gathered} \mathrm{V}_{10}-0.4 \\ \mathrm{~V}_{10}-0.02 \\ - \end{gathered}$	$V_{10}-0.7$	$\begin{aligned} & - \\ & - \end{aligned}$	V
Output Low Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{IO}} & =1.8 \mathrm{~V}: \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =8.5 \mathrm{~mA} \\ \mathrm{v}_{\mathrm{IO}} & =2.7 \mathrm{~V} \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =8.5 \mathrm{~mA} \\ \mathrm{v}_{\mathrm{IO}} & =5.25 \mathrm{v}: \\ \mathrm{I}_{\mathrm{OL}} & =70 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OL}} & =8.5 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 50 \\ 750 \\ 45 \\ 550 \\ \\ 40 \\ 400 \end{gathered}$	mV
Input High Voltage	$\mathrm{V}_{\text {REGIN }}=5.25 \mathrm{~V}$	$0.7 \times \mathrm{VIO}$	-	-	V
Input Low Voltage	$\mathrm{V}_{\text {REGIN }}=2.7 \mathrm{~V}$	-	-	$0.3 \times \mathrm{VIO}$	V
Input Leakage Current	Weak Pullup Off Weak Pullup On, $\mathrm{V}_{\mathrm{IO}}=2.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ Weak Pullup On, $\mathrm{V}_{\text {IO }}=2.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}$ Weak Pullup On, $\mathrm{V}_{\mathrm{IO}}=5.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.6 \mathrm{~V}$		6 16 45	2 9 22 115	$\mu \mathrm{A}$

Table 5.4. Reset Electrical Characteristics
-40 to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
$\overline{\text { RST Output Low Voltage }}$	$\mathrm{VIO}=5.0 \mathrm{~V} ; \mathrm{IOL}=70 \mu \mathrm{~A}$	-	-	40	mV
$\overline{\mathrm{RST}}$ Input High Voltage		$0.7 \times V_{10}$	-	-	
$\overline{\text { RST }}$ Input Low Voltage		-	-	$0.3 \times V_{10}$	
$\overline{\mathrm{RST}}$ Input Pullup Current	$\overline{\mathrm{RST}}=0.0 \mathrm{~V}$	-	45	115	$\mu \mathrm{A}$
V_{DD} POR Threshold ($\mathrm{V}_{\text {RST-Low }}$)		1.65	1.75	1.80	V
$\mathrm{V}_{\text {DD }}$ POR Threshold ($\mathrm{V}_{\text {RST-HIGH }}$)		2.25	2.30	2.45	V
V_{DD} Ramp Time for Power On	V_{DD} Ramp 0-1.8 V	-	-	1	ms
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 390 \\ & 280 \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\mu \mathrm{s}$
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	-	130	160	$\mu \mathrm{s}$
Minimum $\overline{\mathrm{RST}}$ Low Time to Generate a System Reset		6	-	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Turn-on Time			60	100	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Supply Current		-	1	2	$\mu \mathrm{A}$

Table 5.5. Flash Electrical Characteristics
$V_{D D}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Flash Size	C8051F580/1/2/3/8/9	131072*			Bytes
	C8051F584/5/6/7-F590/1	98304			
Endurance		20 k	150 k	-	Erase/Write
Flash Retention	$85^{\circ} \mathrm{C}$	10	-	-	years
Erase Cycle Time	25 MHz System Clock	28	30	45	ms
Write Cycle Time	25 MHz System Clock	79	84	125	$\mu \mathrm{s}$
$V_{\text {DD }}$	Write / Erase operations	$\mathrm{V}_{\text {RST-HIGH }}{ }^{2}$	-	-	V
Temperature during Programming Operations	-I Devices -A Devices	$\begin{gathered} 0 \\ -40 \end{gathered}$	-	$\begin{aligned} & +125 \\ & +125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

1. On the 128 K Flash devices, 1024 bytes at addresses $0 x F C 00$ to $0 x F F F F$ (Bank 3) are reserved.
2. See Table 5.4 for the $\mathrm{V}_{\text {RST-HIGH }}$ specification.

Table 5.6. Internal High-Frequency Oscillator Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified; Using factory-calibrated settings.

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency	$\begin{aligned} & \text { IFCN = 111b; } \\ & \text { VDD } \geq \text { VREGMIN } \\ & \text { ¹ } \\ & \text { IFCN = 111b; } \\ & \text { VDD < VREGMIN } \end{aligned}$	$\begin{aligned} & 24-0.5 \% \\ & 24-1.0 \% \end{aligned}$	24^{2} 24^{2}	$\begin{aligned} & 24+0.5 \% \\ & 24+1.0 \% \end{aligned}$	MHz
Oscillator Supply Current (from $V_{D D}$)	Internal Oscillator On OSCICN[7:6] = 11b	-	880	1300	$\mu \mathrm{A}$
Internal Oscillator Suspend OSCICN[7:6] = 00b ZTCEN = 1	$\begin{aligned} & \text { Temp }=25^{\circ} \mathrm{C} \\ & \text { Temp }=85^{\circ} \mathrm{C} \\ & \text { Temp }=125^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{aligned} & 300 \\ & 320 \\ & 400 \end{aligned}$	-	$\mu \mathrm{A}$
Wake-up Time From Suspend	OSCICN[7:6] = 00b	-	1	-	$\mu \mathrm{s}$
Power Supply Sensitivity	Constant Temperature	-	0.13	-	\%/V
Temperature Sensitivity ${ }^{3}$	$\begin{aligned} & \text { Constant Supply } \\ & \mathrm{TC}_{1} \\ & \mathrm{TC}_{2} \\ & \hline \end{aligned}$	-	$\begin{gathered} 5.0 \\ -0.65 \\ \hline \end{gathered}$	-	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2} \end{aligned}$

1. VREGMIN is the minimum output of the voltage regulator for its low setting (REGOCN: REGOMD = Ob). See Table 5.9, "Voltage Regulator Electrical Characteristics," on page 50
2. This is the average frequency across the operating temperature range
3. Use temperature coefficients TC_{1} and TC_{2} to calculate the new internal oscillator frequency using the following equation:

$$
f(T)=f 0 \times\left(1+T C_{1} \times(T-T 0)+T C_{2} \times(T-T 0)^{2}\right)
$$

where f0 is the internal oscillator frequency at $25^{\circ} \mathrm{C}$ and TO is $25^{\circ} \mathrm{C}$.

Table 5.7. Clock Multiplier Electrical Specifications
$V_{D D}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Frequency $\left(F^{\prime \mid} m_{i n}\right)$		2	-	-	MHz
Output Frequency		-	-	50	MHz
Power Supply Current		-	1.4	1.9	$\mu \mathrm{~A}$

Table 5.8. Crystal Oscillator Electrical Characteristics
$V_{D D}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Crystal Frequency		0.02		25	MHz
Crystal Drive Current	$\begin{aligned} & \mathrm{XOSCMD}=110 \mathrm{~b} \\ & \mathrm{XFCN}=000 \mathrm{~b} \\ & \mathrm{XFCN}=001 \mathrm{~b} \\ & \mathrm{XFCN}=010 \mathrm{~b} \\ & \mathrm{XFCN}=011 \mathrm{~b} \\ & \mathrm{XFCN}=100 \mathrm{~b} \\ & \mathrm{XFCN}=101 \mathrm{~b} \\ & X F C N=110 \mathrm{~b} \\ & X F C N=111 \mathrm{~b} \end{aligned}$	- - - - - - -	$\begin{gathered} 1.3 \\ 3.5 \\ 10 \\ 27 \\ 70 \\ 200 \\ 800 \\ 2.8 \end{gathered}$	- - - - - -	$\mu \mathrm{A}$ mA

Table 5.9. Voltage Regulator Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage Range ($\left.\mathrm{V}_{\text {REGIN }}\right)^{*}$		1.8*		5.25	V
Dropout Voltage (V_{DO})	Maximum Current $=50 \mathrm{~mA}$	-	10	-	$\mathrm{mV} / \mathrm{mA}$
Output Voltage (V_{DD})	2.1 V operation (REGOMD $=0$) 2.6 V operation (REGOMD = 1)	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 2.25 \\ & 2.75 \end{aligned}$	V
Bias Current		-	1	9	$\mu \mathrm{A}$
Dropout Indicator Detection Threshold	With respect to V_{DD}	-0.21	-	-0.02	V
Output Voltage Temperature Coefficient		-	0.04	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
VREG Settling Time	50 mA load with $\mathrm{V}_{\text {REGIN }}=2.4 \mathrm{~V}$ and $V_{D D}$ load capacitor of $4.8 \mu \mathrm{~F}$	-	450	-	$\mu \mathrm{s}$

C8051F58x/F59x

Table 5.10. ADCO Electrical Characteristics
VDDA $=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}, \mathrm{VREF}=1.5 \mathrm{~V}($ REFSL=0) unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
DC Accuracy					
Resolution		12			bits
Integral Nonlinearity		-	± 0.5	± 3	LSB
Differential Nonlinearity	Guaranteed Monotonic	-	± 0.5	± 1	LSB
Offset Error ${ }^{1}$		-10	-1.6	10	LSB
Full Scale Error		-20	-4.2	20	LSB
Offset Temperature Coefficient		-	-2	-	ppm $/{ }^{\circ} \mathrm{C}$
Dynamic performance (10 kHz sine-wave single-ended input, 1 dB below Full Scale, 200 ksps)					
Signal-to-Noise Plus Distortion		63	66	-	dB
Total Harmonic Distortion	Up to the 5th harmonic	-	81	-	dB
Spurious-Free Dynamic Range		-	-82	-	dB
Conversion Rate					
SAR Conversion Clock		-	-	3.6	MHz
Conversion Time in SAR Clocks ${ }^{2}$		13	-	-	clocks
Track/Hold Acquisition Time ${ }^{3}$	$\begin{aligned} & \text { VDDA } \geq 2.0 \mathrm{~V} \\ & \text { VDDA }<2.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	-	-	$\mu \mathrm{s}$
Throughput Rate ${ }^{4}$	VDDA $\geq 2.0 \mathrm{~V}$	-	-	200	ksps
Analog Inputs					
ADC Input Voltage Range ${ }^{5}$	$\begin{aligned} & \text { gain }=1.0(\text { default }) \\ & \text { gain }=n \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	VREF VREF / n	V
Absolute Pin Voltage with respect to GND		0	-	V_{10}	V
Sampling Capacitance		-	29	-	pF
Input Multiplexer Impedance		-	5	-	$\mathrm{k} \Omega$
Power Specifications					
Power Supply Current (VDDA supplied to ADC0)	Operating Mode, 200 ksps	-	1100	1500	$\mu \mathrm{A}$
Burst Mode (Idle)		-	1100	1500	$\mu \mathrm{A}$
Power-On Time		5	-	-	$\mu \mathrm{s}$
Power Supply Rejection Ratio		-	-60	-	mV/V
Notes: 1. Represents one standard deviation from the mean. Offset and full-scale error can be removed through calibration. 2. An additional 2 FCLK cycles are required to start and complete a conversion 3. Additional tracking time may be required depending on the output impedance connected to the ADC input. See Section "6.2.1. Settling Time Requirements" on page 59 4. An increase in tracking time will decrease the ADC throughput. 5. See Section "6.3. Selectable Gain" on page 60 for more information about the setting the gain.					

C8051F58x/F59x

Table 5.11. Temperature Sensor Electrical Characteristics
VDDA $=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Linearity		-	± 0.1	-	${ }^{\circ} \mathrm{C}$
Slope		-	3.33	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Slope Error*		-	100	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset	Temp $=0{ }^{\circ} \mathrm{C}$	-	856	-	mV
Offset Error*	Temp $=0{ }^{\circ} \mathrm{C}$	-	12	-	mV
Power Supply Current		-	22	-	$\mu \mathrm{A}$
Tracking Time	12	-	-	$\mu \mathrm{s}$	

*Note: Represents one standard deviation from the mean.

Table 5.12. Voltage Reference Electrical Characteristics
VDDA $=1.8$ to $2.75 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Internal Reference (REFBE = 1)					
Output Voltage	$25^{\circ} \mathrm{C}$ ambient (REFLV $=0$)	1.45	1.50	1.55	V
	$25^{\circ} \mathrm{C}$ ambient (REFLV $=1$), $\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}$	2.15	2.20	2.25	
VREF Short-Circuit Current		-	5	10	mA
VREF Temperature Coefficient		-	22	-	ppm $/{ }^{\circ} \mathrm{C}$
Power Consumption	Internal	-	30	50	$\mu \mathrm{A}$
Load Regulation	Load $=0$ to $200 \mu \mathrm{~A}$ to AGND	-	3	-	$\mu \mathrm{V} / \mu \mathrm{A}$
VREF Turn-on Time 1	$4.7 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ bypass	-	1.5	-	ms
VREF Turn-on Time 2	$0.1 \mu \mathrm{~F}$ bypass	-	46	-	$\mu \mathrm{s}$
Power Supply Rejection		-	1.2	-	mV / V
External Reference (REFBE = 0)					
Input Voltage Range		1.5	-	$\mathrm{V}_{\text {DDA }}$	V
Input Current	Sample Rate $=200 \mathrm{ksps} ;$ VREF $=1.5 \mathrm{~V}$	-	2.5	-	$\mu \mathrm{A}$
Power Specifications					
Reference Bias Generator	REFBE $=1$ or TEMPE $=1$	-	21	40	$\mu \mathrm{A}$

C8051F58x/F59x

Table 5.13. Comparator 0, 1 and 2 Electrical Characteristics
$\mathrm{VIO}=1.8$ to $5.25 \mathrm{~V},-40$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Response Time: Mode 0, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CPn+ - CPn- = 100 mV	-	390	-	ns
	$\mathrm{CPn}+$ - CPn- $=-100 \mathrm{mV}$	-	430	-	ns
Response Time: Mode 1, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	$\mathrm{CPn}+-\mathrm{CPn}-=100 \mathrm{mV}$	-	620	-	ns
	$\mathrm{CPn}+-\mathrm{CPn}-=-100 \mathrm{mV}$	-	690	-	ns
Response Time: Mode 2, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CPn+ - CPn- = 100 mV	-	770	-	ns
	CPO+ - CPO- = -100 mV	-	860	-	ns
Response Time: Mode 3, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CPn+ - CPn- = 100 mV	-	3500	-	ns
	$\mathrm{CPn}+$ - CPn- $=-100 \mathrm{mV}$	-	3900	-	ns
Common-Mode Rejection Ratio		-	1.5	8.9	mV / V
Positive Hysteresis 1	CPnHYP1-0 $=00$	-2	0	2	mV
Positive Hysteresis 2	CPnHYP1-0 $=01$	2	6	10	mV
Positive Hysteresis 3	CPnHYP1-0 $=10$	5	11	20	mV
Positive Hysteresis 4	CPnHYP1-0 $=11$	13	22	40	mV
Negative Hysteresis 1	CPnHYN1-0 $=00$	-2	0	2	mV
Negative Hysteresis 2	CPnHYN1-0 $=01$	2	6	10	mV
Negative Hysteresis 3	CPnHYN1-0 $=10$	5	11	20	mV
Negative Hysteresis 4	CPnHYN1-0 = 11	13	22	40	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	-	$\mathrm{V}_{10}+0.25$	V
Input Capacitance		-	8	-	pF
Input Offset Voltage		-10	-	+10	mV
Power Supply					
Power Supply Rejection		-	0.33	-	mV / V
Power-Up Time		-	3	-	$\mu \mathrm{s}$
Supply Current at DC	Mode 0	-	6.1	20	$\mu \mathrm{A}$
	Mode 1	-	3.2	10	$\mu \mathrm{A}$
	Mode 2	-	2.5	7.5	$\mu \mathrm{A}$
	Mode 3	-	0.5	3	$\mu \mathrm{A}$

6. 12-Bit ADC (ADCO)

The ADC0 on the C8051F58x/F59x consists of an analog multiplexer (AMUX0) with 35/28 total input selections and a 200 ksps , 12-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, programmable window detector, programmable attenuation (1:2), and hardware accumulator. The ADC0 subsystem has a special Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. The AMUXO, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shows in Figure 6.1. ADC0 inputs are single-ended and may be configured to measure P0.0P3.7, the Temperature Sensor output, $V_{D D}$, or GND with respect to GND. The voltage reference for ADC0 is selected as described in Section "7. Temperature Sensor" on page 74. ADC0 is enabled when the ADOEN bit in the ADCO Control register (ADCOCN) is set to logic 1, or when performing conversions in Burst Mode. ADC0 is in low power shutdown when ADOEN is logic 0 and no Burst Mode conversions are taking place.

Figure 6.1. ADCO Functional Block Diagram

SILICON LABS

C8051F58x/F59x

6.1. Modes of Operation

In a typical system, ADC0 is configured using the following steps:

1. If a gain adjustment is required, refer to Section "6.3. Selectable Gain" on page 60.
2. Choose the start of conversion source.
3. Choose Normal Mode or Burst Mode operation.
4. If Burst Mode, choose the ADC0 Idle Power State and set the Power-Up Time.
5. Choose the tracking mode. Note that Pre-Tracking Mode can only be used with Normal Mode.
6. Calculate the required settling time and set the post convert-start tracking time using the ADOTK bits.
7. Choose the repeat count.
8. Choose the output word justification (Right-Justified or Left-Justified).
9. Enable or disable the End of Conversion and Window Comparator Interrupts.

6.1.1. Starting a Conversion

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM1-0) in register ADC0CN. Conversions may be initiated by one of the following:

- Writing a 1 to the ADOBUSY bit of register ADCOCN
- A rising edge on the CNVSTR input signal (pin P0.1)
- A Timer 1 overflow (i.e., timed continuous conversions)
- A Timer 2 overflow (i.e., timed continuous conversions)

Writing a 1 to ADOBUSY provides software control of ADCO whereby conversions are performed "ondemand." During conversion, the ADOBUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of ADOBUSY triggers an interrupt (when enabled) and sets the ADCO interrupt flag (ADOINT). Note that when polling for ADC conversion completions, the ADC0 interrupt flag (ADOINT) should be used. Converted data is available in the ADC0 data registers, ADCOH:ADCOL, when bit ADOINT is logic 1. When Timer 2 overflows are used as the conversion source, Low Byte overflows are used if Timer2 is in 8 -bit mode; High byte overflows are used if Timer 2 is in 16 -bit mode. See Section "27. Timers" on page 285 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.1. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.1 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.1, set to 1 Bit1 in register P0SKIP. See Section "20. Port Input/Output" on page 188 for details on Port I/O configuration.

6.1.2. Tracking Modes

Each ADC0 conversion must be preceded by a minimum tracking time for the converted result to be accurate, as shown in Figure 6.1. ADC0 has three tracking modes: Pre-Tracking, Post-Tracking, and DualTracking. Pre-Tracking Mode provides the minimum delay between the convert start signal and end of conversion by tracking continuously before the convert start signal. This mode requires software management in order to meet minimum tracking requirements. In Post-Tracking Mode, a programmable tracking time starts after the convert start signal and is managed by hardware. Dual-Tracking Mode maximizes tracking time by tracking before and after the convert start signal. Figure 6.3 shows examples of the three tracking modes.

Pre-Tracking Mode is selected when ADOTM is set to 10b. Conversions are started immediately following the convert start signal. ADC0 is tracking continuously when not performing a conversion. Software must allow at least the minimum tracking time between each end of conversion and the next convert start signal. The minimum tracking time must also be met prior to the first convert start signal after ADCO is enabled.

C8051F58x/F59x

Post-Tracking Mode is selected when ADOTM is set to 01b. A programmable tracking time based on ADOTK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADCO does not track the input. Rather, the sampling capacitor remains disconnected from the input making the input pin high-impedance until the next convert start signal.

Dual-Tracking Mode is selected when ADOTM is set to 11b. A programmable tracking time based on ADOTK is started immediately following the convert start signal. Conversions are started after the programmed tracking time ends. After a conversion is complete, ADCO tracks continuously until the next conversion is started.

Depending on the output connected to the ADC input, additional tracking time, more than is specified in Table 5.10, may be required after changing MUX settings. See the settling time requirements described in Section "6.2.1. Settling Time Requirements" on page 59.

Figure 6.2. ADCO Tracking Modes

6.1.3. Timing

ADC0 has a maximum conversion speed specified in Table 5.10. ADCO is clocked from the ADC0 Subsystem Clock (FCLK). The source of FCLK is selected based on the BURSTEN bit. When BURSTEN is logic 0 , FCLK is derived from the current system clock. When BURSTEN is logic 1, FCLK is derived from the Burst Mode Oscillator, an independent clock source with a maximum frequency of 25 MHz .
When ADCO is performing a conversion, it requires a clock source that is typically slower than FCLK. The ADCO SAR conversion clock (SAR clock) is a divided version of FCLK. The divide ratio can be configured using the ADOSC bits in the ADCOCF register. The maximum SAR clock frequency is listed in Table 5.10.

ADCO can be in one of three states at any given time: tracking, converting, or idle. Tracking time depends on the tracking mode selected. For Pre-Tracking Mode, tracking is managed by software and ADCO starts conversions immediately following the convert start signal. For Post-Tracking and Dual-Tracking Modes, the tracking time after the convert start signal is equal to the value determined by the ADOTK bits plus 2 FCLK cycles. Tracking is immediately followed by a conversion. The ADCO conversion time is always 13 SAR clock cycles plus an additional 2 FCLK cycles to start and complete a conversion. Figure 6.4 shows timing diagrams for a conversion in Pre-Tracking Mode and tracking plus conversion in Post-Tracking or Dual-Tracking Mode. In this example, repeat count is set to one.

C8051F58x/F59x

Key
F Equal to one period of FCLK.

Sn Each Sn is equal to one period of the SAR clock.
Figure 6.3. 12-Bit ADC Tracking Mode Example

6.1.4. Burst Mode

Burst Mode is a power saving feature that allows ADCO to remain in a very low power state between conversions. When Burst Mode is enabled, ADC0 wakes from a very low power state, accumulates $1,4,8$, or 16 samples using an internal Burst Mode clock (approximately 25 MHz), then re-enters a very low power state. Since the Burst Mode clock is independent of the system clock, ADC0 can perform multiple conversions then enter a very low power state within a single system clock cycle, even if the system clock is slow (e.g., 32.768 kHz), or suspended.

Burst Mode is enabled by setting BURSTEN to logic 1. When in Burst Mode, ADOEN controls the ADC0 idle power state (i.e. the state ADCO enters when not tracking or performing conversions). If ADOEN is set to logic 0, ADCO is powered down after each burst. If ADOEN is set to logic 1, ADCO remains enabled after each burst. On each convert start signal, ADCO is awakened from its Idle Power State. If ADCO is powered down, it will automatically power up and wait the programmable Power-Up Time controlled by the ADOPWR bits. Otherwise, ADCO will start tracking and converting immediately. Figure 6.4 shows an example of Burst Mode Operation with a slow system clock and a repeat count of 4.

Important Note: When Burst Mode is enabled, only Post-Tracking and Dual-Tracking modes can be used.
When Burst Mode is enabled, a single convert start will initiate a number of conversions equal to the repeat count. When Burst Mode is disabled, a convert start is required to initiate each conversion. In both modes, the ADCO End of Conversion Interrupt Flag (ADOINT) will be set after "repeat count" conversions have
been accumulated. Similarly, the Window Comparator will not compare the result to the greater-than and less-than registers until "repeat count" conversions have been accumulated.

Note: When using Burst Mode, care must be taken to issue a convert start signal no faster than once every four SYSCLK periods. This includes external convert start signals.

T = Tracking
C = Converting

Convert Start
(CNVSTR)

T = Tracking
C = Converting
Figure 6.4. 12-Bit ADC Burst Mode Example With Repeat Count Set to 4

C8051F58x/F59x

6.2. Output Code Formatting

The registers ADCOH and ADCOL contain the high and low bytes of the output conversion code. When the repeat count is set to 1 , conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from 0 to $\mathrm{V}_{\text {REF }} \times 4095 / 4096$. Data can be right-justified or left-justified, depending on the setting of the ADOLJST bit (ADCOCN.2). Unused bits in the ADCOH and ADCOL registers are set to 0 . Example codes are shown below for both right-justified and left-justified data.

Input Voltage	Right-Justified ADCOH:ADCOL (ADOLJST = 0)	Left-Justified ADC0H:ADCOL (ADOLJST = 1)
VREF $\times 4095 / 4096$	$0 \times 0 F F F$	$0 \times F F F 0$
VREF $\times 2048 / 4096$	0×0800	0×8000
VREF $\times 2047 / 4096$	$0 \times 07 F F$	$0 \times 7 F F 0$
0	0×0000	0×0000

When the ADC0 Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4,8 , or 16 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the ADORPT bits in the ADCOCF register. The value must be right-justified (ADOLJST $=0$), and unused bits in the ADCOH and ADCOL registers are set to 0 . The following example shows right-justified codes for repeat counts greater than 1 . Notice that accumulating 2^{n} samples is equivalent to left-shifting by n bit positions when all samples returned from the ADC have the same value.

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count =16
$\mathrm{V}_{\text {REF }} \times 4095 / 4096$	$0 \times 3 F F \mathrm{C}$	$0 \times 7 F F 8$	$0 \times F F F 50$
$\mathrm{~V}_{\mathrm{REF}} \times 2048 / 4096$	0×2000	0×4000	0×8000
$\mathrm{~V}_{\text {REF }} \times 2047 / 4096$	$0 \times 1 \mathrm{FFC}$	$0 \times 3 F F 8$	$0 \times 7 \mathrm{FF} 0$
0	0×0000	0×0000	0×0000

6.2.1. Settling Time Requirements

A minimum tracking time is required before an accurate conversion is performed. This tracking time is determined by any series impedance, including the AMUXO resistance, the ADC0 sampling capacitance, and the accuracy required for the conversion.

Figure 6.5 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 6.1. When measuring the Temperature Sensor output, use the tracking time specified in Table 5.11 on page 52 . When measuring V_{DD} with respect to $\mathrm{GND}, R_{\text {TO- }}$ TAL reduces to $R_{\text {MUX }}$. See Table 5.10 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

$$
\mathrm{t}=\ln \left(\frac{2^{\mathrm{n}}}{\mathrm{SA}}\right) \times \mathrm{R}_{\text {TOTAL }} \mathrm{C}_{\text {SAMPLE }}
$$

Equation 6.1. ADCO Settling Time Requirements

Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within $1 / 4$ LSB) t is the required settling time in seconds
$R_{\text {TOTAL }}$ is the sum of the AMUXO resistance and any external source resistance.
n is the ADC resolution in bits (10).

Figure 6.5. ADCO Equivalent Input Circuit

6.3. Selectable Gain

ADC0 on the C8051F58x/F59x family of devices implements a selectable gain adjustment option. By writing a value to the gain adjust address range, the user can select gain values between 0 and 1.016.
For example, three analog sources to be measured have full-scale outputs of $5.0 \mathrm{~V}, 4.0 \mathrm{~V}$, and 3.0 V , respectively. Each ADC measurement would ideally use the full dynamic range of the ADC with an internal voltage reference of 1.5 V or 2.2 V (set to 2.2 V for this example). When selecting the first source (5.0 V full-scale), a gain value of 0.44 (5 V full scale $\times 0.44=2.2 \mathrm{~V}$ full scale) provides a full-scale signal of 2.2 V when the input signal is 5.0 V . Likewise, a gain value of 0.55 (4 V full scale $\times 0.55=2.2 \mathrm{~V}$ full scale) for the second source and 0.73 (3 V full scale $\times 0.73=2.2 \mathrm{~V}$ full scale) for the third source provide full-scale ADC0 measurements when the input signal is full-scale.

Additionally, some sensors or other input sources have small part-to-part variations that must be accounted for to achieve accurate results. In this case, the programmable gain value could be used as a calibration value to eliminate these part-to-part variations.

6.3.1. Calculating the Gain Value

The ADC0 selectable gain feature is controlled by 13 bits in three registers. ADCOGNH contains the 8 upper bits of the gain value and ADC0GNL contains the 4 lower bits of the gain value. The final GAINADD bit (ADCOGNA.O) controls an optional extra $1 / 64$ (0.016) of gain that can be added in addition to the ADCOGNH and ADCOGNL gain. The ADCOGNA. 0 bit is set to 1 after a power-on reset.

The equivalent gain for the ADC0GNH, ADC0GNL and ADC0GNA registers is as follows:

$$
\text { gain }=\left(\frac{\text { GAIN }}{4096}\right)+\text { GAINADD } \times\left(\frac{1}{64}\right)
$$

Equation 6.2. Equivalent Gain from the ADC0GNH and ADCOGNL Registers

Where:
GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4]
GAINADD is the value of the GAINADD bit (ADCOGNA.0)
gain is the equivalent gain value from 0 to 1.016

C8051F58x/F59x

For example, if $\mathrm{ADCOGNH}=0 \times F C, \mathrm{ADCOGNL}=0 \times 00$, and GAINADD $=1, \mathrm{GAIN}=0 \times F C 0=4032$, and the resulting equation is as follows:

$$
\text { GAIN }=\left(\frac{4032}{4096}\right)+1 \times\left(\frac{1}{64}\right)=0.984+0.016=1.0
$$

The table below equates values in the ADC0GNH, ADCOGNL, and ADC0GNA registers to the equivalent gain using this equation.

ADCOGNH Value	ADC0GNL Value	GAINADD Value	GAIN Value	Equivalent Gain
0xFC (default)	0×00 (default)	1 (default)	$4032+64$	1.0 (default)
0×7C	0×00	1	$1984+64$	0.5
$0 \times B C$	0×00	1	$3008+64$	0.75
0x3C	0×00	1	$960+64$	0.25
0xFF	$0 \times F 0$	0	$4095+0$	~ 1.0
0xFF	$0 \times F 0$	1	$4096+64$	1.016

For any desired gain value, the GAIN registers can be calculated by the following:

$$
\text { GAIN }=\left(\text { gain }- \text { GAINADD } \times\left(\frac{1}{64}\right)\right) \times 4096
$$

Equation 6.3. Calculating the ADCOGNH and ADCOGNL Values from the Desired Gain
Where:
GAIN is the 12-bit word of ADC0GNH[7:0] and ADC0GNL[7:4]
GAINADD is the value of the GAINADD bit (ADCOGNA.0)
gain is the equivalent gain value from 0 to 1.016
When calculating the value of GAIN to load into the ADCOGNH and ADCOGNL registers, the GAINADD bit can be turned on or off to reach a value closer to the desired gain value.

For example, the initial example in this section requires a gain of 0.44 to convert 5 V full scale to 2.2 V full scale. Using Equation 6.3:

$$
\text { GAIN }=\left(0.44-\text { GAINADD } \times\left(\frac{1}{64}\right)\right) \times 4096
$$

If GAINADD is set to 1 , this makes the equation:

$$
\text { GAIN }=\left(0.44-1 \times\left(\frac{1}{64}\right)\right) \times 4096=0.424 \times 4096=1738=0 \times 06 \mathrm{CA}
$$

The actual gain from setting GAINADD to 1 and ADC0GNH and ADC0GNL to 0x6CA is 0.4399 . A similar gain can be achieved if GAINADD is set to 0 with a different value for ADCOGNH and ADCOGNL.

6.3.2. Setting the Gain Value

The three programmable gain registers are accessed indirectly using the ADCOH and ADCOL registers when the GAINEN bit (ADCOCF.0) bit is set. ADCOH acts as the address register, and ADCOL is the data register. The programmable gain registers can only be written to and cannot be read. See Gain Register Definition 6.1, Gain Register Definition 6.2, and Gain Register Definition 6.3 for more information.

The gain is programmed using the following steps:

1. Set the GAINEN bit (ADCOCF.0)
2. Load the ADCOH with the ADCOGNH, ADCOGNL, or ADCOGNA address.
3. Load ADCOL with the desired value for the selected gain register.
4. Reset the GAINEN bit (ADCOCF.0)

Notes:

1. An ADC conversion should not be performed while the GAINEN bit is set.
2. Even with gain enabled, the maximum input voltage must be less than $\mathrm{V}_{\text {REGIN }}$ and the maximum voltage of the signal after gain must be less than or equal to $\mathrm{V}_{\text {REF }}$.
In code, changing the value to 0.44 gain from the previous example looks like:
```
// in 'C':
```

ADCOCF $=0 \times 01$;	// GAINEN = 1
ADCOH $=0 \times 04$;	// Load the ADC0GNH address
ADCOL $=0 \times 6 \mathrm{C}$;	// Load the upper byte of 0x6CA to ADC0GNH
ADCOH $=0 \times 07$;	// Load the ADC0GNL address
ADCOL $=0 \times A 0 ;$	// Load the lower nibble of 0x6CA to ADC0GNL
ADCOH $=0 \times 08$;	// Load the ADC0GNA address
ADC0L $=0 \times 01$;	// Set the GAINADD bit
ADC0CF \& $=\sim 0 \times 01$;	// GAINEN $=0$
; in assembly	
ORL ADC0CF,\#01H	; GAINEN = 1
MOV ADC0H,\#04H	; Load the ADC0GNH address
MOV ADC0L,\#06CH	; Load the upper byte of 0x6CA to ADC0GNH
MOV ADC0H,\#07H	; Load the ADC0GNL address
MOV ADCOL,\#OAOH	; Load the lower nibble of 0x6CA to ADC0GNL
MOV ADCOH,\#08H	; Load the ADC0GNA address
MOV ADC0L,\#01H	; Set the GAINADD bit
ANL ADCOCF,\#OFEH	; GAINEN = 0

C8051F58x/F59x

Gain Register Definition 6.1. ADC0GNH: ADCO Selectable Gain High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GAINH[7:0]							
Type	1	1	1	1	$\mathbf{1}$	1	0	0
Reset	1							

Indirect Address $=0 \times 04$;

Bit	Name	
$7: 0$	GAINH[7:0]	ADC0 Gain High Byte. See Section 6.3.1 for details on calculating the value for this register.
Note: This register is accessed indirectly; See Section 6.3.2 for details for writing this register.		

Gain Register Definition 6.2. ADCOGNL: ADC0 Selectable Gain Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GAINL[3:0]							
Type	Reserved	Reserved	Reserved	Reserved				
Reset	0	0	0	0	0	W	W	W

Indirect Address $=0 \times 07$;

Bit	Name	Function
$7: 4$	GAINL[3:0]	$\begin{array}{l}\text { ADC0 Gain Lower 4 Bits. } \\ \text { See Figure 6.3.1 for details for setting this register. }\end{array}$
		This register is only accessed indirectly through the ADCOH and ADCOL register.

C8051F58x/F59x

Gain Register Definition 6.3. ADC0GNA: ADCO Additional Selectable Gain

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Reserved	GAINADD						
Type	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	1

Indirect Address $=0 \times 08$;

Bit	Name	
$7: 1$	Reserved	Reserved. Must Write 0000000b.
0	GAINADD	ADCO Additional Gain Bit. Setting this bit add 1/64 (0.016) gain to the gain value in the ADCOGNH and ADC0GNL registers.

Note: This register is accessed indirectly; See Section 6.3.2 for details for writing this register.

C8051F58x/F59x

SFR Definition 6.4. ADCOCF: ADC0 Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADOSC[4:0]							
Type	R/W							
Reset	1	1	1	1	1	ADORPT[1:0]	GAINEN	

SFR Address $=0 \times B C$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 3$	ADOSC[4:0]	ADC0 SAR Conversion Clock Period Bits. SAR Conversion clock is derived from system clock by the following equation, where AD0SC refers to the 5-bit value held in bits AD0SC4-0. SAR Conversion clock requirements are given in the ADC specification table BURSTEN = 0: FCLK is the current system clock BURSTEN = 1: FLCLK is a maximum of 30 Mhz, independent of the current system clock..
$2: 1$	A0RPT[1:0]	ADOSC $=\frac{\text { FCLK }}{\text { ADCO Repeat Count. }}$ Controls the number of conversions taken and accumulated between ADC0 End of Conversion (ADCINT) and ADC0 Window Comparator (ADCWINT) interrupts. A con- vert start is required for each conversion unless Burst Mode is enabled. In Burst Mode, a single convert start can initiate multiple self-timed conversions. Results in both modes are accumulated in the ADCOH:ADC0L register. When AD0RPT1-0 are set to a value other than '00', the AD0LJST bit in the ADC0CN register must be set to '0' (right justified). 00: 1 conversion is performed. 01: 4 conversions are performed and accumulated. $10: 8$ conversions are performed and accumulated. $11: 16$ conversions are performed and accumulated.
0	GAINEN	Gain Enable Bit. Controls the gain programming. Refer to Section "6.3. Selectable Gain" on page 60 for information about using this bit.

SFR Definition 6.5. ADCOH: ADCO Data Word MSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{ADCOH}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times B E$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 0$	ADCOH[7:0]	ADC0 Data Word High-Order Bits. For ADOLJST $=0$ and ADORPT as follows: 00: Bits 3-0 are the upper 4 bits of the 12-bit result. Bits $7-4$ are 0000b. 01: Bits 4-0 are the upper 5 bits of the 14-bit result. Bits $7-5$ are 000b. 10: Bits 5-0 are the upper 6 bits of the 15-bit result. Bits $7-6$ are 00b. 11: Bits 7-0 are the upper 8 bits of the 16-bit result. For AD0LJST =1 (ADORPT must be 00): Bits $7-0$ are the most-significant bits of the ADC0 12-bit result.

SFR Definition 6.6. ADCOL: ADCO Data Word LSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADC0L[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times B D$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 0$	ADCOL[7:0]	ADCO Data Word Low-Order Bits. For ADOLJST $=0$: Bits 7-0 are the lower 8 bits of the ADC0 Accumulated Result. For ADOLJST $=1$ (ADORPT must be '00'): Bits 7-4 are the lower 4 bits of the 12-bit result. Bits 3-0 are 0000b.

C8051F58x/F59x

SFR Definition 6.7. ADCOCN: ADCO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADOEN	BURSTEN	ADOINT	ADOBUSY	ADOWINT	ADOLJST	AD0CM[1:0]	
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 x E 8$; SFR Page $=0 x 00$; Bit-Addressable

C8051F58x/F59x

SFR Definition 6.8. ADCOTK: ADCO Tracking Mode Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADOPWR[3:0]						ADOTM[1:0]	ADOTK[1:0]
Type	R/W							
Reset	1	1	1	1	1	1	1	R/W

SFR Address $=0 \times B A ;$ SFR Page $=0 \times 00$;

Bit	Name	Function
7:4	ADOPWR[3:0]	ADC0 Burst Power-Up Time. For BURSTEN = 0: ADC0 Power state controlled by ADOEN For BURSTEN = 1, ADOEN = 1: ADCO remains enabled and does not enter the very low power state For BURSTEN = 1, AD0EN = 0: ADC0 enters the very low power state and is enabled after each convert start signal. The Power-Up time is programmed accord- ing the following equation: ADOPWR $=\frac{\text { Tstartup }}{200 \mathrm{~ns}}-1$ or Tstartup = (ADOPWR + 1)200ns
3:2	ADOTM[1:0]	ADC0 Tracking Mode Enable Select Bits. 00: Reserved. 01: ADC0 is configured to Post-Tracking Mode. 10: ADC0 is configured to Pre-Tracking Mode. 11: ADC0 is configured to Dual Tracking Mode.
1:0	ADOTK[1:0]	ADC0 Post-Track Time. 00: Post-Tracking time is equal to 2 SAR clock cycles + 2 FCLK cycles. 01: Post-Tracking time is equal to 4 SAR clock cycles + 2 FCLK cycles. 10: Post-Tracking time is equal to 8 SAR clock cycles + 2 FCLK cycles. 11: Post-Tracking time is equal to 16 SAR clock cycles + 2 FCLK cycles.

6.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADOWINT in register ADCOCN) can also be used in polled mode. The ADC0 Greater-Than (ADCOGTH, ADCOGTL) and Less-Than (ADCOLTH, ADCOLTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADCO Greater-Than registers.

SFR Definition 6.9. ADC0GTH: ADC0 Greater-Than Data High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADCOGTH[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1	R/W						

SFR Address $=0 \times C 4 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	ADC0GTH[7:0]	ADC0 Greater-Than Data Word High-Order Bits.

SFR Definition 6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADC0GTL[7:0]							
Type		1	R/W					
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times C 3$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 0$	ADCOGTL[7:0]	ADC0 Greater-Than Data Word Low-Order Bits.

SFR Definition 6.11. ADCOLTH: ADCO Less-Than Data High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADCOLTH[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times C 6 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	ADCOLTH[7:0]	ADC0 Less-Than Data Word High-Order Bits.

SFR Definition 6.12. ADCOLTL: ADCO Less-Than Data Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADCOLTL[7:0]							
Type		0	0	0	0	0	0	0
Reset	0	0	0					

SFR Address = 0xC5; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	ADC0LTL[7:0]	ADC0 Less-Than Data Word Low-Order Bits.

6.4.1. Window Detector In Single-Ended Mode

Figure 6.6 shows two example window comparisons for right-justified data with ADCOLTH:ADCOLTL $=0 \times 0200$ (512d) and ADC0GTH:ADC0GTL $=0 x 0100$ (256d). The input voltage can range from 0 to $\mathrm{V}_{\text {REF }} \times(4095 / 4096)$ with respect to GND, and is represented by a 12 -bit unsigned integer value. The repeat count is set to one. In the left example, an ADOWINT interrupt will be generated if the ADCO conversion word (ADCOH:ADCOL) is within the range defined by ADCOGTH:ADCOGTL and ADCOLTH:ADCOLTL (if 0×0100 < ADCOH:ADCOL < 0x0200). In the right example, and ADOWINT interrupt will be generated if the ADCO conversion word is outside of the range defined by the ADCOGT and ADCOLT registers (if ADCOH:ADCOL < 0×0100 or ADCOH:ADCOL $>0 \times 0200$). Figure 6.7 shows an example using left-justified data with the same comparison values.

Figure 6.6. ADC Window Compare Example: Right-Justified Data

Figure 6.7. ADC Window Compare Example: Left-Justified Data

C8051F58x/F59x

6.5. ADCO Analog Multiplexer

ADCO includes an analog multiplexer to enable multiple analog input sources. Any of the following may be selected as an input: P0.0-P3.7, the on-chip temperature sensor, the core power supply (V_{DD}), or ground (GND). ADCO is single-ended and all signals measured are with respect to GND. The ADCO input channels are selected using the ADCOMX register as described in SFR Definition 6.13.

Figure 6.8. ADCO Multiplexer Block Diagram
Important Note About ADCO Input Configuration: Port pins selected as ADCO inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN. To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "20. Port Input/Output" on page 188 for more Port I/O configuration details.

SFR Definition 6.13. ADCOMX: ADCO Channel Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name			ADC0MX[5:0]						
Type	R	R	R / W						
Reset	0	0	1	1	1	1	1	1	

SFR Address $=0 \times B B ;$ SFR Page $=0 \times 00$;

Bit	Name	Function	
7:6	Unused	Read = 00b; Write = Don't Care.	
5:0	AMXOP[5:0]		
		AMUXO Positive Input Selection.	P0.0
		000001:	P0.1
		000010:	P0.2
		000011:	P0.3
		000100:	P0.4
		000101:	P0.5
		000110:	P0.6
		000111:	P0.7
		001000:	P1.0
		001001:	P1.1
		001010:	P1.2
		001011:	P1.3
		001100:	P1.4
		001101:	P1.5
		001110:	P1.6
		001111:	P1.7
		010000:	P2.0
		010001:	P2.1
		010010:	P2.2
		010011:	P2.3
		010100:	P2.4
		010101:	P2.5
		010110:	P2.6
		010111:	P2.7
		011000:	P3.0
		011001:	P3.1 (Available on 48-pin and 40-pin package devices)
		011010:	P3.2 (Available on 48-pin and 40-pin package devices)
		011011:	P3.3 (Available on 48-pin and 40-pin package devices)
		011100:	P3.4 (Available on 48-pin and 40-pin package devices)
		011101:	P3.5 (Available on 48-pin and 40-pin package devices)
		011110:	P3.6 (Available on 48-pin and 40-pin package devices)
		011111:	P3.7 (Available on 48-pin and 40-pin package devices)
		100000-101111:	Reserved
		110000:	Temp Sensor
		110001: 1	$V_{\text {DD }}$
		110010-111111:	GND

7. Temperature Sensor

An on-chip temperature sensor is included on the C8051F58x/F59x devices which can be directly accessed via the ADC multiplexer in single-ended configuration. To use the ADC to measure the temperature sensor, the ADC multiplexer channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 7.1. The output voltage ($\mathrm{V}_{\mathrm{TEMP}}$) is the positive ADC input is selected by bits ADOMX[4:0] in register ADCOMX. The TEMPE bit in register REFOCN enables/disables the temperature sensor, as described in SFR Definition 8.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.11 for the slope and offset parameters of the temperature sensor.

Temperature
Figure 7.1. Temperature Sensor Transfer Function

8. Voltage Reference

The Voltage reference multiplexer on the C8051F58x/F59x devices is configurable to use an externally connected voltage reference, the on-chip reference voltage generator routed to the VREF pin, or the V_{DD} power supply voltage (see Figure 8.1). The REFSL bit in the Reference Control register (REF0CN, SFR Definition 8.1) selects the reference source for the ADC. For an external source or the on-chip reference, REFSL should be set to 0 to select the VREF pin. To use $V_{D D}$ as the reference source, REFSL should be set to 1.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and internal oscillator. This bias is automatically enabled when any peripheral which requires it is enabled, and it does not need to be enabled manually. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN. The electrical specifications for the voltage reference circuit are given in Table 5.12.

The on-chip voltage reference circuit consists of a temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The output voltage is selectable between 1.5 V and 2.25 V . The on-chip voltage reference can be driven on the VREF pin by setting the REFBE bit in register REFOCN to a 1. The maximum load seen by the VREF pin must be less than $200 \mu \mathrm{~A}$ to GND. Bypass capacitors of $0.1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ are recommended from the VREF pin to GND. If the on-chip reference is not used, the REFBE bit should be cleared to 0 . Electrical specifications for the on-chip voltage reference are given in Table 5.12.

Important Note about the VREF Pin: When using either an external voltage reference or the on-chip reference circuitry, the VREF pin should be configured as an analog pin and skipped by the Digital Crossbar. Refer to Section "20. Port Input/Output" on page 188 for the location of the VREF pin, as well as details of how to configure the pin in analog mode and to be skipped by the crossbar.

Figure 8.1. Voltage Reference Functional Block Diagram

C8051F58x/F59x

SFR Definition 8.1. REFOCN: Reference Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE
Type	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times D 1$; SFR Page $=0 \times 00$

Bit	Name	Function
7:6	Unused	Read $=00 \mathrm{~b}$; Write $=$ don't care
5	ZTCEN	Zero Temperature Coefficient Bias Enable Bit. This bit must be set to 1 b before entering oscillator suspend mode. 0: ZeroTC Bias Generator automatically enabled when required. 1: ZeroTC Bias Generator forced on.
4	REFLV	Voltage Reference Output Level Select. This bit selects the output voltage level for the internal voltage reference 0 : Internal voltage reference set to 1.5 V . 1: Internal voltage reference set to 2.20 V .
3	REFSL	Voltage Reference Select. This bit selects the ADCs voltage reference. 0 : $V_{\text {REF }}$ pin used as voltage reference. 1: $V_{D D}$ used as voltage reference. If $V_{D D}$ is selected as the voltage reference and the ADC is enabled in the ADCOCN register, the PO.O/VREF pin cannot operate as a general purpose I/O pin in open-drain mode. With the above settings, this pin can operate in push-pull output mode or as an analog input.
2	TEMPE	Temperature Sensor Enable Bit. 0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.
1	BIASE	Internal Analog Bias Generator Enable Bit. 0: Internal Bias Generator off. 1: Internal Bias Generator on.
0	REFBE	On-chip Reference Buffer Enable Bit. 0: On-chip Reference Buffer off. 1: On-chip Reference Buffer on. Internal voltage reference driven on the $V_{\text {REF }}$ pin.

C8051F58x/F59x

9. Comparators

The C8051F58x/F59x devices include three on-chip programmable voltage Comparators. A block diagram of the comparators is shown in Figure 9.1, where " n " is the comparator number (0,1 , or 2). The three Comparators operate identically except that Comparator0 can also be used a reset source.

Each Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0, CP1, CP2), or an asynchronous "raw" output (CPOA, CP1A, CP2A). The asynchronous signal is available even when the system clock is not active. This allows the Comparators to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or push-pull (see Section "20.4. Port I/O Initialization" on page 195). Comparator0 may also be used as a reset source (see Section "17.5. Comparator0 Reset" on page 155).

The Comparator0 inputs are selected in the CPTOMX register (SFR Definition 9.7). The CMXOP1-CMXOPO bits select the Comparator0 positive input; the CMXON1-CMXONO bits select the Comparator0 negative input. The Comparator1 inputs are selected in the CPT1MX register (SFR Definition 9.8). The CMX1P1CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1NO bits select the Comparator1 negative input. The Comparator2 inputs are selected in the CPT2MX register (SFR Definition 9.9). The CMX2P1-CMX2P0 bits select the Comparator1 positive input; the CMX2N1-CMX2N0 bits select the Comparator2 negative input.
Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "20.1. Port I/O Modes of Operation" on page 190).

Figure 9.1. Comparator Functional Block Diagram

C8051F58x/F59x

Comparator outputs can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and the power supply to the comparator is turned off. See Section "20.3. Priority Crossbar Decoder" on page 192 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to $\left(\mathrm{V}_{\mathrm{DD}}\right)+0.25 \mathrm{~V}$ without damage or upset. The complete Comparator electrical specifications are given in Table 5.13.

The Comparator response time may be configured in software via the CPTnMD registers (see SFR Definition 9.2). Selecting a longer response time reduces the Comparator supply current. See Table 5.13 for complete timing and supply current requirements.

Figure 9.2. Comparator Hysteresis Plot
Comparator hysteresis is software-programmable via its Comparator Control register CPTnCN.
The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Figure 9.2, various levels of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see "14. Interrupts" .) The CPnFIF flag is set to 1 upon a Comparator fall-ing-edge, and the CPnRIF flag is set to 1 upon the Comparator rising-edge. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to 1 , and is disabled by clearing this bit to 0 .

C8051F58x/F59x

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

SFR Definition 9.1. CPTOCN: Comparator0 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CPOEN	CPOOUT	CPORIF	CPOFIF	CPOHYP[1:0]	CPOHYN[1:0]		
Type	R/W	R	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 9$; ; SFR Page $=0 \times 00$

Bit	Name	Function
7	CPOEN	Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled.
6	CP0OUT	Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0-. 1: Voltage on CP0+ > CP0-.
5	CPORIF	Comparator0 Rising-Edge Flag. Must be cleared by software. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred.
4	CPOFIF	Comparator0 Falling-Edge Flag. Must be cleared by software. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred.
$3: 2$	CPOHYP[1:0]	Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
1:0	CPOHYN[1:0]	Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.

C8051F58x/F59x

SFR Definition 9.2. CPTOMD: Comparator0 Mode Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			CPORIE	CPOFIE			CPOMD[1:0]	
Type	R	R	R / W	R / W	R	R	R / W	
Reset	0	0	0	0	0	0	1	0

SFR Address $=0 \times 9 B ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CPORIE	Comparator0 Rising-Edge Interrupt Enable. 0: Comparator0 Rising-edge interrupt disabled. 1: Comparator0 Rising-edge interrupt enabled.
4	CP0FIE	Comparator0 Falling-Edge Interrupt Enable. 0: Comparator0 Falling-edge interrupt disabled. 1: Comparator0 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP0MD[1:0]	Comparator0 Mode Select. These bits affect the response time and power consumption for Comparator0. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 1: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

SFR Definition 9.3. CPT1CN: Comparator1 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1HYP[1:0]	CP1HYN[1:0]		
Type	R/W	R	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9D; SFR Page $=0 \times 00$

Bit	Name	Function
7	CP1EN	Comparator1 Enable Bit. 0: Comparator1 Disabled. 1: Comparator1 Enabled.
6	CP1OUT	Comparator1 Output State Flag. 0: Voltage on CP1+ < CP1-. 1: Voltage on CP1+ > CP1-.
5	CP1RIF	Comparator1 Rising-Edge Flag. Must be cleared by software. 0: No Comparator1 Rising Edge has occurred since this flag was last cleared. 1: Comparator1 Rising Edge has occurred.
4	CP1FIF	Comparator1 Falling-Edge Flag. Must be cleared by software. 0: No Comparator1 Falling-Edge has occurred since this flag was last cleared. 1: Comparator1 Falling-Edge has occurred.
$3: 2$	CP1HYP[1:0]	Comparator1 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
$1: 0$	CP1HYN[1:0]	Comparator1 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.

C8051F58x/F59x

SFR Definition 9.4. CPT1MD: Comparator1 Mode Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			CP1RIE	CP1FIE			CP1MD[1:0]	
Type	R	R	R / W	R / W	R	R	R / W	
Reset	0	0	0	0	0	0	1	0

SFR Address $=0 \times 9 \mathrm{E}$; SFR Page $=0 \times 00$

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CP1RIE	Comparator1 Rising-Edge Interrupt Enable. 0: Comparator1 Rising-edge interrupt disabled. 1: Comparator1 Rising-edge interrupt enabled.
4	CP1FIE	Comparator1 Falling-Edge Interrupt Enable. 0: Comparator1 Falling-edge interrupt disabled. 1: Comparator1 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP1MD[1:0]	Comparator1 Mode Select. These bits affect the response time and power consumption for Comparator1. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 1: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

SFR Definition 9.5. CPT2CN: Comparator2 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CP2EN	CP2OUT	CP2RIF	CP2FIF	CP2HYP[1:0]	CP2HYN[1:0]		
Type	R/W	R	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 9 A$; SFR Page $=0 \times 10$

Bit	Name	Function
7	CP2EN	Comparator2 Enable Bit. 0: Comparator2 Disabled. 1: Comparator2 Enabled.
6	CP2OUT	Comparator2 Output State Flag. 0: Voltage on CP2+ < CP2-. 1: Voltage on CP2+ > CP2-.
5	CP2RIF	Comparator2 Rising-Edge Flag. Must be cleared by software. 0: No Comparator2 Rising Edge has occurred since this flag was last cleared. 1: Comparator2 Rising Edge has occurred.
4	CP2FIF	Comparator2 Falling-Edge Flag. Must be cleared by software. 0: No Comparator2 Falling-Edge has occurred since this flag was last cleared. 1: Comparator2 Falling-Edge has occurred.
$3: 2$	CP2HYP[1:0]	Comparator2 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
1:0	CP2HYN[1:0]	Comparator2 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.

C8051F58x/F59x

SFR Definition 9.6. CPT2MD: Comparator2 Mode Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			CP2RIE	CP2FIE			CP2MD[1:0]	
Type	R	R	R / W	R / W	R	R	R / W	
Reset	0	0	0	0	0	0	1	0

SFR Address $=0 \times 9 B ;$ SFR Page $=0 \times 10$

Bit	Name	Function
7:6	Unused	Read = 00b, Write = Don't Care.
5	CP2RIE	Comparator2 Rising-Edge Interrupt Enable. 0: Comparator2 Rising-edge interrupt disabled. 1: Comparator2 Rising-edge interrupt enabled.
4	CP2FIE	Comparator2 Falling-Edge Interrupt Enable. 0: Comparator2 Falling-edge interrupt disabled. 1: Comparator2 Falling-edge interrupt enabled.
3:2	Unused	Read = 00b, Write = don't care.
1:0	CP2MD[1:0]	Comparator2 Mode Select. These bits affect the response time and power consumption for Comparator2. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 1: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

9.1. Comparator Multiplexer

C8051F58x/F59x devices include an analog input multiplexer for each of the comparators to connect Port I/O pins to the comparator inputs. The Comparator0 inputs are selected in the CPTOMX register (SFR Definition 9.7). The CMXOP3-CMXOPO bits select the Comparator0 positive input; the CMXON3-CMXONO bits select the Comparator0 negative input. Similarly, the Comparator1 inputs are selected in the CPT1MX register using the CMX1P3-CMX1P0 bits and CMX1N3-CMX1N0 bits, and the Comparator2 inputs are selected in the CPT2MX register using the CMX2P3-CMX2P0 bits and CMX2N3-CMX2N0 bits. The same pins are available to both multiplexers at the same time and can be used by all comparators simultaneously.

Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "20.6. Special Function Registers for Accessing and Configuring Port I/O" on page 204).

Figure 9.3. Comparator Input Multiplexer Block Diagram

SFR Definition 9.7. CPTOMX: Comparator0 MUX Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{CMXON}[3: 0]$							
Type	R / W							
Reset	0	1	1	1	0	1	1	1

SFR Address $=0 \times 9 \mathrm{C}$; SFR Page $=0 \times 00$

Bit	Name	Function
7:4	CMXON[3:0]	Comparator0 Negative Input MUX Selection.
3:0	CMXOP[3:0]	Comparator0 Positive Input MUX Selection.

SFR Definition 9.8. CPT1MX: Comparator1 MUX Selection

Bit	7	6	5	4	3	2	1	0
Name	CMX1N[3:0]				CMX1P[3:0]			
Type	R/W				R/W			
Reset	0	1	1	1	0	1	1	1

SFR Address $=0 \times 9 F ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:4	CMX1N[3:0]	Comparator1 Negative Input MUX Selection.
3:0	CMX1P[3:0]	Comparator1 Positive Input MUX Selection.

SFR Definition 9.9. CPT2MX: Comparator2 MUX Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$			
Name	$\mathrm{CMX2N}[3: 0]$							$\mathrm{CM} \times 2 \mathrm{P}[3: 0]$			
Type	R / W										
Reset	0	1	1	1	0	1	1	1			

SFR Address $=0 \times 9 \mathrm{C} ;$ SFR Page $=0 \times 10$

Bit	Name	Function
7:4	CMX2N[3:0]	Comparator2 Negative Input MUX Selection. $0000:$ P 0.1 $0001:$ P 0.3 0010: P 0.5 0011: P 0.7 $0100:$ P 1.1 0101: P 1.3 $0110:$ P 1.5 $0111:$ P 1.7 1000: P 2.1 $1001:$ P 2.3 $1010:$ P 2.5 1011: P 2.7 1100-1111: None
3:0	CMX2P[3:0]	Comparator2 Positive Input MUX Selection. 0000: P 0.0 $0001:$ P 0.2 $0010:$ P 0.4 $0011:$ P 0.6 $0100:$ P 1.0 $0101:$ P 1.2 $0110:$ P 1.4 $0111:$ P 1.6 $1000:$ P 2.0 $1001:$ P 2.2 $1010:$ P 2.4 $1011:$ P 2.6 $1100-1111:$ None

C8051F58x/F59x

10. Voltage Regulator (REG0)

C8051F58x/F59x devices include an on-chip low dropout voltage regulator (REG0). The input to REG0 at the $\mathrm{V}_{\text {REGIN }}$ pin can be as high as 5.25 V . The output can be selected by software to 2.1 V or 2.6 V . When enabled, the output of REG0 appears on the $\mathrm{V}_{\text {DD }}$ pin, powers the microcontroller core, and can be used to power external devices. On reset, REGO is enabled and can be disabled by software.

The Voltage regulator can generate an interrupt (if enabled by EREG0, EIE2.0) that is triggered whenever the $\mathrm{V}_{\text {REGIN }}$ input voltage drops below the dropout threshold voltage. This dropout interrupt has no pending flag and the recommended procedure to use it is as follows:

1. Wait enough time to ensure the $\mathrm{V}_{\text {REGIN }}$ input voltage is stable
2. Enable the dropout interrupt (EREG0, EIE2.0) and select the proper priority (PREG0, EIP2.0)
3. If triggered, inside the interrupt disable it (clear EREG0, EIE2.0), execute all procedures necessary to protect your application (put it in a safe mode and leave the interrupt now disabled.
4. In the main application, now running in the safe mode, regularly checks the DROPOUT bit (REGOCN.0). Once it is cleared by the regulator hardware the application can enable the interrupt again (EREG0, EIE1.6) and return to the normal mode operation.

The input $\left(\mathrm{V}_{\text {REGIN }}\right)$ and output $\left(\mathrm{V}_{\mathrm{DD}}\right)$ of the voltage regulator should both be bypassed with a large capacitor $(4.7 \mu \mathrm{~F}+0.1 \mu \mathrm{~F})$ to ground as shown in Figure 10.1 below. This capacitor will eliminate power spikes and provide any immediate power required by the microcontroller. The settling time associated with the voltage regulator is shown in Table 5.9 on page 50.

Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset event. The output of the un-calibrated internal regulator could be below the high threshold setting of the VDD Monitor. If this is the case, and the MCU receives a non-power on reset (POR) when the VDD Monitor is set to the high threshold setting, the MCU will remain in reset until a POR occurs (i.e. VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold setting, which is guaranteed to be below the un-calibrated output of the internal regulator. The device will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly recommends that the V_{DD} Monitor is always left in the low threshold setting (i.e. default value upon POR). If the system contains routines to modify flash contents, follow the recommendations in "Reprogramming the VDD Monitor High Threshold" on page 138.

Figure 10.1. External Capacitors for Voltage Regulator Input/Output—Regulator Enabled

C8051F58x/F59x

If the internal voltage regulator is not used, the VREGIN input should be tied to VDD, as shown in Figure 10.2.

Figure 10.2. External Capacitors for Voltage Regulator Input/Output—Regulator Disabled

SFR Definition 10.1. REG0CN: Regulator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	REGDIS	Reserved		REGOMD				DROPOUT
Type	R/W	R/W	R	R / W	R	R	R	R
Reset	0	1	0	1	0	0	0	0

SFR Address $=0 \times C 9$; SFR Page $=0 \times 00$

Bit	Name	
7	REGDIS	Voltage Regulator Disable Bit. 0: Voltage Regulator Enabled 1: Voltage Regulator Disabled
6	Reserved	Read = 1b; Must Write 1b.
5	Unused	Read = 0b; Write = Don't Care.
4	REG0MD	Voltage Regulator Mode Select Bit. 0: Voltage Regulator Output is 2.1V. $1:$ Voltage Regulator Output is 2.6V.
$3: 1$	Unused	Read = 000b. Write = Don't Care.
0	DROPOUT	Voltage Regulator Dropout Indicator. 0: Voltage Regulator is not in dropout $1:$ Voltage Regulator is in or near dropout.

11. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set; standard $803 x / 805 x$ assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51 also includes on-chip debug hardware (see description in "C2 Interface" on page 351), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 11.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 50 MIPS Peak Throughput with 50 MHz Clock
- 0 to 50 MHz Clock Frequency

■ Extended Interrupt Handler

- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

11.1. Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz . By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

Figure 11.1. CIP-51 Block Diagram
With the CIP-51's maximum system clock at 50 MHz , it has a peak throughput of 50 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in "C2 Interface" on page 351.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

C8051F58x/F59x

11.2. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51 ${ }^{\text {TM }}$ instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51 ${ }^{\text {TM }}$ counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

11.2.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 11.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

C8051F58x/F59x

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled)

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations			
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, \#data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, \#data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, \#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations			
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, \#data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, \#data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, \#data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, \#data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2

Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and the FLRT setting (SFR Definition 15.3).

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled) (Continued)

Mnemonic	Description	Bytes	Clock Cycles
XRL A, \#data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, \#data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	2
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, \#data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, \#data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, \#data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, \#data	Move immediate to indirect RAM	2	2
MOV DPTR, \#data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	4-7*
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2

Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and the FLRT setting (SFR Definition 15.3).

C8051F58x/F59x

Table 11.1. CIP-51 Instruction Set Summary (Prefetch-Enabled) (Continued)

Mnemonic	Description	Bytes	Clock Cycles
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/(4-6) ${ }^{\text {² }}$
JNC rel	Jump if Carry is not set	2	2/(4-6)*
JB bit, rel	Jump if direct bit is set	3	3/(5-7)*
JNB bit, rel	Jump if direct bit is not set	3	3/(5-7)*
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/(5-7)*
Program Branching			
ACALL addr11	Absolute subroutine call	2	4-6*
LCALL addr16	Long subroutine call	3	5-7*
RET	Return from subroutine	1	6-8*
RETI	Return from interrupt	1	6-8*
AJMP addr11	Absolute jump	2	4-6*
LJMP addr16	Long jump	3	5-7*
SJMP rel	Short jump (relative address)	2	4-6*
JMP @A+DPTR	Jump indirect relative to DPTR	1	3-5*
JZ rel	Jump if A equals zero	2	2/(4-6)*
JNZ rel	Jump if A does not equal zero	2	2/(4-6)*
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	4/(6-8)*
CJNE A, \#data, rel	Compare immediate to A and jump if not equal	3	3/(6-8)*
CJNE Rn, \#data, rel	Compare immediate to Register and jump if not equal	3	3/(5-7)*
CJNE @Ri, \#data, rel	Compare immediate to indirect and jump if not equal	3	4/(6-8)*
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/(4-6)*
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/(5-7)*
NOP	No operation	1	1

Note: Certain instructions take a variable number of clock cycles to execute depending on instruction alignment and the FLRT setting (SFR Definition 15.3).

Notes on Registers, Operands and Addressing Modes:
Rn—Register R0-R7 of the currently selected register bank.
@Ri—Data RAM location addressed indirectly through R0 or R1.
rel-8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.
direct-8-bit internal data location's address. This could be a direct-access Data RAM location (0x00$0 \times 7 F$) or an SFR ($0 \times 80-0 \times F F$).
\#data-8-bit constant
\#data16-16-bit constant
bit—Direct-accessed bit in Data RAM or SFR
addr11—11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.
addr16-16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.

11.3. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0 , selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

C8051F58x/F59x

SFR Definition 11.1. DPL: Data Pointer Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{DPL}[7: 0]$							
Type	0	0	R/W					
Reset	0	0	0	0	0	0	0	

SFR Address $=0 \times 82$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 0$	DPL[7:0]	Data Pointer Low. The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indi- rectly addressed Flash memory or XRAM.

SFR Definition 11.2. DPH: Data Pointer High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{DPH}[7: 0]$							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x83; SFR Page = All Pages

Bit	Name	Function
$7: 0$	DPH[7:0]	Data Pointer High. The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indi- rectly addressed Flash memory or XRAM.

SFR Definition 11.3. SP: Stack Pointer

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{SP}[7: 0]$							
Type	0	0	0	0	0	1	1	1
Reset	0							

SFR Address $=0 \times 81$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 0$	SP[7:0]	Stack Pointer. The Stack Pointer holds the location of the top of the stack. The stack pointer is incre- mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 11.4. ACC: Accumulator

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ACC $[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times E 0$; SFR Page $=$ All Pages; Bit-Addressable

Bit	Name	Function
$7: 0$	ACC[7:0]	Accumulator. This register is the accumulator for arithmetic operations.

SFR Definition 11.5. B: B Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{B}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0	0						

SFR Address $=0 x F 0 ;$ SFR Page $=$ All Pages; Bit-Addressable

Bit	Name	Function
$7: 0$	$\mathrm{~B}[7: 0]$	B Register. This register serves as a second accumulator for certain arithmetic operations.

C8051F58x/F59x

SFR Definition 11.6. PSW: Program Status Word

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CY	AC	F 0	$\mathrm{RS}[1: 0]$		OV	F 1	PARITY
Type	R / W	R / W	R / W	R / W		R / W	R / W	R
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7	CY	Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor- row (subtraction). It is cleared to logic 0 by all other arithmetic operations.
6	AC	Auxiliary Carry Flag. This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith- metic operations.
5	F0	User Flag 0. This is a bit-addressable, general purpose flag for use under software control.
$4: 3$	RS[1:0]	Register Bank Select. These bits select which register bank is used during register accesses. 00: Bank 0, Addresses 0x00-0x07 01: Bank 1, Addresses 0x08-0x0F 10: Bank 2, Addresses 0x10-0x17 11: Bank 3, Addresses 0x18-0x1F
2	OV	Overflow Flag. This bit is set to 1 under the following circumstances: - An ADD, ADDC, or SUBB instruction causes a sign-change overflow. - A MUL instruction results in an overflow (result is greater than 255). - A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
1	F1	User Flag 1. This is a bit-addressable, general purpose flag for use under software control.
0	PARITY	Parity Flag. This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.

C8051F58x/F59x

11.4. Serial Number Special Function Registers (SFRs)

The C8051F58x/F59x devices include four SFRs, SN0 through SN3, that are pre-programmed during production with a unique, 32 -bit serial number. The serial number provides a unique identification number for each device and can be read from the application firmware. If the serial number is not used in the application, these four registers can be used as general purpose SFRs.

SFR Definition 11.7. SNn: Serial Number n

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SERNUMn[7:0]							
Type	R/W							
Reset	Varies—Unique 32-bit value							

SFR Addresses: SN0 = 0xF9; SN1 = 0xFA; SN2 = 0xFB; SN3 = 0xFC; SFR Page = 0x0F;

Bit	Name	Function
7:0	SERNUMn[7:0]	Serial Number Bits. The four serial number registers form a 32-bit serial number, with SN3 as the most significant byte and SN0 as the least significant byte.

12. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization is shown in Figure 12.1

Figure 12.1. C8051F58x/F59x Memory Map

12.1. Program Memory

The C8051F580/1/2/3/8/9 devices have a 128 kB program memory space and the C8051F584/5/6/7F590/1 devices have 96 kB program memory space. The MCU implements this program memory space as in-system re-programmable Flash memory in either four or three 32 kB code banks. A common code bank (Bank 0) of 32 kB is always accessible from addresses 0×0000 to $0 \times 7 F F F$. The three or two upper code banks (Bank 1, Bank 2, and Bank 3) are each mapped to addresses 0x8000 to 0xFFFF, depending on the selection of bits in the PSBANK register, as described in SFR Definition 12.1.

C8051F58x/F59x

The IFBANK bits select which of the upper banks are used for code execution, while the COBANK bits select the bank to be used for direct writes and reads of the Flash memory. On the C8051F580/1/2/3/8/9 devices, the upper 1024 bytes of the memory in Bank 3 (0xFC00 to 0xFFFF) are reserved and are not available for user program or data storage.

Figure 12.2 show the Flash as a consecutive block of address space using a 17-bit address to illustrate the location of the lock byte, lock byte page and reserved space.

C8051F580/1/2/3/8/9

Figure 12.2. Flash Program Memory Map

Internal Address	IFBANK = 0	IFBANK = 1	IFBANK = 2	IFBANK = 3
0xFFFF				
	Bank 0	Bank 1	Bank 2	Bank 3
0x8000				
0x7FFF				
		Bank 0	Bank 0	Bank 0

Figure 12.3. Address Memory Map for Instruction Fetches

SFR Definition 12.1. PSBANK: Program Space Bank Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			COBANK[1:0]				IFBANK[1:0]	
Type	R/W							
Reset	0	0	0	1	0	0	0	1

SFR Address $=0 x F 5$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 6$	Reserved	Read = 00b, Must Write = 00b.
$5: 4$	COBANK[1:0]	Constant Operations Bank Select. These bits select which Flash bank is targeted during constant operations (MOVC and Flash MOVX) involving address 0x8000 to 0xFFFF. 00: Constant Operations Target Bank 0 (note that Bank 0 is also mapped between 0x0000 to 0x7FFF). 01: Constant operations target Bank 1. $10:$ Constant operations target Bank 2. $11:$ Constant operations target Bank 3.
$3: 2$	Reserved	Read = 00b, Must Write = 00b.
$1: 0$	IFBANK[1:0]	Instruction Fetch Operations Bank Select. These bits select which Flash bank is used for instruction fetches involving address $0 x 8000$ to 0xFFFF. These bits can only be changed from code in Bank 0. 00: Instructions fetch from Bank 0 (note that Bank 0 is also mapped between $0 x 0000$ to 0x7FFF). 01: Instructions fetch from Bank 1. $10:$ Instructions fetch from Bank 2. $11:$ Instructions fetch from Bank 3.

Note: COBANK[1:0] and IFBANK[1:0] should not be set to select Bank 3 (11b) on the C8051F584/5/6/7-F590/1 devices.

12.1.1. MOVX Instruction and Program Memory

The MOVX instruction in an 8051 device is typically used to access external data memory. On the C8051F58x/F59x devices, the MOVX instruction is normally used to read and write on-chip XRAM, but can be re-configured to write and erase on-chip Flash memory space. MOVC instructions are always used to read Flash memory, while MOVX write instructions are used to erase and write Flash. This Flash access feature provides a mechanism for the C8051F58x/F59x to update program code and use the program memory space for non-volatile data storage. Refer to Section "15. Flash Memory" on page 138 for further details.

12.2. Data Memory

The C8051F58x/F59x devices include 8448 bytes of RAM data memory. 256 bytes of this memory is mapped into the internal RAM space of the 8051 . The other 8192 bytes of this memory is on-chip "external" memory. The data memory map is shown in Figure 12.1 for reference.

C8051F58x/F59x

12.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0×00 through $0 x F F$. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0×00 through $0 \times 1 F$ are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0×20 through $0 \times 2 F$, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 12.1 illustrates the data memory organization of the C8051F58x/F59x.

12.2.1.1. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 11.6). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

12.2.1.2. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from $0 x 00$ to 0x7F. Bit 0 of the byte at $0 x 20$ has bit address $0 x 00$ while bit7 of the byte at $0 x 20$ has bit address 0×07. Bit 7 of the byte at $0 \times 2 \mathrm{~F}$ has bit address $0 \times 7 \mathrm{~F}$. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51 ${ }^{\text {TM }}$ assembly language allows an alternate notation for bit addressing of the form XX.B where $X X$ is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h
moves the Boolean value at 0×13 (bit 3 of the byte at location 0×22) into the Carry flag.

12.2.1.3. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location $0 x 07$. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

13. Special Function Registers

The direct-access data memory locations from 0×80 to $0 x F F$ constitute the special function registers (SFRs). The SFRs provide control and data exchange with the C8051F58x/F59x's resources and peripherals. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the C8051F58x/F59x. This allows the addition of new functionality while retaining compatibility with the MCS$51^{\text {TM }}$ instruction set. Table 13.3 lists the SFRs implemented in the C8051F58x/F59x device family.
The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0×80 to $0 \times F F$. SFRs with addresses ending in 0×0 or 0×8 (e.g., P0, TCON, SCONO, IE, etc.) are bitaddressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing unoccupied addresses in the SFR space will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 13.3, for a detailed description of each register.

13.1. SFR Paging

The CIP-51 features SFR paging, allowing the device to map many SFRs into the 0x80 to 0xFF memory address space. The SFR memory space has 256 pages. In this way, each memory location from 0×80 to $0 x F F$ can access up to 256 SFRs. The C8051F58x/F59x family of devices utilizes three SFR pages: 0x0, 0xC, and 0xF. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE (see SFR Definition 11.3). The procedure for reading and writing an SFR is as follows:

1. Select the appropriate SFR page number using the SFRPAGE register.
2. Use direct accessing mode to read or write the special function register (MOV instruction).

13.2. Interrupts and SFR Paging

When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the burden of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via a three-byte SFR Page Stack. The top byte of the stack is SFRPAGE, the current SFR Page. The second byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST. Upon an interrupt, the current SFRPAGE value is pushed to the SFRNEXT byte, and the value of SFRNEXT is pushed to SFRLAST. Hardware then loads SFRPAGE with the SFR Page containing the flag bit associated with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of SFRNEXT returning to the SFRPAGE register, thereby restoring the SFR page context without software intervention. The value in SFRLAST (0×00 if there is no SFR Page value in the bottom of the stack) of the stack is placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFRLAST may be modified during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the RETI instruction (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or pop of the stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.
On the C8051F58x/F59x devices, vectoring to an interrupt will switch SFRPAGE to page 0x00, except for the CANO interrupt which will switch SFRPAGE to page 0x0C, and the UART1, PCA1, Comparator2, and Timer $4 / 5$ interrupts will switch SFRPAGE to 0×10.

Figure 13.1. SFR Page Stack
Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFROCN). This function defaults to "enabled" upon reset. In this way, the autoswitching function will be enabled unless disabled in software.

A summary of the SFR locations (address and SFR page) are provided in Table 13.3 in the form of an SFR memory map. Each memory location in the map has an SFR page row, denoting the page in which that SFR resides. Certain SFRs are accessible from ALL SFR pages, and are denoted by the "(ALL PAGES)" designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the "(ALL PAGES)" designation, indicating these SFRs are accessible from all SFR pages regardless of the SFRPAGE register value.

13.3. SFR Page Stack Example

The following is an example that shows the operation of the SFR Page Stack during interrupts. In this example, the SFR Control register is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51 is executing in-line code that is writing values to SPI Data Register (SFR "SPIODAT", located at address 0xA3 on SFR Page 0x00). The device is also using the CAN peripheral (CANO) and the Programmable Counter Array (PCAO) peripheral to generate a PWM output. The PCA is timing a critical control function in its interrupt service round so its associated ISR that is set to low priority. At this point, the SFR page is set to access the SPIODAT SFR (SFRPAGE $=0 \times 00$). See Figure 13.2.

SFR Page
Stack SFR's

Figure 13.2. SFR Page Stack While Using SFR Page 0x0 To Access SPIODAT

While CIP-51 executes in-line code (writing values to SPIODAT in this example), the CANO Interrupt occurs. The CIP-51 vectors to the CANO ISR and pushes the current SFR Page value (SFR Page 0x00) into SFRNEXT in the SFR Page Stack. The SFR page needed to access CAN's SFRs is then automatically placed in the SFRPAGE register (SFR Page 0x0C). SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the CANO SFRs. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the CANO ISR to access SFRs that are not on SFR Page 0x0C. See Figure 13.3.

Figure 13.3. SFR Page Stack After CANO Interrupt Occurs
While in the CANO ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority interrupt, while the CANO interrupt is configured as a low priority interrupt. Thus, the CIP-51 will now vector to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to access the PCA's special function registers into the SFRPAGE register, SFR Page 0×00. The value that was in the SFRPAGE register before the PCA interrupt (SFR Page 0x0C for CANO) is pushed down the stack into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this case SFR Page 0×00 for SPIODAT) is pushed down to the SFRLAST register, the "bottom" of the stack. Note that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten. See Figure 13.4.

Figure 13.4. SFR Page Stack Upon PCA Interrupt Occurring During a CANO ISR
On exit from the PCA interrupt service routine, the CIP-51 will return to the CANO ISR. On execution of the RETI instruction, SFR Page $0 x 00$ used to access the PCA registers will be automatically popped off of the SFR Page Stack, and the contents of the SFRNEXT register will be moved to the SFRPAGE register. Software in the CANO ISR can continue to access SFRs as it did prior to the PCA interrupt. Likewise, the contents of SFRLAST are moved to the SFRNEXT register. Recall this was the SFR Page value 0x00 being used to access SPIODAT before the CANO interrupt occurred. See Figure 13.5.

Figure 13.5. SFR Page Stack Upon Return From PCA Interrupt
On the execution of the RETI instruction in the CANO ISR, the value in SFRPAGE register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the SPIODAT register as it did prior to the interrupts occurring. See Figure 13.6.

C8051F58x/F59x

Figure 13.6. SFR Page Stack Upon Return From CANO Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFROCN). See SFR Definition 13.1.

C8051F58x/F59x

SFR Definition 13.1. SFR0CN: SFR Page Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								SFRPGEN
Type	R	R	R	R	R	R	R	R / W
Reset	0	0	0	0	0	0	0	1

SFR Address $=0 \times 84 ;$ SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 1$	Unused	Read = 00000000; Write = Don't Care
0	SFRPGEN	SFR Automatic Page Control Enable. Upon interrupt, the C8051 Core will vector to the specified interrupt service routine and automatically switch the SFR page to the corresponding peripheral or function's SFR page. This bit is used to control this autopaging function.
0: SFR Automatic Paging disabled. The C8051 core will not automatically change to		
the appropriate SFR page (i.e., the SFR page that contains the SFRs for the periph-		
eral/function that was the source of the interrupt).		
1: SFR Automatic Paging enabled. Upon interrupt, the C8051 will switch the SFR		
page to the page that contains the SFRs for the peripheral or function that is the		
source of the interrupt.		

SFR Definition 13.2. SFRPAGE: SFR Page

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SFRPAGE[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 7$; SFR Page $=$ All Pages

Bit	Name	Function		
7:0	SFRPAGE[7:0]	SFR Page Bits. Represents the SFR Page the C8051 core uses when reading or modifying SFRs. Write: Sets the SFR Page.		Read: Byte is the SFR page the C8051 core is using.
:---				
When enabled in the SFR Page Control Register (SFR0CN), the C8051 core will				
automatically switch to the SFR Page that contains the SFRs of the correspond-				
ing peripheral/function that caused the interrupt, and return to the previous SFR				
page upon return from interrupt (unless SFR Stack was altered before a return-				
ing from the interrupt). SFRPAGE is the top byte of the SFR Page Stack, and				
push/pop events of this stack are caused by interrupts (and not by reading/writ-				
ing to the SFRPAGE register)				

C8051F58x/F59x

SFR Definition 13.3. SFRNEXT: SFR Next

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SFRNEXT[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 85$; SFR Page $=$ All Pages

Bit	Name	Function
7:0	SFRNEXT[7:0]	SFR Page Bits. This is the value that will go to the SFR Page register upon a return from inter- rupt. Write: Sets the SFR Page contained in the second byte of the SFR Stack. This will cause the SFRPAGE SFR to have this SFR page value upon a return from interrupt. Read: Returns the value of the SFR page contained in the second byte of the SFR stack. SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is the third entry. The SFR stack bytes may be used alter the context in the SFR Page Stack, and will not cause the stack to "push" or "pop". Only interrupts and return from interrupts cause pushes and pops of the SFR Page Stack.

SFR Definition 13.4. SFRLAST: SFR Last

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	SFRLAST[7:0]								
Type	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xA7; SFR Page $=$ All Pages

Bit	Name	Function
$7: 0$	SFRLAST[7:0]	SFR Page Stack Bits. This is the value that will go to the SFRNEXT register upon a return from inter- rupt. Write: Sets the SFR Page in the last entry of the SFR Stack. This will cause the SFRNEXT SFR to have this SFR page value upon a return from interrupt. Read: Returns the value of the SFR page contained in the last entry of the SFR stack. SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is the third entry. The SFR stack bytes may be used alter the context in the SFR Page Stack, and will not cause the stack to "push" or "pop". Only interrupts and return from interrupts cause pushes and pops of the SFR Page Stack.

C8051F58x/F59x

Table 13.1. Special Function Register (SFR) Memory Map for Pages $0 \times 00,0 \times 10$, and $0 \times 0 F$

$\begin{aligned} & \text { N } \\ & \frac{\text { D }}{\frac{0}{\square}} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \underset{0}{0} \\ 0 \end{array}\right\|$	O(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
F8	$\begin{array}{\|l\|} \hline 00 \\ 10 \\ 0 F \end{array}$	SPIOCN	PCAOL PCA1L SNO	PCAOH PCA1H SN1	$\begin{gathered} \hline \text { PCA0CPL0 } \\ \text { PCA1CPL6 } \\ \text { SN2 } \end{gathered}$	$\begin{gathered} \hline \text { PCA0CPH0 } \\ \text { PCA1CPH6 } \\ \text { SN3 } \end{gathered}$	$\begin{gathered} \hline \text { PCACPL4 } \\ \text { PCA1CPL10 } \end{gathered}$	$\begin{gathered} \text { PCACPH4 } \\ \text { PCA1CPH10 } \end{gathered}$	VDMOCN
F0	$\begin{array}{l\|} \hline 00 \\ 10 \\ 0 F \end{array}$	B (All Pages)	POMAT POMDIN	POMASK P1MDIN	$\begin{aligned} & \text { P1MAT } \\ & \text { P2MDIN } \end{aligned}$	P1MASK P3MDIN	PSBANK (All Pages)	$\begin{aligned} & \text { EIP1 } \\ & \text { EIP1 } \end{aligned}$	$\begin{aligned} & \text { EIP2 } \\ & \text { EIP2 } \end{aligned}$
E8	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	ADCOCN	$\begin{aligned} & \text { PCA0CPL1 } \\ & \text { PCA1CPL7 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PCA0CPH1 } \\ \text { PCA1CPH7 } \end{array}$	$\begin{aligned} & \hline \text { PCA0CPL2 } \\ & \text { PCA1CPL8 } \end{aligned}$	$\begin{aligned} & \hline \text { PCA0CPH2 } \\ & \text { PCA1CPH8 } \end{aligned}$	PCA0CPL3 PCA1CPL9	$\begin{aligned} & \hline \text { PCA0CPL3 } \\ & \text { PCA1CPL9 } \end{aligned}$	RSTSRC
E0	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	ACC (All Pages)	XBRO	XBR1	CCHOCN	IT01CF		EIE1 (All Pages)	EIE2 (All Pages)
D8	$\begin{aligned} & \hline 00 \\ & 10 \\ & 0 \mathrm{O} \end{aligned}$	PCAOCN PCA1CN	PCA0MD PCA1MD PCA0PWM	$\begin{array}{\|l\|} \hline \text { PCA0CPM0 } \\ \text { PCA1CPM6 } \end{array}$	PCA0CPM1 PCA1CPM7	PCAOCPM2 PCA1CPM8	$\begin{aligned} & \text { PCA0CPM3P } \\ & \text { CA1CPM9 } \end{aligned}$	PCA0CPM4P CA1CPM10	PCA0CPM5 PCA1CPM11
D0	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	PSW (All Pages)	REFOCN	LINODATA	LINOADDR	POSKIP	P1SKIP	P2SKIP	P3SKIP
C8	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	$\begin{aligned} & \text { TMR2CN } \\ & \text { TMR4CN } \end{aligned}$	REGOCN TMR4CF LINOCF	TMR2RLL TMR4CAPL	TMR2RLH TMR4CAPH	TMR2L TMR4L	$\begin{aligned} & \text { TMR2H } \\ & \text { TMR4H } \end{aligned}$	$\begin{aligned} & \text { PCA0CPL5 } \\ & \text { PCA1CPL11 } \end{aligned}$	$\begin{aligned} & \hline \text { PCA0CPH5 } \\ & \text { PCA1CPH11 } \end{aligned}$
C0	$\begin{aligned} & 00 \\ & 10 \\ & 0 \mathrm{~F} \end{aligned}$	SMB0CN	SMB0CF	SMBODAT	ADC0GTL	ADC0GTH	ADCOLTL	ADCOLTH XBR3	XBR2
B8	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	IP (All Pages)		ADCOTK	ADCOMX	ADCOCF	ADCOL	ADCOH	
B0	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	P3 (All Pages)	P2MAT	P2MASK EMIOCF			P4 (All Pages)	FLSCL (All Pages)	FLKEY (All Pages)
A8	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	IE (All Pages)	SMOD0		SBCONO	SBRLLO	SBRLH0	$\begin{gathered} \text { P3MAT } \\ \text { P3MDOUT } \end{gathered}$	P3MASK P4MDOUT
A0	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	P2 (All Pages)	$\begin{aligned} & \text { SPIOCFG } \\ & \text { OSCICN } \end{aligned}$	SPIOCKR OSCICRS	SPIODAT	POMDOUT	P1MDOUT	P2MDOUT	SFRPAGE (All Pages)
98	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	$\begin{aligned} & \text { SCON0 } \\ & \text { SCON1 } \end{aligned}$	$\begin{aligned} & \text { SBUFO } \\ & \text { SBUF1 } \end{aligned}$	$\begin{aligned} & \text { CPTOCN } \\ & \text { CPT2CN } \end{aligned}$	CPTOMD CPT2MD	$\begin{aligned} & \text { CPTOMX } \\ & \text { CPT2MX } \end{aligned}$	CPT1CN	CPT1MD OSCIFIN	CPT1MX OSCXCN
		$0(8)$ bit address	$\begin{aligned} & 1(9) \\ & \text { sable) } \end{aligned}$	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

C8051F58x/F59x

Table 13.1. Special Function Register (SFR) Memory Map for Pages 0x00, 0x10, and 0x0F

90	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	P1 (All Pages)	TMR3CN TMR5CN	TMR3RLL TMR5CAPL	TMR3RLH TMR5CAPH	TMR3L TMR5L	TMR3H TMR5H	TMR5CF	CLKMUL
88	$\begin{aligned} & 00 \\ & 10 \\ & 0 F \end{aligned}$	TCON (All Pages)	TMOD (All Pages)	TLO (All Pages)	TL1 (All Pages)	TH0 (All Pages)	TH1 (All Pages)	$\begin{aligned} & \text { CKCON } \\ & \text { (All Pages) } \end{aligned}$	PSCTL CLKSEL
80	$\begin{aligned} & 00 \\ & 10 \end{aligned}$	P0 (All Pages)	SP (All Pages)	DPL (All Pages)	DPH (All Pages)	SFROCN	SFRNEXT (All Pages)	SFRLAST (All Pages)	$\begin{gathered} \text { PCON } \\ \text { (All Pages) } \end{gathered}$
		$0(8)$ bit address	$\begin{aligned} & 1(9) \\ & \text { able) } \end{aligned}$	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

(bit addressable)

C8051F58x/F59x

Table 13.2. Special Function Register (SFR) Memory Map for Page 0x0C

	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
F8			CANOIF2DA2L	CANOIF2DA2H	CANOIF2DB1L	CANOIF2DB1H	CANOIF2DB2L	CANOIF2DB2H
F0	B (All Pages)		CANOIF2A2L	CANOIF2A2H			CANOIF2DA1L	CANOIF2DA1H
E8			CANOIF2M1L	CANOIF2M1H	CANOIF2M2L	CANOIF2M2H	CANOIF2A1L	CANOIF2A1H
E0	ACC (All Pages)		CANOIF2CML	CANOIF2CMH			EIE1 (All Pages)	EIE2 (All Pages)
D8			CANOIF1DB1L	CANOIF1DB1H	CANOIF1DB2L	CANOIF1DB2H	CANOIF2CRL	CANOIF2CRH
D0	$\begin{gathered} \text { PSW } \\ \text { (All Pages) } \end{gathered}$		CANOIF1MCL	CANOIF1MCH	CANOIF1DA1L	CANOIF1DA1H	CANOIF1DA2L	CANOIF1DA2H
C8			CANOIF1A1L	CANOIF1A1H	CANOIF1A2L	CANOIF1A2H	CANOIF2MCL	CANOIF2MCH
C0	CANOCN		CANOIF1CML	CANOIF1CMH	CANOIF1M1L	CANOIF1M1H	CANOIF1M2L	CANOIF1M2H
B8	IP (All Pages)		CANOMV1L	CANOMV1H	CANOMV2L	CANOMV2H	CANOIF1CRL	CANOIF1CRH
B0	P3 (All Pages)		CANOIP2L	CANOIP2H		P4 (All Pages)	FLSCL (All Pages)	FLKEY (All Pages)
A8	IE (All Pages)		CANOND1L	CANOND1H	CANOND2L	CANOND2H	CANOIP1L	CANOIP1H
A0	P2 (All Pages)	CANOBRPE	CANOTR1L	CANOTR1H	CANOTR2L	CANOTR2H		SFRPAGE (All Pages)
98	SCONO (All Pages)		CANOBTL	CANOBTH	CANOIIDL	CANOIIDH	CANOTST	
90	P1 (All Pages)		CANOCFG		CANOSTAT		CANOERRL	CANOERRH
88	TCON (All Pages)	$\begin{array}{\|c\|} \hline \text { TMOD } \\ \text { (All Pages) } \end{array}$	TLO (All Pages)	TL1 (All Pages)	TH0 (All Pages)	TH1 (All Pages)	CKCON (All Pages)	
80	P0 (All Pages)	$\begin{gathered} \mathrm{SP} \\ \text { (All Pages) } \end{gathered}$	DPL (All Pages)	DPH (All Pages)		SFRNEXT (All Pages)	SFRLAST (All Pages)	PCON (All Pages)
	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
(bit addressable)								

Table 13.3. Special Function Registers
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
ACC	0xE0	Accumulator	99
ADC0CF	OxBC	ADC0 Configuration	65
ADC0CN	0xE8	ADC0 Control	67
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	69
ADC0GTL	$0 \times \mathrm{C} 3$	ADC0 Greater-Than Compare Low	69
ADCOH	0xBE	ADC0 High	66
ADCOL	OxBD	ADC0 Low	66
ADCOLTH	0xC6	ADC0 Less-Than Compare Word High	70
ADCOLTL	0xC5	ADC0 Less-Than Compare Word Low	70
ADCOMX	$0 \times B B$	ADC0 Mux Configuration	73
ADC0TK	0xBA	ADC0 Tracking Mode Select	68
B	0xF0	B Register	99
CCHOCN	0xE3	Cache Control	148
CKCON	0x8E	Clock Control	286
CLKMUL	0x97	Clock Multiplier	182
CLKSEL	0x8F	Clock Select	177
CPT0CN	0x9A	Comparator0 Control	79
CPTOMD	0x9B	Comparator0 Mode Selection	80
CPTOMX	0x9C	Comparator0 MUX Selection	86
CPT1CN	0x9D	Comparator1 Control	79
CPT1MD	0x9E	Comparator1 Mode Selection	80
CPT1MX	0x9F	Comparator1 MUX Selection	86
CPT2CN	0x9A	Comparator2 Control	83
CPT2MD	0x9B	Comparator2 Mode Selection	84
CPT2MX	0x9C	Comparator2 MUX Selection	88
DPH	0×83	Data Pointer High	98
DPL	0x82	Data Pointer Low	98
EIE1	0xE6	Extended Interrupt Enable 1	132
EIE2	0xE7	Extended Interrupt Enable 2	132
EIP1	0xF6	Extended Interrupt Priority 1	133
EIP2	0xF7	Extended Interrupt Priority 2	134
EMIOCF	0xB2	External Memory Interface Configuration	163
EMIOCN	0xAA	External Memory Interface Control	162
EMIOTC	0xAA	External Memory Interface Timing Control	168
FLKEY	$0 \times B 7$	Flash Lock and Key	146

C8051F58x/F59x

Table 13.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
FLSCL	0xB6	Flash Scale	147
IE	0xA8	Interrupt Enable	130
IP	0xB8	Interrupt Priority	131
IT01CF	0xE4	INT0/INT1 Configuration	137
LINOADR	0xD3	LINO Address	221
LINOCF	0xC9	LINO Configuration	221
LINODAT	0xD2	LIN0 Data	222
OSCICN	0xA1	Internal Oscillator Control	179
OSCICRS	0xA2	Internal Oscillator Coarse Control	180
OSCIFIN	0x9E	Internal Oscillator Fine Calibration	180
OSCXCN	0x9F	External Oscillator Control	184
P0	0x80	Port 0 Latch	204
POMASK	0xF2	Port 0 Mask Configuration	200
POMAT	0xF1	Port 0 Match Configuration	200
POMDIN	0xF1	Port 0 Input Mode Configuration	205
POMDOUT	0xA4	Port 0 Output Mode Configuration	205
P0SKIP	0xD4	Port 0 Skip	206
P1	0x90	Port 1 Latch	206
P1MASK	0xF4	Port 1 Mask Configuration	201
P1MAT	0xF3	Port 1 Match Configuration	201
P1MDIN	0xF2	Port 1 Input Mode Configuration	207
P1MDOUT	0xA5	Port 1 Output Mode Configuration	207
P1SKIP	0xD5	Port 1 Skip	208
P2	0xA0	Port 2 Latch	208
P2MASK	0xB2	Port 2 Mask Configuration	202
P2MAT	$0 \times B 1$	Port 2 Match Configuration	202
P2MDIN	0xF3	Port 2 Input Mode Configuration	209
P2MDOUT	0xA6	Port 2 Output Mode Configuration	209
P2SKIP	0xD6	Port 2 Skip	210
P3	0xB0	Port 3 Latch	210
P3MASK	OxAF	Port 3 Mask Configuration	203
P3MAT	0xAE	Port 3 Match Configuration	203
P3MDIN	0xF4	Port 3 Input Mode Configuration	211
P3MDOUT	OxAE	Port 3 Output Mode Configuration	211
P3SKIP	0xD7	Port 3 Skip	212
P4	0xB5	Port 4 Latch	212

Table 13.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
P4MDOUT	0xAF	Port 4 Output Mode Configuration	213
PCAOCN	0xD8	PCAO Control	327
PCAOCPH0	0xFC	PCAO Capture 0 High	332
PCAOCPH1	0xEA	PCAO Capture 1 High	332
PCAOCPH2	0xEC	PCAO Capture 2 High	332
PCAOCPH3	0xEE	PCAO Capture 3 High	332
PCAOCPH4	0xFE	PCAO Capture 4 High	332
PCA0CPH5	0xCF	PCAO Capture 5 High	332
PCAOCPLO	0xFB	PCAO Capture 0 Low	332
PCA0CPL1	0xE9	PCAO Capture 1 Low	332
PCA0CPL2	0xEB	PCAO Capture 2 Low	332
PCA0CPL3	0xED	PCAO Capture 3 Low	332
PCA0CPL4	0xFD	PCAO Capture 4 Low	332
PCA0CPL5	0xCE	PCAO Capture 5 Low	332
PCAOCPM0	0xDA	PCAO Module 0 Mode Register	330
PCA0CPM1	0xDB	PCAO Module 1 Mode Register	330
PCA0CPM2	0xDC	PCAO Module 2 Mode Register	330
PCA0CPM3	0xDD	PCAO Module 3 Mode Register	330
PCA0CPM4	0xDE	PCAO Module 4 Mode Register	330
PCA0CPM5	0xDF	PCAO Module 5 Mode Register	330
PCAOH	0xFA	PCAO Counter High	331
PCAOL	0xF9	PCAO Counter Low	331
PCAOMD	0xD9	PCAO Mode	328
PCAOPWM	0xD9	PCAO PWM Configuration	329
PCA1CN	0xD8	PCA1 Control	345
PCA1CPH6	0xFC	PCA1 Capture 6 High	350
PCA1CPH7	0xEA	PCA1 Capture 7 High	350
PCA1CPH8	0xEC	PCA1 Capture 8 High	350
PCA1CPH9	0xEE	PCA1 Capture 9 High	350
PCA1CPH10	0xFE	PCA1 Capture 10 High	350
PCA1CPH11	0xCF	PCA1 Capture 11 High	350
PCA1CPL6	0xFB	PCA1 Capture 6 Low	350
PCA1CPL7	0xE9	PCA1 Capture 7 Low	350
PCA1CPL8	0xEB	PCA1 Capture 8 Low	350
PCA1CPL9	0xED	PCA1 Capture 9 Low	350
PCA1CPL10	0xFD	PCA1 Capture 10 Low	350

C8051F58x/F59x

Table 13.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
PCA1CPL11	OxCE	PCA1 Capture 11 Low	350
PCA1CPM6	0xDA	PCA1 Module 6 Mode Register	348
PCA1CPM7	0xDB	PCA1 Module 7 Mode Register	348
PCA1CPM8	0xDC	PCA1 Module 8 Mode Register	348
PCA1CPM9	0xDD	PCA1 Module 9 Mode Register	348
PCA1CPM10	0xDE	PCA1 Module 10 Mode Register	348
PCA1CPM11	0xDF	PCA1 Module 11 Mode Register	348
PCA1H	0xFA	PCA1 Counter High	349
PCA1L	0xF9	PCA1 Counter Low	349
PCA1MD	0xD9	PCA1 Mode	346
PCA1PWM	0xDA	PCA1 PWM Configuration	347
PCON	0x87	Power Control	151
PSBANK	0xF5	Program Space Bank Select	104
PSCTL	0x8F	Program Store R/W Control	145
PSW	0xD0	Program Status Word	100
REF0CN	$0 \times D 1$	Voltage Reference Control	76
REG0CN	0xD1	Voltage Regulator Control	90
RSTSRC	0xEF	Reset Source Configuration/Status	157
SBCON0	$0 \times A B$	UART0 Baud Rate Generator Control	263
SBRLH0	OxAD	UART0 Baud Rate Reload High Byte	264
SBRLL0	0xAC	UART0 Baud Rate Reload Low Byte	264
SBUF0	0x99	UART0 Data Buffer	263
SCON0	0×98	UARTO Control	261
SBUF1	0x99	UART1 Data Buffer	270
SCON1	0x98	UART1 Control	269
SFR0CN	0x84	SFR Page Control	113
SFRLAST	0x86	SFR Stack Last Page	116
SFRNEXT	0x85	SFR Stack Next Page	115
SFRPAGE	0xA7	SFR Page Select	114
SMB0CF	$0 \times \mathrm{C} 1$	SMBus0 Configuration	245
SMB0CN	0xC0	SMBus0 Control	247
SMB0DAT	0xC2	SMBus0 Data	249
SMOD0	0xA9	UARTO Mode	262
SN0	0xF9	Serial Number 0	101
SN1	0xFA	Serial Number 1	101
SN2	0xFB	Serial Number 2	101

Table 13.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
SN3	0xFC	Serial Number 3	101
SP	0×81	Stack Pointer	99
SPIOCFG	$0 \times A 1$	SPIO Configuration	279
SPIOCKR	0xA2	SPIO Clock Rate Control	281
SPIOCN	0xF8	SPIO Control	280
SPIODAT	0xA3	SPIO Data	281
TCON	0x88	Timer/Counter Control	291
TH0	0x8C	Timer/Counter 0 High	294
TH1	0x8D	Timer/Counter 1 High	294
TLO	0x8A	Timer/Counter 0 Low	293
TL1	0x8B	Timer/Counter 1 Low	293
TMOD	0x89	Timer/Counter Mode	292
TMR2CN	0xC8	Timer/Counter 2 Control	298
TMR2H	0xCD	Timer/Counter 2 High	300
TMR2L	0xCC	Timer/Counter 2 Low	300
TMR2RLH	0xCB	Timer/Counter 2 Reload High	299
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	299
TMR3CN	0×91	Timer/Counter 3 Control	304
TMR3H	0x95	Timer/Counter 3 High	306
TMR3L	0×94	Timer/Counter 3 Low	306
TMR3RLH	0x93	Timer/Counter 3 Reload High	305
TMR3RLL	0x92	Timer/Counter 3 Reload Low	305
TMR4CAPH	0xCB	Timer/Capture 4 Capture High	312
TMR4CAPL	0xCA	Timer/Capture 4 Capture Low	312
TMR4CF	0xC9	Timer/Counter 4 Configuration	311
TMR4CN	0xC8	Timer/Counter 4 Control	310
TMR4H	0xCD	Timer/Counter 4 High	313
TMR4L	0xCC	Timer/Counter 4 High	313
TMR5CAPH	0x93	Timer/Capture 5 Capture High	312
TMR5CAPL	0×92	Timer/Capture 5 Capture Low	312
TMR5CF	0x96	Timer/Counter 5 Configuration	311
TMR5CN	0x91	Timer/Counter 5 Control	310
TMR5H	0×95	Timer/Counter 5 High	313
TMR4L	0x94	Timer/Counter 5 High	313
VDMOCN	0xFF	$\mathrm{V}_{\text {DD }}$ Monitor Control	155
XBR0	0xE1	Port I/O Crossbar Control 0	196

C8051F58x/F59x

Table 13.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
XBR1	0xE2	Port I/O Crossbar Control 1	197
XBR2	0xC7	Port I/O Crossbar Control 2	198
XBR3	0xC6	Port I/O Crossbar Control 3	199

Note: The CAN registers are not explicitly defined in this datasheet. See Table 22.2 on page 236 for the list of all available CAN registers.

14. Interrupts

The C8051F58x/F59x devices include an extended interrupt system supporting a total of 23 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE, EIE1, or EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

```
// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.
; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.
```

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the enable bit will return a 0 inside the interrupt service routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

14.1. MCU Interrupt Sources and Vectors

The C8051F58x/F59x MCUs support 23 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1 . If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 14.1. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051F58x/F59x

14.1.1. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IE, EIP1, or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 14.1.

14.1.2. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

C8051F58x/F59x

Table 14.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
Reset	0x0000	Top	None	N/A	N/A	Always Enabled	Always Highest
$\begin{array}{\|l} \hline \text { External Interrupt } 0 \\ \hline \text { (INT0) } \end{array}$	0×0003	0	IE0 (TCON.1)	Y	Y	EXO (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TFO (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
$\begin{array}{\|l} \hline \text { External Interrupt } 1 \\ \hline \text { (INT1) } \end{array}$	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UARTO	0x0023	4	RIO (SCONO.O) TIO (SCONO.1)	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPIO	0×0033	6	SPIF (SPIOCN.7) WCOL (SPIOCN.6) MODF (SPIOCN.5) RXOVRN (SPIOCN.4)	Y	N	$\begin{aligned} & \mathrm{ESPIO} \\ & \text { (IE.6) } \end{aligned}$	$\begin{aligned} & \text { PSPIO } \\ & \text { (IP.6) } \end{aligned}$
SMB0	0x003B	7	SI (SMBOCN.0)	Y	N	$\begin{array}{\|l\|} \hline \text { ESMB0 } \\ \text { (EIE1.0) } \end{array}$	$\begin{aligned} & \hline \text { PSMB0 } \\ & \text { (EIP1.0) } \end{aligned}$
ADC0 Window Compare	0x0043	8	ADOWINT (ADCOCN.3)	Y	N	EWADC0 (EIE1.1)	PWADC0 (EIP1.1)
ADC0 Conversion Complete	0x004B	9	ADOINT (ADCOCN.5)	Y	N	$\begin{array}{\|l\|} \hline \text { EADC0 } \\ \text { (EIE1.2) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PADC0 } \\ & \text { (EIP1.2) } \\ & \hline \end{aligned}$
Programmable Counter Array 0	0x0053	10	CF (PCAOCN.7) CCFn (PCAOCN.n) COVF (PCAOPWM.6)	Y	N	$\begin{aligned} & \hline \text { EPCAO } \\ & \text { (EIE1.3) } \end{aligned}$	$\begin{aligned} & \hline \text { PPCAO } \\ & \text { (EIP1.3) } \end{aligned}$
Comparator0	0x005B	11	$\begin{aligned} & \text { CPOFIF (CPTOCN.4) } \\ & \text { CPORIF (CPTOCN.5) } \end{aligned}$	N	N	$\begin{array}{\|l\|} \hline \text { ECPO } \\ \text { (EIE1.4) } \end{array}$	$\begin{aligned} & \text { PCP0 } \\ & \text { (EIP1.4) } \end{aligned}$
Comparator1	0x0063	12	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	N	N	$\begin{array}{\|l} \hline \text { ECP1 } \\ \text { (EIE1.5) } \end{array}$	$\begin{aligned} & \text { PCP1 } \\ & \text { (EIP1.5) } \end{aligned}$
Timer 3 Overflow	0x006B	13	$\begin{aligned} & \text { TF3H (TMR3CN.7) } \\ & \text { TF3L (TMR3CN.6) } \end{aligned}$	N	N	$\begin{array}{\|l} \hline \text { ET3 } \\ \text { (EIE1.6) } \end{array}$	$\begin{aligned} & \hline \text { PT3 } \\ & \text { (EIP1.6) } \end{aligned}$
LINO	0x0073	14	LINOINT (LINST.3)	N	N^{*}	$\begin{aligned} & \hline \text { ELINO } \\ & \text { (EIE1.7) } \end{aligned}$	$\begin{aligned} & \text { PLIN0 } \\ & \text { (EIP1.7) } \end{aligned}$
Voltage Regulator Dropout	0x007B	15	N/A	N/A	N/A	$\begin{aligned} & \hline \text { EREGO } \\ & \text { (EIE2.0) } \end{aligned}$	$\begin{aligned} & \hline \text { PREGO } \\ & \text { (EIP2.0) } \end{aligned}$
CANO	0x0083	16	CANOINT (CANOCN.7)	N	Y	$\begin{aligned} & \hline \text { ECANO } \\ & \text { (EIE2.1) } \end{aligned}$	$\begin{aligned} & \hline \text { PCAN0 } \\ & \text { (EIP2.1) } \end{aligned}$
Port Match	0x008B	17	None	N/A	N/A	$\begin{aligned} & \hline \text { EMAT } \\ & \text { (EIE2.2) } \end{aligned}$	$\begin{aligned} & \hline \text { PMAT } \\ & \text { (EIP2.2) } \end{aligned}$

Table 14.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
UART1	0×0093	18	RI1 (SCON1.0) TI1 (SCON1.1)	Y	N	ES1 (EIE2.3)	PS1 (EIP2.3)
Programmable Counter Array 1	0x009B	19	$\begin{aligned} & \text { CF (PCA1CN.n) } \\ & \text { CCFn (PCA1CN.n) } \end{aligned}$	Y	N	EPCA1 (EIE2.4)	PPCA1 (EIP2.4)
Comparator2	0x00A3	20	$\begin{aligned} & \text { CP2FIF (CPT2CN.4) } \\ & \text { CP2RIF (CPT2CN.5) } \end{aligned}$	N	N	ECP2 (EIE2.5)	PCP2 (EIP2.5)
Timer 4 Overflow	0x00AB	21	TF4H (TMR4CN.7) TR4L (TMR4CN.6)	N	N	ET4 (EIE2.6)	PT4 (EIP2.6)
Timer 5 Overflow	0x00B3	22	TF5H (TMR5CN.7) TF5L (TMR5CN.6)	N	N	ET5 (EIE2.7)	$\begin{array}{\|l\|} \hline \text { PT5 } \\ \text { (EIP2.7) } \end{array}$

14.2. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described in this section. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 14.1. IE: Interrupt Enable

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EA	ESPIO	ET2	ES0	ET1	EX1	ET0	EX0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA8; Bit-Addressable; SFR Page = All Pages

Bit	Name	Function
7	EA	Enable All Interrupts. Globally enables/disables all interrupts. It overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	ESPIO	Enable Serial Peripheral Interface (SPIO) Interrupt. This bit sets the masking of the SPIO interrupts. 0: Disable all SPIO interrupts. 1: Enable interrupt requests generated by SPIO.
5	ET2	Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UARTO interrupt. 1: Enable UART0 interrupt.
3	ET1	Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the INT1 input.
1	ET0	Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TFO flag.
0	EX0	Enable External Interrupt 0. This bit sets the masking of External Interrupt 0. 0: Disable external interrupt 0. 1: Enable interrupt requests generated by the INT0 input.

C8051F58x/F59x

SFR Definition 14.2. IP: Interrupt Priority

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		PSPIO	PT2	PSO	PT1	PX1	PT0	PX0
Type	R	R/W						
Reset	1	0	0	0	0	0	0	0

SFR Address $=0 \times B 8$; Bit-Addressable; SFR Page $=$ All Pages

Bit	Name	Function
7	Unused	Read = 1b, Write = Don't Care.
6	PSPIO	Serial Peripheral Interface (SPI0) Interrupt Priority Control. This bit sets the priority of the SPIO interrupt. 0: SPIO interrupt set to low priority level. 1: SPIO interrupt set to high priority level.
5	PT2	Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0: Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level.
4	PS0	UART0 Interrupt Priority Control. This bit sets the priority of the UART0 interrupt. 0: UART0 interrupt set to low priority level. 1: UART0 interrupt set to high priority level.
3	PT1	Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0: Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level.
2	PX1	External Interrupt 1 Priority Control. This bit sets the priority of the External Interrupt 1 interrupt. 0: External Interrupt 1 set to low priority level. 1: External Interrupt 1 set to high priority level.
1	PTO	Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level.
0	PX0	External Interrupt 0 Priority Control. This bit sets the priority of the External Interrupt 0 interrupt. 0: External Interrupt 0 set to low priority level. 1: External Interrupt 0 set to high priority level.

SFR Definition 14.3. EIE1: Extended Interrupt Enable 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ELIN0	ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ESMB0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times E 6$; SFR Page $=$ All Pages

Bit	Name	Function
7	ELINO	Enable LINO Interrupt. This bit sets the masking of the LINO interrupt. 0: Disable LINO interrupts. 1: Enable interrupt requests generated by the LINOINT flag.
6	ET3	Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
5	ECP1	Enable Comparator1 (CP1) Interrupt. This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
4	ECP0	Enable Comparator0 (CP0) Interrupt. This bit sets the masking of the CPO interrupt. 0: Disable CPO interrupts. 1: Enable interrupt requests generated by the CPORIF or CPOFIF flags.
3	EPCAO	Enable Programmable Counter Array (PCA0) Interrupt. This bit sets the masking of the PCAO interrupts. 0: Disable all PCAO interrupts. 1: Enable interrupt requests generated by PCAO.
2	EADC0	Enable ADC0 Conversion Complete Interrupt. This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the ADOINT flag.
1	EWADC0	Enable Window Comparison ADC0 Interrupt. This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADCO Window Comparison interrupt. 1: Enable interrupt requests generated by ADC0 Window Compare flag (ADOWINT).
0	ESMB0	Enable SMBus (SMB0) Interrupt. This bit sets the masking of the SMB0 interrupt. 0: Disable all SMBO interrupts. 1: Enable interrupt requests generated by SMB0.

C8051F58x/F59x

SFR Definition 14.4. EIP1: Extended Interrupt Priority 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PLIN0	PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PSMB0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 x F 6$; SFR Page $=$ All Pages

Bit	Name	Function
7	PLINO	LINO Interrupt Priority Control. This bit sets the priority of the LINO interrupt. 0: LINO interrupts set to low priority level. 1: LINO interrupts set to high priority level.
6	PT3	Timer 3 Interrupt Priority Control. This bit sets the priority of the Timer 3 interrupt. 0 : Timer 3 interrupts set to low priority level. 1: Timer 3 interrupts set to high priority level.
5	PCP1	Comparator0 (CP1) Interrupt Priority Control. This bit sets the priority of the CP1 interrupt. 0 : CP1 interrupt set to low priority level. 1: CP1 interrupt set to high priority level.
4	PCP0	Comparator0 (CPO) Interrupt Priority Control. This bit sets the priority of the CPO interrupt. 0: CPO interrupt set to low priority level. 1: CPO interrupt set to high priority level.
3	PPCA0	Programmable Counter Array (PCAO) Interrupt Priority Control. This bit sets the priority of the PCAO interrupt. 0 : PCAO interrupt set to low priority level. 1: PCAO interrupt set to high priority level.
2	PADC0	ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADC0 Conversion Complete interrupt. 0 : ADCO Conversion Complete interrupt set to low priority level. 1: ADC0 Conversion Complete interrupt set to high priority level.
1	PWADC0	ADCO Window Comparator Interrupt Priority Control. This bit sets the priority of the ADCO Window interrupt. 0 : ADCO Window interrupt set to low priority level. 1: ADCO Window interrupt set to high priority level.
0	PSMB0	SMBus (SMBO) Interrupt Priority Control. This bit sets the priority of the SMBO interrupt. 0 : SMBO interrupt set to low priority level. 1: SMBO interrupt set to high priority level.

SFR Definition 14.5. EIE2: Extended Interrupt Enable 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ET5	ET4	ECP2	EPCA1	ES1	EMAT	ECAN0	EREG0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7; SFR Page = All Pages

Bit	Name	Function
7	ET5	Enable Timer 5 Interrupt. This bit sets the masking of the Timer 5 interrupt. 0: Disable Timer 5 interrupts. 1: Enable interrupt requests generated by the TF5L or TF5H flags.
6	ET4	Enable Timer 4 Interrupt. This bit sets the masking of the Timer 4 interrupt. 0: Disable Timer 4 interrupts. 1: Enable interrupt requests generated by the TF4L or TF4H flags.
5	ECP2	Enable Comparator2 (CP2) Interrupt. This bit sets the masking of the CP2 interrupt. 0: Disable CP2 interrupts. 1: Enable interrupt requests generated by the CP2RIF or CP2FIF flags.
4	EPCA1	Enable Programmable Counter Array (PCA1) Interrupt. This bit sets the masking of the PCA1 interrupts. 0: Disable all PCA1 interrupts. 1: Enable interrupt requests generated by PCA1
3	ES1	Enable UART1 Interrupt. This bit sets the masking of the UART1 interrupt. 0: Disable UART1 interrupt. 1: Enable UART1 interrupt
2	EMAT	Enable Port Match Interrupt. This bit sets the masking of the Port Match interrupt. 0: Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match
1	ECANO	Enable CAN0 Interrupts. This bit sets the masking of the CANO interrupt. 0: Disable all CANO interrupts. 1: Enable interrupt requests generated by CAN0.
0	EREG0	Enable Voltage Regulator Dropout Interrupt. This bit sets the masking of the Voltage Regulator Dropout interrupt. 0: Disable the Voltage Regulator Dropout interrupt. 1: Enable the Voltage Regulator Dropout interrupt.

C8051F58x/F59x

SFR Definition 14.6. EIP2: Extended Interrupt Priority Enabled 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name						PMAT	PCAN0	PREG0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 x F 7$; SFR Page $=$ All Pages

Bit	Name	Function
7	PT5	$\begin{array}{l}\text { Timer 5 Interrupt Priority Control. } \\ \text { This bit sets the priority of the Timer 5 interrupt. } \\ \text { 0: Timer 5 interrupts set to low priority level. } \\ \text { 1: Timer 5 interrupts set to high priority level. }\end{array}$
6	PT4	$\begin{array}{l}\text { Timer 4 Interrupt Priority Control. } \\ \text { This bit sets the priority of the Timer 4 interrupt. } \\ \text { 0: Timer 4 interrupts set to low priority level. } \\ \text { 1: Timer 4 interrupts set to high priority level. }\end{array}$
5	PCP2	$\begin{array}{l}\text { Comparator1 (CP1) Interrupt Priority Control. } \\ \text { This bit sets the priority of the CP1 interrupt. } \\ \text { 0: CP1 interrupt set to low priority level. } \\ \text { 1: CP1 interrupt set to high priority level. }\end{array}$
4	PPCA1	$\begin{array}{l}\text { Programmable Counter Array (PCA1) Interrupt Priority Control. } \\ \text { This bit sets the priority of the PCA1 interrupt. } \\ \text { 0: PCA1 interrupt set to low priority level. } \\ \text { 1: PCA1 interrupt set to high priority level. }\end{array}$
3	PS1	$\begin{array}{l}\text { UART1 Interrupt Priority Control. } \\ \text { This bit sets the priority of the UART1 interrupt. } \\ \text { 0: UART1 interrupt set to low priority level. } \\ \text { 1: UART1 interrupt set to high priority level. }\end{array}$
2	PMAT	$\begin{array}{l}\text { PCAN0 }\end{array}$
0	PREG0 Match Interrupt Priority Control.	
This bit sets the priority of the Port Match interrupt.		
0: Port Match interrupt set to low priority level.		
1: Port Match interrupt set to high priority level.		

This bit sets the priority of the CAN0 interrupt.

0: CAN0 interrupt set to low priority level.

1: CAN0 interrupt set to high priority level.\end{array}\right\} $$
\begin{array}{l}\text { Voltage Regulator Dropout Interrupt Priority Control. } \\
\text { This bit sets the priority of the Voltage Regulator Dropout interrupt. } \\
\text { 0: Voltage Regulator Dropout interrupt set to low priority level. } \\
\text { 1: Voltage Regulator Dropout interrupt set to high priority level. }\end{array}
$$\right\}\)

14.3. External Interrupts INTO and INT1

The $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "27.1. Timer 0 and Timer 1" on page 287) select level or edge sensitive. The table below lists the possible configurations.

ITO	INOPL	INTO Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

$\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ are assigned to Port pins as defined in the IT01CF register (see SFR Definition 14.7). Note that $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INTO}}$ Port pin assignments are independent of any Crossbar assignments. INTO and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to $\overline{\mathrm{INTO}}$ and/or $\overline{\mathrm{NNT} 1}$, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "20.3. Priority Crossbar Decoder" on page 192 for complete details on configuring the Crossbar).
IEO (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT} 1}$ external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

C8051F58x/F59x

SFR Definition 14.7. IT01CF: INT0/INT1 Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IN1PL	IN1SL[2:0]			INOPL	INOSL[2:0]		
Type	R/W	R/W			R/W	R/W		
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times E 4$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0 : $\overline{\text { NT1 }}$ input is active low. 1: INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to $\overline{\mathrm{INT} 1}$. Note that this pin assignment is independent of the Crossbar; INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7
3	INOPL	INTO Polarity. 0 : INTO input is active low. 1: INTO input is active high.
2:0	INOSL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to $\overline{\mathrm{INTO}}$. Note that this pin assignment is independent of the Crossbar; INT0 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P1.0 001: Select P1.1 010: Select P1.2 011: Select P1.3 100: Select P1.4 101: Select P1.5 110: Select P1.6 111: Select P1.7

C8051F58x/F59x

15. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by software using the MOVX instruction. Once cleared to logic 0 , a Flash bit must be erased to set it back to logic 1 . Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation. Refer to Table 5.5 for complete Flash memory electrical characteristics.

15.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "30. C2 Interface" on page 351.
The on-chip $V_{D D}$ Monitor must be enabled and set to the high threshold when executing code that writes and/or erases Flash memory from software. Systems that reprogram the Flash memory from software must use an external supply monitor and reprogram the high monitor threshold to ensure no issues with the uncalibrated internal regulator. See Section 15.4 for more details. Before performing any Flash write or erase procedure, set the FLEWT bit in Flash Scale register (FLSCL) to 1. Also, note that 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

For -I (Industrial Grade) parts, parts programmed at a cold temperature below $0{ }^{\circ} \mathrm{C}$ may exhibit weakly programmed flash memory bits. If programmed at $0^{\circ} \mathrm{C}$ or higher, there is no problem reading Flash across the entire temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. This temperature restriction does not apply to -A (Automotive Grade) devices.

15.1.1. Reprogramming the VDD Monitor High Threshold

The output of the internal voltage regulator is calibrated by the MCU immediately after any reset event. The output of the un-calibrated internal regulator could be below the high threshold setting of the VDD Monitor. If this is the case and the MCU receives a non-power on reset (POR) when the VDD Monitor is set to the high threshold setting, the MCU will remain in reset until a POR occurs (i.e. VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold setting, which is guaranteed to be below the un-calibrated output of the internal regulator. The device will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly recommends that the VDD Monitor is always left in the low threshold setting (i.e. default value upon POR). When programming the Flash in-system, the VDD Monitor must be set to the high threshold setting.

To prevent this issue from happening and ensure the highest system reliability, firmware can change the VDD Monitor high threshold, and the system can use an external supply monitor that meets the Flash VDD requirement listed in Table 5.5 on page 48 . To change the V_{DD} Monitor high threshold, perform the following steps:

1. Disable interrupts.
2. Write 0×01 to the SFRPAGE register.
3. Copy the value from SFR address 0×93 to SFR address 0×94.
4. Return the SFRPAGE register to its previous value.

C8051F58x/F59x

15.1.2. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: $0 \times A 5,0 x F 1$. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 15.2.

15.1.3. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by doing the following: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

1. Disable interrupts (recommended).
2. If erasing a page in Banks 1, 2, or 3, set the COBANK[1:0] bits (register PSBANK) for the appropriate bank.
3. Set the FLEWT bit (register FLSCL).
4. Set the PSEE bit (register PSCTL).
5. Set the PSWE bit (register PSCTL).
6. Write the first key code to FLKEY: 0xA5.
7. Write the second key code to FLKEY: 0xF1.
8. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
9. Clear the PSWE and PSEE bits.

15.1.4. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:

1. Disable interrupts (recommended).
2. If writing to an address in Banks 1, 2, or 3, set the COBANK[1:0] (register PSBANK) for the appropriate bank.
3. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.3.
4. Set the FLEWT bit (register FLSCL).
5. Set the PSWE bit (register PSCTL).
6. Clear the PSEE bit (register PSCTL).
7. Write the first key code to FLKEY: 0xA5.
8. Write the second key code to FLKEY: 0xF1.
9. Using the MOVX instruction, write a single data byte to the desired location within the 512-byte sector.
10. Clear the PSWE bit.

C8051F58x/F59x

Steps 5-7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

15.1.5. Flash Write Optimization

The Flash write procedure includes a block write option to optimize the time to perform consecutive byte writes. When block write is enabled by setting the CHBLKW bit (CCHOCN.0), writes to two consecutive bytes in Flash require the same amount of time as a single byte write. This is performed by caching the first byte that is written to Flash and then committing both bytes to Flash when the second byte is written. When block writes are enabled, if the second write does not occur, the first data byte written is not actually written to Flash. Flash bytes with block write enabled are programmed by software with the following sequence:

1. Disable interrupts (recommended).
2. If writing to an address in Banks 1, 2, or 3, set the COBANK[1:0] bits (register PSBANK) for the appropriate bank
3. Erase the 512-byte Flash page containing the target location, as described in Section 15.1.3.
4. Set the FLEWT bit (register FLSCL).
5. Set the CHBLKW bit (register CCHOCN).
6. Set the PSWE bit (register PSCTL).
7. Clear the PSEE bit (register PSCTL).
8. Write the first key code to FLKEY: OxA5.
9. Write the second key code to FLKEY: OxF1.
10. Using the MOVX instruction, write the first data byte to the desired location within the 512-byte sector.
11. Write the first key code to FLKEY: OxA5.
12. Write the second key code to FLKEY: OxF1.
13. Using the MOVX instruction, write the second data byte to the desired location within the 512-byte sector. The location of the second byte must be the next higher address from the first data byte.
14.Clear the PSWE bit.
14. Clear the CHBLKW bit.

C8051F58x/F59x

15.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note that MOVX read instructions always target XRAM.

15.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0×0000 to 0×01 FF), where n is the ones complement number represented by the Security Lock Byte. Note that the page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are 1) and locked when any other Flash pages are locked (any bit of the Lock Byte is $\mathbf{0}$). See example in Figure 15.1.

Security Lock Byte:	11111101 b
1s Complement:	00000010 b
Flash pages locked:	3 (First two Flash pages + Lock Byte Page)

Figure 15.1. Flash Program Memory Map

C8051F58x/F59x

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 15.1 summarizes the Flash security features of the C8051F58x/F59x devices.

Table 15.1. Flash Security Summary

Action	C2 Debug Interface	User Firmware executing from:	
		an unlocked page	a locked page
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	Flash Error Reset	Permitted
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read contents of Lock Byte (if any page is locked)	Not Permitted	Flash Error Reset	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	Flash Error Reset	Flash Error Reset
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	C2 Device Erase Only	Flash Error Reset	Flash Error Reset
Lock additional pages (change 1s to '0's in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	Flash Error Reset	Flash Error Reset
Read, Write or Erase Reserved Area	Not Permitted	Flash Error Reset	Flash Error Reset

C2 Device Erase—Erases all Flash pages including the page containing the Lock Byte.
Flash Error Reset—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset).

- All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).
- Locking any Flash page also locks the page containing the Lock Byte.
- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

C8051F58x/F59x

15.4. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of V_{DD}, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.
The following guidelines are recommended for any system which contains routines which write or erase Flash from code.

15.4.1. V_{DD} Maintenance and the V_{DD} monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
2. Make certain that the minimum $\mathrm{V}_{\text {REGIN }}$ rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external $V_{D D}$ brownout circuit to the $\overline{R S T}$ pin of the device that holds the device in reset until $V_{D D}$ reaches the minimum threshold and re-asserts $\overline{R S T}$ if $\mathrm{V}_{D D}$ drops below the minimum threshold.
3. Enable the on-chip V_{DD} monitor to the high setting and enable the V_{DD} monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For C-based systems, this will involve modifying the startup code added by the C compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the V_{DD} monitor and enabling the V_{DD} monitor as a reset source. Code examples showing this can be found in "AN201: Writing to Flash from Firmware", available from the Silicon Laboratories web site.
4. As an added precaution, explicitly enable the V_{DD} monitor and enable the V_{DD} monitor as a reset source inside the functions that write and erase Flash memory. The $V_{D D}$ monitor enable instructions should be placed just after the instruction to set PSWE to a 1, but before the Flash write or erase operation instruction.
Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset event. The output of the un-calibrated internal regulator could be below the high threshold setting of the VDD Monitor. If this is the case, and the MCU receives a non-power on reset (POR) when the VDD Monitor is set to the high threshold setting, the MCU will remain in reset until a POR occurs (i.e. VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold setting, which is guaranteed to be below the un-calibrated output of the internal regulator. The device will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly recommends that the VDD Monitor is always left in the low threshold setting (i.e. default value upon POR). When programming the Flash in-system, the VDD Monitor must be set to the high threshold setting. To prevent this issue from happening and ensure the highest system reliability, firmware can change the $V_{D D}$ Monitor high threshold, and the system must use an external supply monitor. For instructions on how to do this, see "Reprogramming the VDD Monitor High Threshold" on page 138.
5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0×02 " is correct. "RSTSRC $\mid=0 \times 02$ " is incorrect.
6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a 1. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

15.4.2. PSWE Maintenance

1. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a 1 . There should be exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets PSWE and PSEE both to a 1 to erase Flash pages.
2. Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates and loop variable maintenance outside the "PSWE $=1 ; \ldots$ PSWE $=0 ; "$ area. Code examples showing this can be found in "AN201: Writing to Flash from Firmware" available from the Silicon Laboratories web site.
3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been reset to 0 . Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.
4. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

15.4.3. System Clock

1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.
Additional Flash recommendations and example code can be found in "AN201: Writing to Flash from Firmware" available from the Silicon Laboratories web site.

C8051F58x/F59x

SFR Definition 15.1. PSCTL: Program Store R/W Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name							PSEE	PSWE
Type	R	R	R	R	R	R	R / W	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 8 F$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 2$	Unused	Read = 000000b, Write = don't care.
1	PSEE	Program Store Erase Enable. Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	Program Store Write Enable. Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

SFR Definition 15.2. FLKEY: Flash Lock and Key

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	FLKEY[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times B 7$; SFR Page $=$ All Pages

Bit	Name	Function
7:0	FLKEY[7:0]	Flash Lock and Key Register. Write: This register provides a lock and key function for Flash erasures and writes. Flash writes and erases are enabled by writing 0xA5 followed by 0xF1 to the FLKEY regis- ter. Flash writes and erases are automatically disabled after the next write or erase is complete. If any writes to FLKEY are performed incorrectly, or if a Flash write or erase operation is attempted while these operations are disabled, the Flash will be perma- nently locked from writes or erasures until the next device reset. If an application never writes to Flash, it can intentionally lock the Flash by writing a non-0xA5 value to FLKEY from software. Read: When read, bits 1-0 indicate the current Flash lock state.
00: Flash is write/erase locked.		
01: The first key code has been written (0xA5).		
10: Flash is unlocked (writes/erases allowed).		
11: Flash writes/erases disabled until the next reset.		

SFR Definition 15.3. FLSCL: Flash Scale

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Reserved	Reserved	Reserved	FLRT	Reserved	Reserved	FLEWT	Reserved
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times B 6$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 5$	Reserved	Must Write 000b.
4	FLRT	Flash Read Time Control. This bit should be programmed to the smallest allowed value, according to the system clock speed. 0: SYSCLK $\leq 25 \mathrm{MHz}$ (Flash read strobe is one system clock). $1:$ SYSCLK $>25 \mathrm{MHz}$ (Flash read strobe is two system clocks).
$3: 2$	Reserved	Must Write 00b.
1	FLEWT	Flash Erase Write Time Control. This bit should be set to 1b before Writing or Erasing Flash. 0: Short Flash Erase / Write Timing. 1: Extended Flash Erase / Write Timing.
0	Reserved	Must Write Ob.

SFR Definition 15.4. CCHOCN: Cache Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Reserved	Reserved	CHPFEN	Reserved	Reserved	Reserved	Reserved	CHBLKW
Type	R/W							
Reset	0	0	1	0	0	0	0	0

SFR Address $=0 \times E 3$; SFR Page $=0 \times 0 F$

Bit	Name	
$7: 6$	Reserved	Must Write 00b
5	CHPFEN	Cache Prefect Enable Bit. 0: Prefetch engine is disabled. 1: Prefetch engine is enabled.
$4: 1$	Reserved	Must Write 0000b.
0	CHBLKW	Block Write Enable Bit. This bit allows block writes to Flash memory from firmware. 0: Each byte of a software Flash write is written individually. 1: Flash bytes are written in groups of two.

SFR Definition 15.5. ONESHOT: Flash Oneshot Period

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name					PERIOD[3:0]				
Type	R	R	R	R	R / W	R / W	R / W	R / W	
Reset	0	0	0	0	1	1	1	1	

SFR Address $=0 \times B E ;$ SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 4$	Unused	Read $=0000 \mathrm{~b}$. Write = don't care.
$3: 0$	PERIOD[3:0]	Oneshot Period Control Bits. These bits limit the internal Flash read strobe width as follows. When the Flash read strobe is de-asserted, the Flash memory enters a low-power state for the remainder of the system clock cycle. These bits have no effect when the system clocks is greater than 12.5 MHz and FLRT $=0$.
$F_{\text {FLASH }}^{\text {RDMAX }}=5 n s+($ PERIOD $\times 5 n s)$		

16. Power Management Modes

The C8051F58x/F59x devices have three software programmable power management modes: Idle, Stop, and Suspend. Idle mode and Stop mode are part of the standard 8051 architecture, while Suspend mode is an enhanced power-saving mode implemented by the high-speed oscillator peripheral.
Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Suspend mode is similar to Stop mode in that the internal oscillator and CPU are halted, but the device can wake on events, such as a Port Match or Comparator low output. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode and Suspend mode consume the least power because the majority of the device is shut down with no clocks active. SFR Definition 16.1 describes the Power Control Register (PCON) used to control the C8051F58x/F59x devices' Stop and Idle power management modes. Suspend mode is controlled by the SUSPEND bit in the OSCICN register (SFR Definition 19.2).
Although the C8051F58x/F59x has Idle, Stop, and Suspend modes available, more control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off oscillators lowers power consumption considerably, at the expense of reduced functionality.

16.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.
Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0×0000.

Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two or more opcode bytes, for example:

```
// in 'C':
PCON |= 0x01; // set IDLE bit
PCON = PCON; // ... followed by a 3-cycle dummy instruction
; in assembly:
ORL PCON, #O1h ; set IDLE bit
MOV PCON, PCON ; ... followed by a 3-cycle dummy instruction
```

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "17.6. PCA Watchdog Timer Reset" on page 156 for more information on the use and configuration of the WDT.

C8051F58x/F59x

16.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of $100 \mu \mathrm{~s}$.

16.3. Suspend Mode

Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into Suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in Suspend mode. The exception to this is the Port Match feature.

Suspend mode can be terminated by three types of events, a port match (described in Section "20.5. Port Match" on page 200), a Comparator low output (if enabled), or a device reset event. When Suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If Suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0×0000.

Note: When entering Suspend mode, firmware must set the ZTCEN bit in REFOCN (SFR Definition 8.1).

SFR Definition 16.1. PCON: Power Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GF[5:0]							
Type	R/W							
Reset	0	0	0	0	0	0	STOP	IDLE

SFR Address $=0 \times 87$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 2$	GF[5:0]	General Purpose Flags 5-0. These are general purpose flags for use under software control.
1	STOP	Stop Mode Select. Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0. 1: CPU goes into Stop mode (internal oscillator stopped).
0	IDLE	IDLE: Idle Mode Select. Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0. 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.)

17. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.
The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the $\overline{\mathrm{RST}}$ pin is driven low until the device exits the reset state.

Note: When VIO rises faster than VDD, which can happen when VREGIN and VIO are tied together, a delay created between GPIO power (VIO) and the logic controlling GPIO (VDD) results in a temporary unknown state at the GPIO pins. Cross coupling VIO and VDD with a $4.7 \mu \mathrm{~F}$ capacitor mitigates the root cause of the problem by allowing VIO and VDD to rise at the same rate.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0×0000.

Figure 17.1. Reset Sources

C8051F58x/F59x

17.1. Power-On Reset

During power-up, the device is held in a reset state and the RST pin is driven low until V_{DD} settles above $\mathrm{V}_{\mathrm{RST}}$. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases ($V_{D D}$ ramp time is defined as how fast $V_{D D}$ ramps from $0 V$ to $V_{R S T}$). Figure 17.2. plots the power-on and $V_{D D}$ monitor reset timing. The maximum $V_{D D}$ ramp time is 1 ms ; slower ramp times may cause the device to be released from reset before $V_{D D}$ reaches the $V_{R S T}$ level. For ramp times less than 1 ms , the power-on reset delay ($T_{\text {PORDelay }}$) is typically less than 0.3 ms .

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Note: For devices with a date code before year 2011, work week 24 (1124), if the /RST pin is held low for more than 1 second while power is applied to the device, and then /RST is released, a percentage of devices may lock up and fail to execute code. Toggling the /RST pin does not clear the condition. The condition is cleared by cycling power. Most devices that are affected will show the lock up behavior only within a narrow range of temperatures (a 5 to $10^{\circ} \mathrm{C}$ window). Parts with a date code of year 2011, work week 24 (1124) or later do not have any restrictions on /RST low time. The date code is included in the bottom-most line of the package top side marking. The date code is a fourdigit number with the format $\mathrm{Y} Y \mathrm{WW}$, where YY is the two-digit calendar year and WW is the two digit work week.

Figure 17.2. Power-On and V_{DD} Monitor Reset Timing

17.2. Power-Fail Reset/VDD Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below $\mathrm{V}_{\mathrm{RST}}$, the power supply monitor will drive the $\overline{\mathrm{RST}}$ pin low and hold the CIP-51 in a reset state (see Figure 17.2). When V_{DD} returns to a level above $\mathrm{V}_{\mathrm{RST}}$, the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads 1 , the data may no longer be valid. The V_{DD} monitor is enabled after power-on resets. Its defined state (enabled/disabled) is not altered by any other reset source. For example, if the $V_{D D}$ monitor is disabled by code and a software reset is performed, the V_{DD} monitor will still be disabled after the reset. To protect the integrity of Flash contents, the V_{DD} monitor must be enabled to the higher setting (VDMLVL = 1) and selected as a reset source if software contains routines which erase or write Flash memory. If the V_{DD} monitor is not enabled and set to the high level, any erase or write performed on Flash memory will cause a Flash Error device reset.

Important Note: If the $V_{D D}$ monitor is being turned on from a disabled state, it should be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. Ensure that there are no delays between the time the $V_{D D}$ monitor is enabled and when it is enabled as a reset source.

1. Enable the V_{DD} monitor (VDMEN bit in VDMOCN = 1). Ensure that there are no delays before step 2 is executed.
2. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC $=1$).

See Figure 17.2 for $V_{D D}$ monitor timing; note that the power-on-reset delay is not incurred after a $V_{D D}$ monitor reset. See Table 5.4 for complete electrical characteristics of the V_{DD} monitor.

When programming the Flash in-system, the V_{DD} Monitor must be set to the high threshold setting. For the highest system reliability, firmware can change the $V_{D D}$ Monitor high threshold, and the system must use an external supply monitor. For instructions on how to do this, see "Reprogramming the VDD Monitor High Threshold" on page 138.
Note: The output of the internal voltage regulator is calibrated by the MCU immediately after any reset event. The output of the un-calibrated internal regulator could be below the high threshold setting of the VDD Monitor. If this is the case, and the MCU receives a non-power on reset (POR) when the VDD Monitor is set to the high threshold setting, the MCU will remain in reset until a POR occurs (i.e. VDD Monitor will keep the device in reset). A POR will force the VDD Monitor to the low threshold setting, which is guaranteed to be below the un-calibrated output of the internal regulator. The device will then exit reset and resume normal operation. It is for this reason Silicon Labs strongly recommends that the V_{DD} Monitor is always left in the low threshold setting (i.e. default value upon POR).

Note: The VDD Monitor may trigger on fast changes in voltage on the VDD pin, regardless of whether the voltage increased or decreased.

C8051F58x/F59x

SFR Definition 17.1. VDMOCN: VDD Monitor Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	VDMEN	VDDSTAT	VDMLVL					
Type	R / W	R	R / W	R	R	R	R	R
Reset	Varies	Varies	0	0	0	0	0	0

SFR Address = 0xFF; SFR Page $=0 \times 00$

Bit	Name	Function
7	VDMEN	$V_{D D}$ Monitor Enable. This bit turns the $V_{D D}$ monitor circuit on/off. The $V_{D D}$ Monitor cannot generate sys- tem resest until it is also selected as a reset source in register RSTSRC (SFR Defi- nition 17.2). Selecting the $V_{D D}$ monitor as a reset source before it has stabilized may generate a system reset. $0: V_{D D}$ Monitor Disabled. $1: V_{D D}$ Monitor Enabled.
6	VDDSTAT	$V_{D D}$ Status. This bit indicates the current power supply status ($V_{D D}$ Monitor output). $0: V_{D D}$ is at or below the $V_{D D}$ monitor threshold. $1: V_{D D}$ is above the $V_{D D}$ monitor threshold.
5	VDMLVL	$V_{D D}$ Monitor Level Select. $0: V_{D D}$ Monitor Threshold is set to VRST-LOW $1: V_{D D}$ Monitor Threshold is set to VRST-HIGH. This setting is required for any sys- tem includes code that writes to and/or erases Flash.
$4: 0$	Unused	Read = 00000b; Write $=$ Don't care.

17.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the $\overline{\mathrm{RST}}$ pin generates a reset; an external pullup and/or decoupling of the $\overline{\mathrm{RST}}$ pin may be necessary to avoid erroneous noise-induced resets. See Table 5.4 for complete $\overline{\text { RST }}$ pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

17.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low formore than the value specified in Table 5.4, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0 . Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

17.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting

C8051F58x/F59x

input voltage (on $\mathrm{CP} 0+$) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0 . The state of the RST pin is unaffected by this reset.

17.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA0) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "28.4. Watchdog Timer Mode" on page 324; the WDT is enabled and clocked by SYSCLK/12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1 . The state of the $\overline{\mathrm{RST}}$ pin is unaffected by this reset.

17.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a MOVX write operation targets an address above address 0xFBFF in Bank 3 on C8051F580/1/2/3/8/9 or any address in Bank 3 on C8051F584/5/6/7-F590/1 devices.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above address 0xFBFF in Bank 3 on C8051F580/1/2/3/8/9 or any address in Bank 3 on C8051F584/5/6/7-F590/1 devices.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0xFBFF in Bank 3 on C8051F580/1/2/3/8/9 or any address in Bank 3 on C8051F584/5/6/7-F590/1 devices.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "15.3. Security Options" on page 141).
- A Flash read, write, or erase is attempted when the VDD Monitor is not enabled to the high threshold and set as a reset source
The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the $\overline{\text { RST }}$ pin is unaffected by this reset.

17.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the RST pin is unaffected by this reset.

C8051F58x/F59x

SFR Definition 17.2. RSTSRC: Reset Source

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Type	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address $=0 \times E F ;$ SFR Page $=0 \times 00$

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	FERROR	Flash Error Reset Flag.	N/A	Set to 1 if Flash read/write/erase error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a system reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On/V V_{DD} Monitor Reset Flag, and V_{DD} monitor Reset Enable.	Writing a 1 enables the $V_{D D}$ monitor as a reset source. Writing 1 to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset.	Set to 1 anytime a poweron or $V_{D D}$ monitor reset occurs. When set to 1 all other RSTSRC flags are indeterminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if $\overline{\mathrm{RST}}$ pin caused the last reset.
Note: Do not use read-modify-write operations on this register				

18. External Data Memory Interface and On-Chip XRAM

For C8051F58x/F59x devices, 8 kB of RAM are included on-chip and mapped into the external data memory space (XRAM). Additionally, an External Memory Interface (EMIF) is available on the C8051F580/1/4/5 and C8051F588/9-F590/1 devices, which can be used to access off-chip data memories and memorymapped devices connected to the GPIO ports. The external memory space may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect addressing mode using R0 or R1. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16 -bit address is provided by the External Memory Interface Control Register (EMIOCN, shown in SFR Definition 18.1).
Note: The MOVX instruction can also be used for writing to the Flash memory. See Section "15. Flash Memory" on page 138 for details. The MOVX instruction accesses XRAM by default.

18.1. Accessing XRAM

The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms, both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16 -bit register which contains the effective address of the XRAM location to be read from or written to. The second method uses R0 or R1 in combination with the EMIOCN register to generate the effective XRAM address. Examples of both of these methods are given below.

18.1.1. 16-Bit MOVX Example

The 16 -bit form of the MOVX instruction accesses the memory location pointed to by the contents of the DPTR register. The following series of instructions reads the value of the byte at address 0×1234 into the accumulator A :

| MOV DPTR, \#1234h | ; load DPTR with 16 -bit address to read ($0 x 1234$) |
| :--- | :--- | :--- |
| MOVX A, @DPTR | ; load contents of 0×1234 into accumulator A |

The above example uses the 16 -bit immediate MOV instruction to set the contents of DPTR. Alternately, the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and DPL, which contains the lower 8 -bits of DPTR.

18.1.2. 8-Bit MOVX Example

The 8 -bit form of the MOVX instruction uses the contents of the EMIOCN SFR to determine the upper 8-bits of the effective address to be accessed and the contents of RO or R1 to determine the lower 8 -bits of the effective address to be accessed. The following series of instructions read the contents of the byte at address 0×1234 into the accumulator A .

MOV	EMIOCN, \#12h	; load high byte of address into EMIOCN
MOV	RO, \#34h	; load low byte of address into RO (or R1)
MOVX	a, @RO	; load contents of $0 x 1234$ into accumulator A

C8051F58x/F59x

18.2. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

1. Configure the Output Modes of the associated port pins as either push-pull or open-drain (push-pull is most common), and skip the associated pins in the crossbar.
2. Configure Port latches to "park" the EMIF pins in a dormant state (usually by setting them to logic 1).
3. Select Multiplexed mode or Non-multiplexed mode.
4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMIOCF register shown in SFR Definition .

18.3. Port Configuration

The External Memory Interface appears on Ports 1, 2, 3, and 4 when it is used for off-chip memory access. When the EMIF is used, the Crossbar should be configured to skip over the /RD control line (P1.6) and the /WR control line (P1.7) using the P1SKIP register. When the EMIF is used in multiplexed mode, the Crossbar should also skip over the ALE control line (P1.5). For more information about configuring the Crossbar, see Section "20.6. Special Function Registers for Accessing and Configuring Port I/O" on page 204. The EMIF pinout is shown in Table 18.1 on page 160.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar settings for those pins. See Section "20. Port Input/Output" on page 188 for more information about the Crossbar and Port operation and configuration. The Port latches should be explicitly configured to "park" the External Memory Interface pins in a dormant state, most commonly by setting them to a logic 1.
During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode.

The C8051F580/1/4/5 devices support both the multiplexed and non-multiplexed modes and the C8051F588/9-F590/1 devices support only multiplexed modes. Accessing off-chip memory is not supported by the C8051F582/3/6/7 devices.

C8051F58x/F59x

Table 18.1. EMIF Pinout (C8051F580/1/4/5)

Multiplexed Mode		Non Multiplexed Mode	
Signal Name	Port Pin	Signal Name	Port Pin
$\overline{\mathrm{RD}}$	P1.6	$\overline{\mathrm{RD}}$	P1.6
$\overline{\mathrm{WR}}$	P1.7	$\overline{\mathrm{WR}}$	P1.7
ALE	P1.5	D0	P4.0
D0/A0	P4.0	D1	P4.1
D1/A1	P4.1	D2	P4.2
D2/A2	P4.2	D3	P4.3
D3/A3	P4.3	D4	P4.4
D4/A4	P4.4	D5	P4.5
D5/A5	P4.5	D6	P4.6
D6/A6	P4.6	D7	P4.7
D7/A7	P4.7	A0	P3.0
A8	P3.0	A1	P3.1
A9	P3.1	A2	P3.2
A10	P3.2	A3	P3.3
A11	P3.3	A4	P3.4
A12	P3.4	A5	P3.5
A13	P3.5	A6	P3.6
A14	P3.6	A7	P3.7
A15	P3.7	A8	P2.0
-	-	A9	P2.1
-	-	A10	P2.2
-	-	A11	P2.3
-	-	A12	P2.4
-	-	A13	P2.5
-	-	A14	P2.6
-	-	A15	P2.7

Table 18.2. EMIF Pinout (C8051F588/9-F590/1)

Multiplexed Mode	
Signal Name	Port Pin
$\overline{\mathrm{RD}}$	P1.6
$\overline{\mathrm{WR}}$	P1.7
ALE	P1.5
DO/AO	P3.0
D1/A1	P3.1
D2/A2	P3.2
D3/A3	P3.3
D4/A4	P3.4
D5/A5	P3.5
D6/A6	P3.6
D71A7	P3.7
A8	P2.0
A9	P2.1
A10	P2.2
A11	P2.3
A12	P2.4
A13	P2.5
A14	P2.6
A15	P2.7

C8051F58x/F59x

SFR Definition 18.1. EMIOCN: External Memory Interface Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PGSEL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times A A$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	PGSEL[7:0]	XRAM Page Select Bits. The XRAM Page Select Bits provide the high byte of the 16-bit external data memory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM. 0x00: 0×0000 to $0 \times 00 F F$ 0x01: $0 x 0100$ to $0 x 01 F F$ 0xFE: 0xFE00 to 0xFEFF 0xFF: 0xFF00 to 0xFFFF

C8051F58x/F59x

SFR Definition 18.2. EMIOCF: External Memory Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name				EMD2	EMD[1:0]	EALE[1:0]		
Type	R / W							
Reset	0	0	0	0	0	0	1	1

SFR Address $=0 \times B 2$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:5	Unused	Read $=000 \mathrm{~b}$; Write $=$ Don't Care .
4	EMD2	EMIF Multiplex Mode Select Bit. 0: EMIF operates in multiplexed address/data mode 1: EMIF operates in non-multiplexed mode (separate address and data pins)
3:2	EMD[1:0]	EMIF Operating Mode Select Bits. 00: Internal Only: MOVX accesses on-chip XRAM only. All effective addresses alias to on-chip memory space 01: Split Mode without Bank Select: Accesses below the 8 kB boundary are directed on-chip. Accesses above the 8 kB boundary are directed off-chip. 8-bit off-chip MOVX operations use current contents of the Address high port latches to resolve the upper address byte. To access off chip space, EMIOCN must be set to a page that is not contained in the on-chip address space. 10: Split Mode with Bank Select: Accesses below the 8 kB boundary are directed onchip. Accesses above the 8 kB boundary are directed off-chip. 8 -bit off-chip MOVX operations uses the contents of EMIOCN to determine the high-byte of the address. 11: External Only: MOVX accesses off-chip XRAM only. On-chip XRAM is not visible to the CPU.
1:0	EALE[1:0]	ALE Pulse-Width Select Bits. These bits only have an effect when EMD2 $=0$. 00: ALE high and ALE low pulse width $=1$ SYSCLK cycle. 01: ALE high and ALE low pulse width $=2$ SYSCLK cycles. 10: ALE high and ALE low pulse width $=3$ SYSCLK cycles. 11: ALE high and ALE low pulse width $=4$ SYSCLK cycles.

18.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMIOCF.4) bit.

18.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: $\mathrm{AD}[7: 0]$. In this mode, an external latch (74 HC 373 or equivalent logic gate) is used to hold the lower 8 -bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 18.1.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8 -bits of the Address Bus are presented to $A D[7: 0]$. During this phase, the address latch is configured such that the Q outputs reflect the states of the ' D ' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the $A D[7: 0]$ port at the time $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ is asserted.

See Section "18.6.2. Multiplexed Mode" on page 172 for more information.

Figure 18.1. Multiplexed Configuration Example

C8051F58x/F59x

18.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Nonmultiplexed Configuration is shown in Figure 18.2. See Section "18.6.1. Non-Multiplexed Mode" on page 169 for more information about Non-multiplexed operation.

Figure 18.2. Non-multiplexed Configuration Example

18.5. Memory Mode Selection

The external data memory space can be configured in one of four modes, shown in Figure 18.3, based on the EMIF Mode bits in the EMIOCF register (SFR Definition 18.2). These modes are summarized below. More information about the different modes can be found in Section "18.6. Timing" on page 167.

Figure 18.3. EMIF Operating Modes

18.5.1. Internal XRAM Only

When bits EMIOCF[3:2] are set to 00, all MOVX instructions will target the internal XRAM space on the device. Memory accesses to addresses beyond the populated space will wrap on 8 kB boundaries. As an example, the addresses 0×2000 and 0×4000 both evaluate to address 0×0000 in on-chip XRAM space.

- 8-bit MOVX operations use the contents of EMIOCN to determine the high-byte of the effective address and R0 or R1 to determine the low-byte of the effective address.
- 16-bit MOVX operations use the contents of the 16 -bit DPTR to determine the effective address.

18.5.2. Split Mode without Bank Select

When bit EMIOCF.[3:2] are set to 01, the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMIOCN to determine whether the memory access is onchip or off-chip. However, in the "No Bank Select" mode, an 8 -bit MOVX operation will not drive the upper 8 -bits $\mathrm{A}[15: 8]$ of the Address Bus during an off-chip access. This allows the user to manipulate the upper address bits at will by setting the Port state directly via the port latches. This behavior is in contrast with "Split Mode with Bank Select" described below. The lower 8-bits of the Address Bus A[7:0] are driven, determined by R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and unlike 8 -bit MOVX operations, the full 16 -bits of the Address Bus A[15:0] are driven during the off-chip transaction.

C8051F58x/F59x

18.5.3. Split Mode with Bank Select

When EMIOCF[3:2] are set to 10, the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMIOCN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus $\mathrm{A}[15: 8]$ are determined by EMIOCN, and the lower 8 -bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and the full 16-bits of the Address Bus $\mathrm{A}[15: 0$] are driven during the off-chip transaction.

18.5.4. External Only

When EMIOCF[3:2] are set to 11, all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0×0000 and the internal XRAM size boundary.

- 8-bit MOVX operations ignore the contents of EMIOCN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address $A[15: 0]$. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

18.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, $\overline{R D}$ and $\overline{W R}$ strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMIOTC, shown in SFR Definition 18.3, and EMIOCF[1:0].
The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMIOTC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ pulse +4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for IALE +1 for $\overline{R D}$ or $\overline{W R}+4$). The programmable setup and hold times default to the maximum delay settings after a reset. Table 18.3 lists the ac parameters for the External Memory Interface, and Figure 18.4 through Figure 18.9 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

SFR Definition 18.3. EMIOTC: External Memory Timing Control

Bit	7	6	5	4	3	2	1	0
Name	EAS[1:0]		EWR[3:0]				EAH[1:0]	
Type	R/W		R/W				R/W	
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xAA; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:6	EAS[1:0]	EMIF Address Setup Time Bits. 00: Address setup time $=0$ SYSCLK cycles. 01: Address setup time $=1$ SYSCLK cycle. 10: Address setup time $=2$ SYSCLK cycles. 11: Address setup time $=3$ SYSCLK cycles.
5:2	EWR[3:0]	EMIF $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ Pulse-Width Control Bits. 0000: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=1$ SYSCLK cycle. 0001: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=2$ SYSCLK cycles. 0010: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=3$ SYSCLK cycles. 0011: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=4$ SYSCLK cycles. 0100: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=5$ SYSCLK cycles. 0101: $\overline{W R}$ and $\overline{R D}$ pulse width $=6$ SYSCLK cycles. 0110: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=7$ SYSCLK cycles. 0111: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=8$ SYSCLK cycles. 1000: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=9$ SYSCLK cycles. 1001: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=10$ SYSCLK cycles. 1010: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=11$ SYSCLK cycles. 1011: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=12$ SYSCLK cycles. 1100: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=13$ SYSCLK cycles. 1101: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=14$ SYSCLK cycles. 1110: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=15$ SYSCLK cycles. 1111: $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ pulse width $=16$ SYSCLK cycles.
1:0	EAH[1:0]	EMIF Address Hold Time Bits. 00: Address hold time $=0$ SYSCLK cycles. 01: Address hold time $=1$ SYSCLK cycle. 10: Address hold time $=2$ SYSCLK cycles. 11: Address hold time $=3$ SYSCLK cycles.

C8051F58x/F59x

18.6.1. Non-Multiplexed Mode

18.6.1.1. 16-bit MOVX: EMIOCF[4:2] = 101, 110, or 111

Figure 18.4. Non-multiplexed 16-bit MOVX Timing

C8051F58x/F59x

18.6.1.2. 8-bit MOVX without Bank Select: EMIOCF[4:2] = 101 or 111

Figure 18.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

C8051F58x/F59x

18.6.1.3. 8-bit MOVX with Bank Select: EMIOCF[4:2] = 110

Figure 18.6. Non-multiplexed 8-bit MOVX with Bank Select Timing

C8051F58x/F59x

18.6.2. Multiplexed Mode

18.6.2.1. 16-bit MOVX: EMIOCF[4:2] = 001, 010, or 011

Figure 18.7. Multiplexed 16-bit MOVX Timing

C8051F58x/F59x

18.6.2.2. 8-bit MOVX without Bank Select: EMIOCF[4:2] = 001 or 011

Figure 18.8. Multiplexed 8-bit MOVX without Bank Select Timing

C8051F58x/F59x
18.6.2.3. 8-bit MOVX with Bank Select: EMIOCF[4:2] = 010

Figure 18.9. Multiplexed 8-bit MOVX with Bank Select Timing

Table 18.3. AC Parameters for External Memory Interface

Parameter	Description	Min *	Max* *	Units
$\mathbf{T}_{\text {ACS }}$	Address/Control Setup Time	0	$3 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {ACW }}$	Address/Control Pulse Width	$1 \times \mathrm{T}_{\text {SYSCLK }}$	$16 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {ACH }}$	Address/Control Hold Time	0	$3 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {ALEH }}$	Address Latch Enable High Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {ALEL }}$	Address Latch Enable Low Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {WDS }}$	Write Data Setup Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	$19 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {WDH }}$	Write Data Hold Time	0	$3 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathbf{T}_{\text {RDS }}$	Read Data Setup Time	20		ns
$\mathbf{T}_{\text {RDH }}$	Read Data Hold Time	0		ns
${ }^{*}$ Note: $\mathrm{T}_{\text {SYSCLK }}$ is equal to one period of the device system clock (SYSCLK).				

C8051F58x/F59x

19. Oscillators and Clock Selection

C8051F58x/F59x devices include a programmable internal high-frequency oscillator, an external oscillator drive circuit, and a clock multiplier. The internal oscillator can be enabled/disabled and calibrated using the OSCICN, OSCICRS, and OSCIFIN registers, as shown in Figure 19.1. The system clock can be sourced by the external oscillator circuit or the internal oscillator. The clock multiplier can produce three possible base outputs which can be scaled by a programmable factor of $1,2 / 3,2 / 4$ (or $1 / 2$), $2 / 5,2 / 6$ (or $1 / 3$), or 2/7: Internal Oscillator x 2, External Oscillator x 2, or External Oscillator x 4 .

Figure 19.1. Oscillator Options

19.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and Clock Multiplier so long as the selected clock source is enabled and has settled.

The internal oscillator requires little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. The external RC and C modes also typically require no startup time.

External crystals and ceramic resonators however, typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to 1 by hardware when the external crystal or ceramic resonator is settled. In crystal mode, to avoid reading a false XTLVLD, software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD.

SFR Definition 19.1. CLKSEL: Clock Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name							$\mathrm{CLKSL[1:0]}$	
Type	R	R	R	R	R	R	R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 8 F$; SFR Page $=0 \times 0 F$;

Bit	Name	Function
$7: 2$	Unused	Read $=000000 \mathrm{~b}$; Write = Don't Care
$1: 0$	CLKSL[1:0]	System Clock Source Select Bits. 00: SYSCLK derived from the Internal Oscillator and scaled per the IFCN bits in reg- ister OSCICN. 01: SYSCLK derived from the External Oscillator circuit. $10:$ SYSCLK derived from the Clock Multiplier. $11: ~ r e s e r v e d . ~$

19.2. Programmable Internal Oscillator

All C8051F58x/F59x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICRS and OSCIFIN registers defined in SFR Definition 19.3 and SFR Definition 19.4. On C8051F58x/F59x devices, OSCICRS and OSCIFIN are factory calibrated to obtain a 24 MHz base frequency. Note that the system clock may be derived from the programmed internal oscillator divided by $1,2,4,8,16,32,64$, or 128, as defined by the IFCN bits in register OSCICN. The divide value defaults to 128 following a reset.

19.2.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:
■ Port 0 Match Event.

- Port 1 Match Event.
- Port 2 Match Event.
- Port 3 Match Event.
- Comparator 0 enabled and output is logic 0.

When one of the oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.
Note: When entering suspend mode, firmware must be the ZTCEN bit in REFOCN (SFR Definition 8.1).

C8051F58x/F59x

SFR Definition 19.2. OSCICN: Internal Oscillator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IOSCEN[1:0]		SUSPEND	IFRDY	Reserved	IFCN[2:0]		
Type	R/W	R/W	R/W	R	R		R/W	
Reset	1	1	0	1	0	0	0	0

SFR Address $=0 \times A 1$; SFR Page $=0 \times 0 F$;

Bit	Name	Function
7:6	IOSCEN[1:0]	Internal Oscillator Enable Bits. 00: Oscillator Disabled. 01: Reserved. 10: Reserved. 11: Oscillator enabled in normal mode and disabled in suspend mode.
5	SUSPEND	Internal Oscillator Suspend Enable Bit. Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The internal oscillator resumes operation when one of the SUSPEND mode awakening events occurs. Before entering suspend mode, firmware must set the ZTCEN bit in REFOCN.
4	IFRDY	Internal Oscillator Frequency Ready Flag. Note: This flag may not accurately reflect the state of the oscillator. Firmware should not use this flag to determine if the oscillator is running. 0 : Internal oscillator is not running at programmed frequency. 1: Internal oscillator is running at programmed frequency.
3	Reserved	Read $=0 \mathrm{O}$; Must Write $=0 \mathrm{~b}$.
2:0	IFCN[2:0]	Internal Oscillator Frequency Divider Control Bits. 000: SYSCLK derived from Internal Oscillator divided by 128. 001: SYSCLK derived from Internal Oscillator divided by 64. 010: SYSCLK derived from Internal Oscillator divided by 32. 011: SYSCLK derived from Internal Oscillator divided by 16. 100: SYSCLK derived from Internal Oscillator divided by 8. 101: SYSCLK derived from Internal Oscillator divided by 4. 110: SYSCLK derived from Internal Oscillator divided by 2. 111: SYSCLK derived from Internal Oscillator divided by 1.

SFR Definition 19.3. OSCICRS: Internal Oscillator Coarse Calibration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	OSCICRS[6:0]							
Type	R	R/W						
Reset	0	Varies						

SFR Address $=0 \times A 2$; SFR Page $=0 \times 0 F$;

Bit	Name	Function
7	Unused	Read = 0; Write = Don't Care
6:0	OSCICRS[6:0]	Internal Oscillator Coarse Calibration Bits. These bits determine the internal oscillator period. When set to 0000000b, the internal oscillator operates at its slowest setting. When set to 1111111b, the inter- nal oscillator operates at its fastest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24 MHz.

SFR Definition 19.4. OSCIFIN: Internal Oscillator Fine Calibration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
			OSCIFIN[5:0]					
Type	R	R		R/W				
Reset	0	0	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address $=0 \times 9 \mathrm{E} ;$ SFR Page $=0 \times 0 F$;

Bit	Name	Function
$7: 6$	Unused	Read = 00b; Write = Don't Care
$5: 0$	OSCIFIN[5:0]	Internal Oscillator Fine Calibration Bits. These bits are fine adjustment for the internal oscillator period. The reset value is factory calibrated to generate an internal oscillator frequency of 24 MHz.

19.3. Clock Multiplier

The Clock Multiplier generates an output clock which is 4 times the input clock frequency scaled by a programmable factor of $1,2 / 3,2 / 4$ (or $1 / 2$), $2 / 5,2 / 6$ (or $1 / 3$), or $2 / 7$. The Clock Multiplier's input can be selected from the external oscillator, or the internal or external oscillators divided by 2 . This produces three possible base outputs which can be scaled by a programmable factor: Internal Oscillator $\times 2$, External Oscillator x 2, or External Oscillator x 4. See Section 19.1 on page 176 for details on system clock selection.

The Clock Multiplier is configured via the CLKMUL register (SFR Definition 19.5). The procedure for configuring and enabling the Clock Multiplier is as follows:

1. Reset the Multiplier by writing 0×00 to register CLKMUL.
2. Select the Multiplier input source via the MULSEL bits.
3. Select the Multiplier output scaling factor via the MULDIV bits
4. Enable the Multiplier with the MULEN bit (CLKMUL $\mid=0 \times 80$).
5. Delay for $>5 \mu \mathrm{~s}$.
6. Initialize the Multiplier with the MULINIT bit (CLKMUL $\mid=0 \times C 0$).
7. Poll for MULRDY => 1 .

Important Note: When using an external oscillator as the input to the Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See "19.4. External Oscillator Drive Circuit" on page 183 for details on selecting an external oscillator source.

The Clock Multiplier allows faster operation of the CIP-51 core and is intended to generate an output frequency between 25 and 50 MHz . The clock multiplier can also be used with slow input clocks. However, if the clock is below the minimum Clock Multiplier input frequency (FCMmin), the generated clock will consist of four fast pulses followed by a long delay until the next input clock rising edge. The average frequency of the output is equal to $4 x$ the input, but the instantaneous frequency may be faster. See Figure 19.2 below for more information.

Figure 19.2. Example Clock Multiplier Output

C8051F58x/F59x

SFR Definition 19.5. CLKMUL: Clock Multiplier

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	MULEN	MULINIT	MULRDY	MULDIV[2:0]			MULSEL[1:0]	
Type	R/W	R/W	R	R/W			R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 97$; SFR Page $=0 \times 0 F$;

Bit	Name	Function		
7	MULEN	Clock Multiplier Enable. 0: Clock Multiplier disabled. 1: Clock Multiplier enabled.		
6	MULINIT	Clock Multiplier Initialize. This bit is 0 when the Clock Multiplier is enabled. Once enabled, writing a 1 to this bit will initialize the Clock Multiplier. The MULRDY bit reads 1 when the Clock Multiplier is stabilized.		
5	MULRDY	Clock Multiplier Ready. 0 : Clock Multiplier is not ready. 1: Clock Multiplier is ready (PLL is locked).		
4:2	MULDIV[2:0]	Clock Multiplier Output Scaling Factor. 000: Clock Multiplier Output scaled by a factor of 1. 001: Clock Multiplier Output scaled by a factor of 1. 010: Clock Multiplier Output scaled by a factor of 1. 011: Clock Multiplier Output scaled by a factor of $2 / 3^{*}$. 100: Clock Multiplier Output scaled by a factor of $2 / 4(1 / 2)$. 101: Clock Multiplier Output scaled by a factor of $2 / 5^{*}$. 110: Clock Multiplier Output scaled by a factor of $2 / 6(1 / 3)$. 111: Clock Multiplier Output scaled by a factor of $2 / 7^{*}$. *Note: The Clock Multiplier output duty cycle is not 50% for these settings.		
1:0	MULSEL[1:0]	Clock Multiplier Input Select. These bits select the clock supplied to the Clock Multiplier		
		MULSEL[1:0]	Selected Input Clock	Clock Multiplier Output for MULDIV[2:0] = 000b
		00	Internal Oscillator	Internal Oscillator x 2
		01	External Oscillator	External Oscillator $\times 2$
		10	Internal Oscillator	Internal Oscillator $\times 4$
		11	External Oscillator	External Oscillator x 4

Notes:The maximum system clock is 50 MHz , and so the Clock Multiplier output should be scaled accordingly. If Internal Oscillator x 2 or External Oscillator x 2 is selected using the MULSEL bits, MULDIV[2:0] is ignored.

C8051F58x/F59x

19.4. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 19.1. A $10 \mathrm{M} \Omega$ resistor also must be wired across the XTAL2 and XTAL1 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 19.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 19.6).
Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "20.3. Priority Crossbar Decoder" on page 192 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs. In CMOS clock mode, the associated pin should be configured as a digital input. See Section "20.4. Port I/O Initialization" on page 195 for details on Port input mode selection.

C8051F58x/F59x

SFR Definition 19.6. OSCXCN: External Oscillator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	XTLVLD	XOSCMD[2:0]				$\mathrm{XFCN}[2: 0]$		
Type	R	R / W			R		R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 9 F ;$ SFR Page $=0 \times 0 F$;

Bit	Name	Function			
7	XTLVLD	Crystal Oscillator Valid Flag. (Read only when XOSCMD = 11x.) 0 : Crystal Oscillator is unused or not yet stable. 1: Crystal Oscillator is running and stable.			
6:4	XOSCMD[2:0]	External Oscillator Mode Select. 00x: External Oscillator circuit off. 010: External CMOS Clock Mode. 011: External CMOS Clock Mode with divide by 2 stage. 100: RC Oscillator Mode. 101: Capacitor Oscillator Mode. 110: Crystal Oscillator Mode. 111: Crystal Oscillator Mode with divide by 2 stage.			
3	Unused	Read $=0 \mathrm{~b}$; Write $=0 \mathrm{~b}$			
2:0	XFCN[2:0]	External Oscillator Frequency Control Bits. Set according to the desired frequency for Crystal or RC mode. Set according to the desired K Factor for C mode.			
		XFCN	Crystal Mode	RC Mode	C Mode
		000	$\mathrm{f} \leq 32 \mathrm{kHz}$	$\mathrm{f} \leq 25 \mathrm{kHz}$	K Factor $=0.87$
		001	$32 \mathrm{kHz}<\mathrm{f} \leq 84 \mathrm{kHz}$	$25 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	K Factor $=2.6$
		010	$84 \mathrm{kHz}<\mathrm{f} \leq 225 \mathrm{kHz}$	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	K Factor $=7.7$
		011	$225 \mathrm{kHz}<\mathrm{f} \leq 590 \mathrm{kHz}$	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	K Factor $=22$
		100	$590 \mathrm{kHz}<\mathrm{f} \leq 1.5 \mathrm{MHz}$	$200 \mathrm{kHz}<\mathrm{f} \leq 400 \mathrm{kHz}$	K Factor $=65$
		101	$1.5 \mathrm{MHz}<\mathrm{f} \leq 4 \mathrm{MHz}$	$400 \mathrm{kHz}<\mathrm{f} \leq 800 \mathrm{kHz}$	K Factor $=180$
		110	$4 \mathrm{MHz}<\mathrm{f} \leq 10 \mathrm{MHz}$	$800 \mathrm{kHz}<\mathrm{f} \leq 1.6 \mathrm{MHz}$	K Factor $=664$
		111	$10 \mathrm{MHz}<\mathrm{f} \leq 30 \mathrm{MHz}$	$1.6 \mathrm{MHz}<\mathrm{f} \leq 3.2 \mathrm{MHz}$	K Factor $=1590$

19.4.1. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 19.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in SFR Definition 19.6 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN setting of 111 b and a 32.768 kHz Watch Crystal requires an XFCN setting of 001b. After an external 32.768 kHz oscillator is stabilized, the XFCN setting can be switched to 000 to save power. It is recommended to enable the missing clock detector before switching the system clock to any external oscillator source.

Note: Small surface mount crystals can have maximum drive level specifications that are exceeded by the above XFCN recommendations. In these cases, a software-controlled startup sequence may be used to reliably start the crystal using a higher XFCN setting, and then lowering the XFCN setting once the oscillator has started to reduce the drive level and prevent damage or premature aging of the crystal. In all cases, the drive level should be measured to ensure that the crystal is being driven within its operational guidelines as part of robust oscillator system design. Contact technical support for additional details and recommendations if using surface mount crystals with these devices.

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

1. Force XTAL1 and XTAL2 to a high state. This involves enabling the Crossbar and writing 1 to the port pins associated with XTAL1 and XTAL2.
2. Configure XTAL1 and XTAL2 as analog inputs using.
3. Enable the external oscillator.
4. Wait at least 1 ms .
5. Poll for XTLVLD $=>1$.
6. Enable the Missing Clock Detector.
7. Switch the system clock to the external oscillator.

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The desired load capacitance depends upon the crystal and the manufacturer. Refer to the crystal data sheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 19.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF . With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 19.3.

C8051F58x/F59x

Figure 19.3. External 32.768 kHz Quartz Crystal Oscillator Connection Diagram

19.4.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 19.1, Option 2. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation, according to Equation , where $\mathrm{f}=$ the frequency of oscillation in $\mathrm{MHz}, \mathrm{C}=$ the capacitor value in pF , and $\mathrm{R}=$ the pull-up resistor value in $\mathrm{k} \Omega$.

$$
f=1.23 \times 10^{3} /(R \times C)
$$

Equation 19.1. RC Mode Oscillator Frequency

For example: If the frequency desired is 100 kHz , let $\mathrm{R}=246 \mathrm{k} \Omega$ and $\mathrm{C}=50 \mathrm{pF}$:
$f=1.23\left(10^{3}\right) / R C=1.23\left(10^{3}\right) /[246 \times 50]=0.1 \mathrm{MHz}=100 \mathrm{kHz}$
Referring to the table in SFR Definition 19.6, the required XFCN setting is 010b.

19.4.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 19.1, Option 3. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation, where $f=$ the frequency of oscillation in $\mathrm{MHz}, \mathrm{C}=$ the capacitor value in pF , and $\mathrm{V}_{\mathrm{DD}}=$ the MCU power supply in volts.

C8051F58x/F59x

$$
f=(K F) /\left(R \times V_{D D}\right)
$$

Equation 19.2. C Mode Oscillator Frequency

For example: Assume $\mathrm{V}_{\mathrm{DD}}=2.1 \mathrm{~V}$ and $\mathrm{f}=75 \mathrm{kHz}$:
$f=K F /(C \times V D D)$
0.075 MHz $=\mathrm{KF} /(\mathrm{C} \times 2.1)$

Since the frequency of roughly 75 kHz is desired, select the K Factor from the table in SFR Definition 19.6 (OSCXCN) as $\mathrm{KF}=7.7$:
$0.075 \mathrm{MHz}=7.7 /(\mathrm{C} \times 2.1)$
$C \times 2.1=7.7 / 0.075 \mathrm{MHz}$
$C=102.6 / 2.0 \mathrm{pF}=51.3 \mathrm{pF}$

Therefore, the XFCN value to use in this example is 010b.

20. Port Input/Output

Digital and analog resources are available through 40 (C8051F580/1/4/5), 33 (C8051F588/9-F590/1) or 25 (C8051F582/3/6/7) I/O pins. Port pins P0.0-P4.7 on the C8051F580/1/4/5, Port pins P0.0-P4.0 on the C8051F588/9-F590/1 and Port pins P0.0-P3.0 on the C8051F582/3/6/7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources, or assigned to an analog function as shown in Figure 20.3. Port pin P3.0 on the C8051F582/3/6/7 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). Port pin P4.0 on the C8051F588/9-F590/1 can be used as GPIO and is shared with the C2 Interface Data signal (C2D) The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 20.3 and Figure 20.4). The registers $\mathrm{XBR} 0, \mathrm{XBR} 1, \mathrm{XBR} 2$, and XBR 3 are used to select internal digital functions. Port 4 on the C8051F580/1/4/5 and C8051F588/9-F590/1 is a digital-only port, which is not assigned through the Crossbar.

All Port I/Os are 5 V tolerant (refer to Figure 20.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where $n=0,1$). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 47.
Note: When VIO rises faster than VDD, which can happen when VREGIN and VIO are tied together, a delay created between GPIO power (VIO) and the logic controlling GPIO (VDD) results in a temporary unknown state at the GPIO pins. Cross coupling VIO and VDD with a $4.7 \mu \mathrm{~F}$ capacitor mitigates the root cause of the problem by allowing VIO and VDD to rise at the same rate.

C8051F58x/F59x

Figure 20.1. Port I/O Functional Block Diagram

20.1. Port I/O Modes of Operation

Port pins P0.0-P3.7 use the Port I/O cell shown in Figure 20.2. Each of these Port I/O cells can be configured by software for analog I/O or digital I/O using the PnMDIN registers. P4.0-P4.7 use a similar cell, except that they can only be configured as digital I/O pins and do not have a corresponding PnMDIN or PnSKIP register. On reset, all Port I/O cells default to a high impedance state with weak pull-ups enabled until the Crossbar is enabled (XBARE = 1).

20.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC inputs, external oscillator inputs, or VREF should be configured for analog I/O (PnMDIN.n = 0). When a pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. Port pins configured for analog I/O will always read back a value of 0 .

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

20.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.
Push-pull outputs (PnMDOUT. $n=1$) drive the Port pad to the VIO or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high low drivers turned off) when the output logic value is 1 .

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VIO supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1 . The user should ensure that digital I/O are always internally or externally pulled or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

Figure 20.2. Port I/O Cell Block Diagram

C8051F58x/F59x

20.1.3. Interfacing Port I/O in a Multi-Voltage System

All Port I/O are capable of interfacing to digital logic operating at a supply voltage higher than VDD and less than 5.25 V . Connect the VIO pin to the voltage source of the interface logic.

20.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins P0.0-P3.7 can be assigned to various analog, digital, and external interrupt functions. P4.0P4.7 can be assigned to only digital functions. The Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or external interrupt functions should be configured for digital I/O.

20.2.1. Assigning Port I/O Pins to Analog Functions

Table 20.1 shows all available analog functions that require Port I/O assignments. Port pins selected for these analog functions should have their corresponding bit in PnSKIP set to 1. This reserves the pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 20.1 shows the potential mapping of Port I/O to each analog function.

Table 20.1. Port I/O Assignment for Analog Functions

Analog Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
ADC Input	P0.0-P3.7	

Notes:

1. P3.1-P3.7 are only available on the 48 -pin and 40 -pin packages
2. If VDD is selected as the voltage reference in the REFOCN register and the ADC is enabled in the ADCOCN register, the P0.0/VREF pin cannot operate as a general purpose I/O pin in open-drain mode. With the above settings, this pin can operate in push-pull output mode or as an analog input.

20.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. Port pins used by these digital functions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1. Table 20.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Table 20.2. Port I/O Assignment for Digital Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
UARTO, UART1, SPIO, SMBus, CANO, LINO, CPO, CP0A, CP1, CP1A, CP2, CP2A, SYSCLK, PCAO (CEX0-5 and ECI), PCA1 (CEX6-11, ECI1), T0, T1, T4, or T5	Any Port pin available for assignment by the Crossbar. This includes P0.0-P4.7* pins which have their PnSKIP bit set to 0 . Note: The Crossbar will always assign UART0 pins to P0.4 and P0.5 and always assign CANO to P0.6 and P0.7.	XBR0, XBR1, XBR2, XBR3
Any pin used for GPIO	P0.0-P4.7*	POSKIP, P1SKIP, P2SKIP, P3SKIP

*Note: P3.1-P3.7 and P4.0 are only available on the 48-pin and 40-pin packages.
P4.1-P4.7 are only available on the 48-pin packages. A skip register is not available for P4.

20.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions

External digital event capture functions can be used to trigger an interrupt or wake the device from a low power mode when a transition occurs on a digital I/O pin. The digital event capture functions do not require dedicated pins and will function on both GPIO pins (PnSKIP =1) and pins in use by the Crossbar (PnSKIP $=0$). External digital event capture functions cannot be used on pins configured for analog I/O. Table 20.3 shows all available external digital event capture functions.

Table 20.3. Port I/O Assignment for External Digital Event Capture Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P1.0-P1.7	IT01CF
External Interrupt 1	P1.0-P1.7	IT01CF
Port Match	P0.0-P3.7*	POMASK, POMAT
		P1MASK, P1MAT
		P2MASK, P2MAT
		P3MASK, P3MAT

*Note: P3.1-P3.7 are only available on the 48-pin and 40-pin packages.

20.3. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 20.3) assigns a priority to each I/O function, starting at the top with UARTO. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource excluding UARTO, which is always assigned to pins P0.4 and PO.5, and excluding CANO which is always assigned to pins P0.6 and P0.7. If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Because of the nature of Priority Crossbar Decoder, not all peripherals can be located on all port pins. Figure 20.3 maps peripherals to the potential port pins on which the peripheral I/O can appear.

C8051F58x/F59x

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P0.0 if VREF is used, P0.1 if the ADC is configured to use the external conversion start signal (CNVSTR), P0.3 and/or P0.2 if the external oscillator circuit is enabled, and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin.

Port	P0								P1								P2								P3								P4						
Special Function Signals									$\stackrel{y}{\mathbf{y}} \stackrel{\rightharpoonup}{\underline{r}} \stackrel{\sim}{\aleph}$																	P3.1-P3.7, P4.0 only available on the 48-pin and 40-pin packages								P4.1-P4.7 only available on the 48pin packages					
PIN I/O	$\begin{array}{lllll}0 & 1 & 2 & 3\end{array}$				4	5	67			$0 \quad 1$	2	3	4	$5 \quad 67$				$0 \quad 1$	23		34	$5 \quad 67$				1	12	34	45	56		70	0	12	34	4	$\begin{array}{lll}5 & 6\end{array}$		
UARTO_TX																																							
UARTO_RX																																							
CAN_TX																																							
CAN_RX																																							
SCK																																							
MISO																																							
MOSI																																							
NSS																																							
SDA																																							
SCL																																							
CP0																																							
CPOA																																							
CP1																																							
CP1A																																							
SYSCLK																																							
CEXO																																							
CEX1																																							
CEX2																																							
CEX3																																							
CEX4																																							
CEX5																																							
ECI																																							
T0																																							
T1																																							
LIN_TX																																							
LIN_RX																																							
UART1_TX																																							
UART1_RX																																							
CP2																																							
CP2A																																							
CEX6																																							
CEX7																																							
CEX8																																							
CEX9																																							
CEX10																																							
CEX11																																							
ECI1																																							
T4																																							
T4EX																																							
T5																																							
T5EX																																							

Figure 20.3. Peripheral Availability on Port I/O Pins
Registers XBR0, XBR1, XBR2, and XBR3 are used to assign the digital I/O resource to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); and similarly when the UART, CAN or LIN are selected, the Crossbar assigns both pins associated with the peripheral (TX and RX).

C8051F58x/F59x

UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RXO is always assigned to P0.5. CANO pin assignments are fixed to P0.6 for CAN_TX and P0.7 for CAN_RX. Standard Port I/Os appear contiguously after the prioritized functions have been assigned.
Important Note: The SPI can be operated in either 3-wire or 4-wire modes, pending the state of the NSS-MD1-NSSMD0 bits in register SPIOCN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.
As an example configuration, if CANO, SPIO in 4 -wire mode, and PCA0 Modules 0,1 , and 2,6 , and 7 are enabled on the crossbar with P0.1, P0.2, and P0.5 skipped, the registers should be set as follows: $\mathrm{XBRO}=$ 0×06 (CAN0 and SPIO enabled), XBR1 $=0 \times 0 \mathrm{C}$ (PCA0 modules 0 , 1 , and 2 enabled), $\mathrm{XBR} 2=0 \times 40$ (Crossbar enabled), XBR3 $=0 \times 02$ (PCA1 modules 6 and 7) and P0SKIP $=0 \times 26$ (P0.1, P0.2, and P0.5 skipped). The resulting crossbar would look as shown in Figure 20.4.

Figure 20.4. Crossbar Priority Decoder in Example Configuration

C8051F58x/F59x

20.4. Port I/O Initialization

Port I/O initialization consists of the following steps:

1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
4. Assign Port pins to desired peripherals.
5. Enable the Crossbar (XBARE = 1).

All Port pins must be configured as either analog or digital inputs. Port 4 on C8051F580/1/4/5 and C8051F588/9-F590/1 is a digital-only Port. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 20.14 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR2 is 0 , a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBR0, XBR1, XBR2, an XBR3 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR2 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

SFR Definition 20.1. XBR0: Port I/O Crossbar Register 0

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CP1AE	CP1E	CPOAE	CPOE	SMB0E	SPIOE	CANOE	URTOE
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 1$: SFR Page $=0 \times 0 F$

Bit	Name	Function
7	CP1AE	Comparator1 Asynchronous Output Enable. 0: Asynchronous CP1 unavailable at Port pin. 1: Asynchronous CP1 routed to Port pin.
6	CP1E	Comparator1 Output Enable. 0: CP1 unavailable at Port pin. 1: CP1 routed to Port pin.
5	CP0AE	Comparator0 Asynchronous Output Enable. 0: Asynchronous CPO unavailable at Port pin. 1: Asynchronous CPO routed to Port pin.
4	CP0E	Comparator0 Output Enable. 0: CPO unavailable at Port pin. 1: CPO routed to Port pin.
3	SMB0E	SMBus I/O Enable. 0: SMBus I/O unavailable at Port pins. 1: SMBus I/O routed to Port pins.
2	SPIOE	SPI I/O Enable. 0: SPI I/O unavailable at Port pins. 1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO pins.
1	CANOE	CAN I/O Output Enable. 0: CAN I/O unavailable at Port pins. 1: CAN_TX, CAN_RX routed to Port pins P0.6 and P0.7.
0	URTOE	UARTO I/O Output Enable. 0: UARTO I/O unavailable at Port pin. 1: UARTO TXO, RXO routed to Port pins P0.4 and P0.5.

C8051F58x/F59x

SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	T1E	TOE	ECIE	PCAOME[2:0]			SYSCKE	Reserved
Type	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 2$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7	T1E	T1 Enable. 0: T1 unavailable at Port pin. 1: T1 routed to Port pin.
6	TOE	T0 Enable. 0: T0 unavailable at Port pin. 1: TO routed to Port pin.
5	ECIE	PCAO External Counter Input Enable. 0: ECI unavailable at Port pin. 1: ECI routed to Port pin.
4:2	PCAOME[2:0]	PCAO Module I/O Enable Bits. 000: All PCAO I/O unavailable at Port pins. 001: CEXO routed to Port pin. 010: CEX0, CEX1 routed to Port pins. 011: CEX0, CEX1, CEX2 routed to Port pins. 100: CEX0, CEX1, CEX2, CEX3 routed to Port pins. 101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to Port pins. 110: CEX0, CEX1, CEX2, CEX3, CEX4, CEX5 routed to Port pins. 111: RESERVED
1	SYSCKE	SYSCLK Output Enable. 0 : $\overline{\text { SYSCLK }}$ unavailable at Port pin. 1: SYSCLK output routed to Port pin.
0	Reserved	Always Write to 0.

SFR Definition 20.3. XBR2: Port I/O Crossbar Register 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	WEAKPUD	XBARE	Reserved		CP2AE	CP2E	URT1E	LINOE
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 7$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable. 0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode). 1: Weak Pullups disabled.
6	XBARE	Crossbar Enable. 0: Crossbar disabled. 1: Crossbar enabled.
$5: 4$	Reserved	Always Write to 00b.
3	CP2AE	Comparator2 Asynchronous Output Enable. 0: Asynchronous CP2 unavailable at Port pin. 1: Asynchronous CP2 routed to Port pin.
2	CP2E	Comparator2 Output Enable. 0: CP2 unavailable at Port pin. 1: CP2 routed to Port pin.
1	URT1E	UART1 I/O Output Enable. 0: UART1 I/O unavailable at Port pin. 1: UART1 TX0, RX0 routed to Port pins.
0	LINOE	LIN I/O Output Enable. 0: LIN I/O unavailable at Port pin. 1: LIN_TX, LIN_RX routed to Port pins.

C8051F58x/F59x

SFR Definition 20.4. XBR3: Port I/O Crossbar Register 3

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	T5EXE	T5E	T4EXE	T4E	ECI1E	PCA1ME[2:0]		
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 6$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7	T5EXE	T5EX Enable. 0: T5EX unavailable at Port pin. 1: T5EX routed to Port pin
6	T5EX	T5E Enable. 0: T5E unavailable at Port pin. 1: T5E routed to Port pin
5	T4EXE	T4EX Enable. 0: T4EX unavailable at Port pin. 1: T4EX routed to Port pin
4	T5EX	T4E Enable. 0: T4E unavailable at Port pin. 1: T4E routed to Port pin
3	ECI1E	PCA1 External Counter Input Enable. 0: ECI1 unavailable at Port pin. 1: ECI1 routed to Port pin.
2:0	PCA1ME[2:0]	PCA1 Module I/O Enable Bits. 000: All PCA1 I/O unavailable at Port pins. 001: CEX6 routed to Port pin. 010: CEX6, CEX7 routed to Port pins. 011: CEX6, CEX7, CEX8 routed to Port pins. 100: CEX6, CEX7, CEX8, CEX9 routed to Port pins. 101: CEX6, CEX7, CEX8, CEX9, CEX10 routed to Port pins. 110: CEX6, CEX7, CEX8, CEX9, CEX10, CEX11 routed to Port pins. 111: RESERVED

C8051F58x/F59x

20.5. Port Match

Port match functionality allows system events to be triggered by a logic value change on P0, P1, P2 or P3. A software controlled value stored in the PnMATCH registers specifies the expected or normal logic values of P0, P1, P2, and P3. A Port mismatch event occurs if the logic levels of the Port's input pins no longer match the software controlled value. This allows Software to be notified if a certain change or pattern occurs on P0, P1, P2, or P3 input pins regardless of the XBRn settings.
The PnMASK registers can be used to individually select which of the port pins should be compared against the PnMATCH registers. A Port mismatch event is generated if (Pn \& PnMASK) does not equal (PnMATCH \& PnMASK), where n is $0,1,2$ or 3
A Port mismatch event may be used to generate an interrupt or wake the device from a low power mode, such as IDLE or SUSPEND. See the Interrupts and Power Options chapters for more details on interrupt and wake-up sources.

SFR Definition 20.5. POMASK: Port 0 Mask Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMASK[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times F 2$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 0$	POMASK[7:0]	Port 0 Mask Value. Selects P0 pins to be compared to the corresponding bits in POMAT. 0: P0.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P0.n pin logic value is compared to POMAT.n.

SFR Definition 20.6. POMAT: Port 0 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMAT[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1	R/W						

SFR Address $=0 \times F 1$; SFR Page $=0 \times 00$

Bit	Name	Function
$7: 0$	POMAT[7:0]	Port 0 Match Value.
		Match comparison value used on Port 0 for bits in POMAT which are set to 1. 0: PO.n pin logic value is compared with logic LOW. 1: P0.n pin logic value is compared with logic HIGH.

C8051F58x/F59x

SFR Definition 20.7. P1MASK: Port 1 Mask Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MASK[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times F 4 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P1MASK[7:0]	Port 1 Mask Value. Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 20.8. P1MAT: Port 1 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MAT[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times F 3$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P1MAT[7:0]	Port 1 Match Value. Match comparison value used on Port 1 for bits in P1MAT which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.

SFR Definition 20.9. P2MASK: Port 2 Mask Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P2MASK[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times B 2 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P2MASK[7:0]	Port 2 Mask Value. Selects P2 pins to be compared to the corresponding bits in P2MAT. 0: P2.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P2.n pin logic value is compared to P2MAT.n.

SFR Definition 20.10. P2MAT: Port 2 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P2MAT[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1							

SFR Address $=0 \times B 1$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P2MAT[7:0]	Port 2 Match Value. Match comparison value used on Port 2 for bits in P2MAT which are set to 1. 0: P2.n pin logic value is compared with logic LOW. 1: P2.n pin logic value is compared with logic HIGH.

SFR Definition 20.11. P3MASK: Port 3 Mask Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P3MASK[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times A F ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P3MASK[7:0]	Port 1 Mask Value. Selects P3 pins to be compared to the corresponding bits in P3MAT. 0: P3.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P3.n pin logic value is compared to P3MAT.n.

SFR Definition 20.12. P3MAT: Port 3 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P3MAT[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1	R/W						

SFR Address $=0 \times A E ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	P3MAT[7:0]	Port 3 Match Value. Match comparison value used on Port 3 for bits in P3MAT which are set to 1.
		0: P3.n pin logic value is compared with logic LOW. 1: P3.n pin logic value is compared with logic HIGH.
Note:	P3.1-P3.6 are only available on the 48-pin and 40-pin packages	

20.6. Special Function Registers for Accessing and Configuring Port I/O

All Port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable, except for P 4 which is only byte addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

Ports 0-3 have a corresponding PnSKIP register which allows its individual Port pins to be assigned to digital functions or skipped by the Crossbar. All Port pins used for analog functions, GPIO, or dedicated digital functions such as the EMIF should have their PnSKIP bit set to 1.

The Port input mode of the I/O pins is defined using the Port Input Mode registers (PnMDIN). Each Port cell can be configured for analog or digital I/O. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is P4, which can only be used for digital I/O.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings.

SFR Definition 20.13. P0: Port 0

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	$\mathrm{PO}[7: 0]$								
Type	R / W								
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0x80; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 0$	P0[7:0]	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P0.n Port pin is logic LOW. 1: P0.n Port pin is logic HIGH.

C8051F58x/F59x

SFR Definition 20.14. POMDIN: Port 0 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMDIN[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times F 1$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	POMDIN[7:0]	Analog Configuration Bits for P0.7-P0.0 (respectively). Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the POMDOUT register. 0: Corresponding P0.n pin is configured for analog mode. 1: Corresponding P0.n pin is not configured for analog mode.

SFR Definition 20.15. POMDOUT: Port 0 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMDOUT[7:0]							
Type	R / W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 4$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	POMDOUT[7:0]	Output Configuration Bits for P0.7-P0.0 (respectively). These bits are ignored if the corresponding bit in register POMDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull.

SFR Definition 20.16. P0SKIP: Port 0 Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POSKIP[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times D 4$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P0SKIP[7:0]	Port 0 Crossbar Skip Enable Bits. These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.

SFR Definition 20.17. P1: Port 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{P} 1[7: 0]$							
Type	1	1	1	1	1	1	1	1
Reset	1	1						

SFR Address = 0x90; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 0$	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

C8051F58x/F59x

SFR Definition 20.18. P1MDIN: Port 1 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MDIN[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1		R/W					

SFR Address $=0 \times F 2$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P1MDIN[7:0]	Analog Configuration Bits for P1.7-P1.0 (respectively). Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P1MDOUT register.
$0:$ Corresponding P1.n pin is configured for analog mode.		
$1:$ Corresponding P1.n pin is not configured for analog mode.		

SFR Definition 20.19. P1MDOUT: Port 1 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MDOUT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times A 5$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P1MDOUT[7:0]	Output Configuration Bits for P1.7-P1.0 (respectively). These bits are ignored if the corresponding bit in register P1MDIN is logic 0. 0: Corresponding P1.n Output is open-drain. $1:$ Corresponding P1.n Output is push-pull.

SFR Definition 20.20. P1SKIP: Port 1 Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1SKIP[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times D 5$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P1SKIP[7:0]	Port 1 Crossbar Skip Enable Bits. These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P1.n pin is not skipped by the Crossbar. 1: Corresponding P1.n pin is skipped by the Crossbar.

SFR Definition 20.21. P2: Port 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{P} 2[7: 0]$							
Type	R / W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xA0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 0$	P2[7:0]	Port 2Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P2.n Port pin is logic LOW. 1: P2.n Port pin is logic HIGH.

C8051F58x/F59x

SFR Definition 20.22. P2MDIN: Port 2 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P2MDIN[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1		R/W					

SFR Address $=0 \times F 3$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	P2MDIN[7:0]	Analog Configuration Bits for P2.7-P2.0 (respectively). Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P2MDOUT register. 0: Corresponding P2.n pin is configured for analog mode. 1: Corresponding P2.n pin is not configured for analog mode.

SFR Definition 20.23. P2MDOUT: Port 2 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P2MDOUT[7:0]							
Type	R / W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 6$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	P2MDOUT[7:0]	Output Configuration Bits for P2.7-P2.0 (respectively). These bits are ignored if the corresponding bit in register P2MDIN is logic 0. 0: Corresponding P2.n Output is open-drain. 1: Corresponding P2.n Output is push-pull.

SFR Definition 20.24. P2SKIP: Port 2 Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P2SKIP[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times D 6$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P2SKIP[7:0]	Port 2 Crossbar Skip Enable Bits. These bits select Port 2 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P2.n pin is not skipped by the Crossbar. 1: Corresponding P2.n pin is skipped by the Crossbar.

SFR Definition 20.25. P3: Port 3

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{P} 3[7: 0]$							
Type	1	1	1	1	1	1	1	1
Reset	1	1						

SFR Address $=0 \times B 0$; SFR Page $=$ All Pages; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 0$	P3[7:0]	Port 3 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P3.n Port pin is logic LOW. 1: P3.n Port pin is logic HIGH.

Note: Port P3.1-P3.6 are only available on the 48-pin and 40-pin packages.

C8051F58x/F59x

SFR Definition 20.26. P3MDIN: Port 3 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P3MDIN[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1		R/W					

SFR Address $=0 \times F 4$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P3MDIN[7:0]	Analog Configuration Bits for P3.7-P3.0 (respectively). Port pins configured for analog mode have their weak pull-up and digital receiver disabled. For analog mode, the pin also needs to be configured for open-drain mode in the P3MDOUT register. 0: Corresponding P3.n pin is configured for analog mode. 1: Corresponding P3.n pin is not configured for analog mode.
	Note: Port P3.1-P3.7 are only available on the 48-pin and 40-pin packages.	

SFR Definition 20.27. P3MDOUT: Port 3 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P3MDOUT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address = 0xAE; SFR Page $=0 x 0 F$

Bit	Name	
7:0	P3MDOUT[7:0]	Output Configuration Bits for P3.7-P3.0 (respectively). These bits are ignored if the corresponding bit in register P3MDIN is logic 0. 0: Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.

SFR Definition 20.28. P3SKIP: Port 3Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P3SKIP[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times D 7$; SFR Page $=0 \times 0 F$

Bit	Name	Function
$7: 0$	P3SKIP[7:0]	Port 3 Crossbar Skip Enable Bits. These bits select Port 3 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P3.n pin is not skipped by the Crossbar. 1: Corresponding P3.n pin is skipped by the Crossbar.
Note: \quad Port P3.1-P3.7 are only available on the 48-pin and 40-pin packages.		

SFR Definition 20.29. P4: Port 4

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	$\mathrm{P} 4[7: 0]$								
Type	R / W								
Reset	1	1	1	1	1	1	1	1	

SFR Address $=0 \times B 5$; SFR Page $=$ All Pages

Bit	Name	Description	Write	Read
$7: 0$	P4[7:0]	Port 4 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P4.n Port pin is logic LOW. 1: P4.n Port pin is logic HIGH.

Note: Port 4.0 is only available on the 48-pin and 40-pin packages.; P4.1-P4.7 is only available on the 48-pin packages.

SFR Definition 20.30. P4MDOUT: Port 4 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P4MDOUT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times A F ;$ SFR Page $=0 \times 0 F$

Bit	Name	
7:0	P4MDOUT[7:0]	Output Configuration Bits for P4.7-P4.0 (respectively). $0:$ Corresponding P4.n Output is open-drain. 1: Corresponding P4.n Output is push-pull.

21. Local Interconnect Network (LIN0)

Important Note: This chapter assumes an understanding of the Local Interconnect Network (LIN) protocol. For more information about the LIN protocol, including specifications, please refer to the LIN consortium (http://www.lin-subbus.org).

LIN is an asynchronous, serial communications interface used primarily in automotive networks. The Silicon Laboratories LIN controller is compliant to the 2.1 Specification, implements a complete hardware LIN interface and includes the following features:

- Selectable Master and Slave modes.
- Automatic baud rate option in slave mode.
- The internal oscillator is accurate to within 0.5% of 24 MHz across the entire temperature range and for VDD voltages greater than or equal to the minimum output of the on-chip voltage regulator, so an external oscillator is not necessary for master mode operation for most systems.
Note: The minimum system clock (SYSCLK) required when using the LIN controller is 8 MHz .

Figure 21.1. LIN Block Diagram
The LIN controller has four main components:

- LIN Access Registers—Provide the interface between the MCU core and the LIN controller.
- LIN Data Registers-Where transmitted and received message data bytes are stored.
- LIN Control Registers-Control the functionality of the LIN interface.
- Control State Machine and Bit Streaming Logic-Contains the hardware that serializes messages and controls the bus timing of the controller.

C8051F58x/F59x

21.1. Software Interface with the LIN Controller

The selection of the mode (Master or Slave) and the automatic baud rate feature are done though the LINO Control Mode (LINOCF) register. The other LIN registers are accessed indirectly through the two SFRs LINO Address (LINOADR) and LINO Data (LINODAT). The LINOADR register selects which LIN register is targeted by reads/writes of the LINODAT register. The full list of indirectly-accessible LIN registers is given in Table 21.4 on page 223.

21.2. LIN Interface Setup and Operation

The hardware based LIN controller allows for the implementation of both Master and Slave nodes with minimal firmware overhead and complete control of the interface status while allowing for interrupt and polled mode operation.

The first step to use the controller is to define the basic characteristics of the node:
Mode-Master or Slave
Baud Rate-Either defined manually or using the autobaud feature (slave mode only)
Checksum Type-Select between classic or enhanced checksum, both of which are implemented in hardware.

21.2.1. Mode Definition

Following the LIN specification, the controller implements in hardware both the Slave and Master operating modes. The mode is configured using the MODE bit (LINOCF.6).

21.2.2. Baud Rate Options: Manual or Autobaud

The LIN controller can be selected to have its baud rate calculated manually or automatically. A master node must always have its baud rate set manually, but slave nodes can choose between a manual or automatic setup. The configuration is selected using the ABAUD bit (LINOCF.5).

Both the manual and automatic baud rate configurations require additional setup. The following sections explain the different options available and their relation with the baud rate, along with the steps necessary to achieve the required baud rate.

21.2.3. Baud Rate Calculations: Manual Mode

The baud rate used by the LIN controller is a function of the System Clock (SYSCLK) and the LIN timing registers according to the following equation:

$$
\text { baud_rate }=\frac{\text { SYSCLK }}{2^{(\text {prescaler }+1)} \times \text { divider } \times(\text { multiplier }+1)}
$$

The prescaler, divider and multiplier factors are part of the LINODIV and LINOMUL registers and can assume values in the following range:

Table 21.1. Baud Rate Calculation Variable Ranges

Factor	Range
prescaler	$0 \ldots 3$
multiplier	$0 \ldots 31$
divider	$200 \ldots 511$

Important Note: The minimum system clock (SYSCLK) to operate the LIN controller is 8 MHz .
Use the following equations to calculate the values for the variables for the baud-rate equation:

$$
\begin{gathered}
\text { multiplier }=\frac{20000}{\text { baud_rate }}-1 \\
\text { prescaler }=\ln \left[\frac{\text { SYSCLK }}{(\text { multiplier }+1) \times \text { baud_rate } \times 200}\right] \times \frac{1}{\ln 2}-1 \\
\text { divider }=\frac{\text { SYSCLK }}{(2(\text { prescaler }+1) \times(\text { multiplier }+1) \times \text { baud_rate })}
\end{gathered}
$$

In all of these equations, the results must be rounded down to the nearest integer.
The following example shows the steps for calculating the baud rate values for a Master node running at 24 MHz and communicating at 19200 bits/sec. First, calculate the multiplier:

$$
\text { multiplier }=\frac{20000}{19200}-1=0.0417 \cong 0
$$

Next, calculate the prescaler:

$$
\text { prescaler }=\ln \frac{24000000}{(0+1) \times 19200 \times 200} \times \frac{1}{\ln 2}-1=1.644 \cong 1
$$

Finally, calculate the divider:

$$
\text { divider }=\frac{24000000}{2^{(1+1)} \times(0+1) \times 19200}=312.5 \cong 312
$$

These values lead to the following baud rate:

$$
\text { baud_rate }=\frac{24000000}{2^{(1+1)} \times(0+1) \times 312} \cong 19230.77
$$

The following code programs the interface in Master mode, using the Enhanced Checksum and enables the interface to operate at 19230 bits/sec using a 24 MHz system clock.

```
LINOCF = 0x80; // Activate the interface
LINOCF |= 0x40; // Set the node as a Master
LINOADR = OXOD; // Point to the LINOMUL register
// Initialize the register (prescaler, multiplier and bit 8 of divider)
LINODAT = ( 0x01 << 6 ) + (0x00 << 1 ) + ( (0x138& &x0100 ) >> 8 );
LINOADR = OXOC; // Point to the LINODIV register
LINODAT = (unsigned char)_0x138; // Initialize LINODIV
LINOADR = OXOB; // Point to the LINOSIZE register
LINODAT |= 0x80; // Initialize the checksum as Enhanced
LINOADR = 0x08; // Point to LINOCTRL register
LINODAT = OXOC; // Reset any error and the interrupt
```

Table 21.2 includes the configuration values required for the typical system clocks and baud rates:

C8051F58x／F59x

Table 21．2．Manual Baud Rate Parameters Examples

	Baud（bits／sec）														
	20 K			19.2 K			9.6 K			4.8 K			1 K		
$\begin{gathered} \hline \text { SYSCLK } \\ \text { (MHz) } \end{gathered}$		$\begin{aligned} & \dot{\omega} \\ & \dot{\underline{0}} \end{aligned}$	$\frac{3}{2}$	$\frac{\dot{7}}{\bar{\Xi}}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \hline \end{aligned}$	B	$\frac{\stackrel{H}{亏}}{\stackrel{y}{\Sigma}}$	$\begin{aligned} & \dot{\omega} \\ & \underline{\underline{0}} \\ & \hline \end{aligned}$	\geq	$\frac{\stackrel{ே}{\Xi}}{\boldsymbol{\Sigma}}$	$\begin{aligned} & \dot{\mathscr{D}} \\ & \dot{む} \end{aligned}$	B	$\frac{ \pm}{\overline{3}}$	$\begin{aligned} & \dot{0} \\ & \text { む̀ } \\ & \hline \end{aligned}$	를
25	0	1	312	0	1	325	1	1	325	3	1	325	19	1	312
24.5	0	1	306	0	1	319	1	1	319	3	1	319	19	1	306
24	0	1	300	0	1	312	1	1	312	3	1	312	19	1	300
22.1184	0	1	276	0	1	288	1	1	288	3	1	288	19	1	276
16	0	1	200	0	1	208	1	1	208	3	1	208	19	1	200
12.25	0	0	306	0	0	319	1	0	319	3	0	319	19	0	306
12	0	0	300	0	0	312	1	0	312	3	0	312	19	0	300
11.0592	0	0	276	0	0	288	1	0	288	3	0	288	19	0	276
8	0	0	200	0	0	208	1	0	208	3	0	208	19	0	200

21．2．4．Baud Rate Calculations—Automatic Mode

If the LIN controller is configured for slave mode，only the prescaler and divider need to be calculated：

$$
\begin{aligned}
& \text { prescaler }=\ln \left[\frac{\text { SYSCLK }}{4000000}\right] \times \frac{1}{\ln 2}-1 \\
& \text { divider }=\frac{\text { SYSCLK }}{2^{(\text {prescaler }+1)} \times 20000}
\end{aligned}
$$

The following example calculates the values of these variables for a 24 MHz system clock：

$$
\begin{gathered}
\text { prescaler }=\ln \left[\frac{24000000}{4000000}\right] \times \frac{1}{\ln 2}-1=1.585 \cong 1 \\
\text { divider }=\frac{24000000}{2^{(1+1)} \times 20000}=300
\end{gathered}
$$

Table 21.3 presents some typical values of system clock and baud rate along with their factors．

Table 21.3. Autobaud Parameters Examples

System Clock (MHz)	Prescaler	Divider
25	1	312
24.5	1	306
24	1	300
22.1184	1	276
16	1	200
12.25	0	306
12	0	300
11.0592	0	276
8		200

21.3. LIN Master Mode Operation

The master node is responsible for the scheduling of messages and sends the header of each frame containing the SYNCH BREAK FIELD, SYNCH FIELD, and IDENTIFIER FIELD. The steps to schedule a message transmission or reception are listed below.

1. Load the 6-bit Identifier into the LINOID register.
2. Load the data length into the LINOSIZE register. Set the value to the number of data bytes or "1111b" if the data length should be decoded from the identifier. Also, set the checksum type, classic or enhanced, in the same LINOSIZE register.
3. Set the data direction by setting the TXRX bit (LINOCTRL.5). Set the bit to 1 to perform a master transmit operation, or set the bit to 0 to perform a master receive operation.
4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LINODT1 to LINODT8).
5. Set the STREQ bit (LINOCTRL.0) to start the message transfer. The LIN controller will schedule the message frame and request an interrupt if the message transfer is successfully completed or if an error has occurred.
This code segment shows the procedure to schedule a message in a transmission operation:
```
LINOADR = 0x08; // Point to LINOCTRL
LINODAT |= 0x20; // Select to transmit data
LINOADR = OxOE; // Point to LINOID
LINODAT = 0x11; // Load the ID, in this example 0x11
LINOADR = 0x0B; // Point to LINOSIZE
LINODAT = ( LINODAT & 0xFO ) | 0x08; // Load the size with 8
LINOADR = 0x00; // Point to Data buffer first byte
for (i=0; i<8; i++)
{
    LINODAT = i + 0x41; // Load the buffer with 'A', 'B', ...
    LINOADR++; // Increment the address to the next buffer
}
LINOADR = 0x08; // Point to LINOCTRL
LINODAT = 0x01; // Start Request
```


C8051F58x/F59x

The application should perform the following steps when an interrupt is requested.

1. Check the DONE bit (LINOST.0) and the ERROR bit (LINOST.2).
2. If performing a master receive operation and the transfer was successful, read the received data from the data buffer.
3. If the transfer was not successful, check the error register to determine the kind of error. Further error handling has to be done by the application.
4. Set the RSTINT (LINOCTRL.3) and RSTERR bits (LINOCTRL.2) to reset the interrupt request and the error flags.

21.4. LIN Slave Mode Operation

When the device is configured for slave mode operation, it must wait for a command from a master node. Access from the firmware to the data buffer and ID registers of the LIN controller is only possible when a data request is pending (DTREQ bit (LINOST.4) is 1) and also when the LIN bus is not active (ACTIVE bit (LINOST.7) is set to 0).
The LIN controller in slave mode detects the header of the message frame sent by the LIN master. If slave synchronization is enabled (autobaud), the slave synchronizes its internal bit time to the master bit time.

The LIN controller configured for slave mode will generated an interrupt in one of three situations:

1. After the reception of the IDENTIFIER FIELD
2. When an error is detected
3. When the message transfer is completed.

The application should perform the following steps when an interrupt is detected:

1. Check the status of the DTREQ bit (LINOST.4). This bit is set when the IDENTIFIER FIELD has been received.
2. If DTREQ (LINOST.4) is set, read the identifier from LINOID and process it. If DTREQ (LINOST.4) is not set, continue to step 7.
3. Set the TXRX bit (LINOCTRL.5) to 1 if the current frame is a transmit operation for the slave and set to 0 if the current frame is a receive operation for the slave.
4. Load the data length into LINOSIZE.
5. For a slave transmit operation, load the data to transmit into the data buffer.
6. Set the DTACK bit (LINOCTRL.4). Continue to step 10.
7. If DTREQ (LINOST.4) is not set, check the DONE bit (LINOST.0). The transmission was successful if the DONE bit is set.
8. If the transmission was successful and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
9. If the transmission was not successful, check LINOERR to determine the nature of the error. Further error handling has to be done by the application.
10. Set the RSTINT (LINOCTRL.3) and RSTERR bits (LINOCTRL.2) to reset the interrupt request and the error flags.
In addition to these steps, the application should be aware of the following:
11. If the current frame is a transmit operation for the slave, steps 1 through 5 must be completed during the IN-FRAME RESPONSE SPACE. If it is not completed in time, a timeout will be detected by the master.
12. If the current frame is a receive operation for the slave, steps 1 through 5 have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the LIN controller will be overwritten and a timeout error will be detected in the LIN controller.

C8051F58x/F59x

3. The LIN controller does not directly support LIN Version 1.3 Extended Frames. If the application detects an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LINOCTRL.7) instead of setting the DTACK (LINOCTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this situation, the LIN controller stops the processing of LIN communication until the next SYNC BREAK is received.
4. Changing the configuration of the checksum during a transaction will cause the interface to reset and the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is in progress. The same applies to changes in the LIN interface mode from slave mode to master mode and from master mode to slave mode.

21.5. Sleep Mode and Wake-Up

To reduce the system's power consumption, the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode Frame from the Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting the SLEEP bit (LINOCTRL.6).

If the SLEEP bit (LINOCTRL.6) of the LIN slave application is not set and there is no bus activity for four seconds (specified bus idle timeout), the IDLTOUT bit (LINOST.6) is set and an interrupt request is generated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit (LINOCTRL.6).

Sending a wake-up signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To send a wake-up signal, the application has to set the WUPREQ bit (LINOCTRL.1). After successful transmission of the wake-up signal, the DONE bit (LINOST.0) of the master node is set and an interrupt request is generated. The LIN slave does not generate an interrupt request after successful transmission of the wake-up signal but it generates an interrupt request if the master does not respond to the wake-up signal within 150 milliseconds. In that case, the ERROR bit (LINOST.2) and TOUT bit (LINOERR.2) are set. The application then has to decide whether or not to transmit another wake-up signal.
All LIN nodes that detect a wake-up signal will set the WAKEUP (LINOST.1) and DONE bits (LINOST.0) and generate an interrupt request. After that, the application has to clear the SLEEP bit (LINOCTRL.6) in the LIN slave.

21.6. Error Detection and Handling

The LIN controller generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing LINOERR. After that, it has to reset the error register and the ERROR bit (LINOST.2) by writing a 1 to the RSTERR bit (LINOCTRL.2). Starting a new message with the LIN controller selected as master or sending a Wakeup signal with the LIN controller selected as a master or slave is possible only if the ERROR bit (LINOST.2) is set to 0 .

C8051F58x/F59x

21.7. LIN Registers

The following Special Function Registers (SFRs) and indirect registers are available for the LIN controller.

21.7.1. LIN Direct Access SFR Registers Definitions

SFR Definition 21.1. LINOADR: LINO Indirect Address Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\operatorname{LINOADR}[7: 0]$							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD3; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	LINOADR[7:0]	LIN Indirect Address Register Bits. This register hold an 8-bit address used to indirectly access the LINO core registers. Table 21.4 lists the LINO core registers and their indirect addresses. Reads and writes to LINODAT will target the register indicated by the LINOADR bits.

SFR Definition 21.2. LINODAT: LINO Indirect Data Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	LINODAT[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times D 2$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	LINODAT[7:0]	LIN Indirect Data Register Bits. When this register is read, it will read the contents of the LINO core register pointed to by LINOADR. When this register is written, it will write the value to the LINO core register pointed to by LINOADR.

C8051F58x/F59x

SFR Definition 21.3. LINOCF: LINO Control Mode Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	LINEN	MODE	ABAUD					
Type	R / W	R / W	R / W	R	R	R	R	R
Reset	0	1	1	0	0	0	0	0

SFR Address $=0 \times C 9$; SFR Page $=0 \times 0 F$

Bit	Name	
7	LINEN	LIN Interface Enable Bit. 0: LINO is disabled. 1: LINO is enabled.
6	MODE	LIN Mode Selection Bit. 0: LINO operates in slave mode. 1: LINO operates in master mode.
5	ABAUD	LIN Mode Automatic Baud Rate Selection. This bit only has an effect when the MODE bit is configured for slave mode. 0: Manual baud rate selection is enabled. 1: Automatic baud rate selection is enabled.
$4: 0$	Unused	Read = 00000b; Write = Don't Care

C8051F58x/F59x

21.7.2. LIN Indirect Access SFR Registers Definitions

Table 21.4 lists the 15 indirect registers used to configured and communicate with the LIN controller.
Table 21.4. LIN Registers* (Indirectly Addressable)

Name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
LINODT1	0×00	DATA1[7:0]							
LINODT2	0×01	DATA2[7:0]							
LINODT3	0×02	DATA3[7:0]							
LINODT4	0×03	DATA4[7:0]							
LINODT5	0×04	DATA5[7:0]							
LINODT6	0×05	DATA67:0]							
LINODT7	0×06	DATA7[7:0]							
LINODT8	0×07	DATA8[7:0]							
LINOCTRL	0×08	STOP(s)	SLEEP(s)	TXRX	DTACK(s)	RSTINT	RSTERR	WUPREQ	STREQ(m)
LINOST	0×09	ACTIVE	IDLTOUT	ABORT(s)	DTREQ(s)	LININT	ERROR	WAKEUP	DONE
LINOERR	0x0A				SYNCH(s)	PRTY(s)	TOUT	CHK	BITERR
LINOSIZE	0x0B	ENHCHK				LINSIZE[3:0]			
LINODIV	0x0C	DIVLSB[7:0]							
LINOMUL	0x0D	PRESCL[1:0]		LINMUL[4:0]					DIV9
LINOID	0x0E			ID5	ID4	ID3	ID2	ID1	ID0

*Note: These registers are used in both master and slave mode. The register bits marked with (m) are accessible only in Master mode while the register bits marked with (s) are accessible only in slave mode. All other registers are accessible in both modes.

C8051F58x/F59x

LIN Register Definition 21.4. LINODTn: LINO Data Byte n

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	DATAn[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

Indirect Address: LINODT1 $=0 \times 00$, LINODT2 $=0 \times 01$, LIN0DT3 $=0 \times 02$, LINODT4 $=0 \times 03$, LINODT5 $=0 \times 04$, LINODT6 $=0 \times 05$, LINODT7 $=0 \times 06$, LINODT8 $=0 \times 07$

Bit	Name	Function
$7: 0$	DATAn[7:0]	LIN Data Byte \mathbf{n}. Serial Data Byte that is received or transmitted across the LIN interface.

C8051F58x/F59x

LIN Register Definition 21.5. LINOCTRL: LINO Control Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	STOP	SLEEP	TXRX	DTACK	RSTINT	RSTERR	WUPREQ	STREQ
Type	W	R/W	R/W	R/W	W	W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Indirect Address $=0 \times 08$

Bit	Name	Function
7	STOP	Stop Communication Processing Bit. (slave mode only) This bit always reads as 0. 0: No effect. 1: Block the processing of LIN communications until the next SYNC BREAK signal.
6	SLEEP	Sleep Mode Bit. (slave mode only) 0: Wake the device after receiving a Wakeup interrupt. 1: Put the device into sleep mode after receiving a Sleep Mode frame or a bus idle timeout.
5	TXRX	Transmit / Receive Selection Bit. 0: Current frame is a receive operation. 1: Current frame is a transmit operation.
4	DTACK	Data Acknowledge Bit. (slave mode only) Set to 1 after handling a data request interrupt to acknowledge the transfer. The bit will automatically be cleared to 0 by the LIN controller.
3	RSTINT	Reset Interrupt Bit. This bit always reads as 0. 0: No effect. 1: Reset the LININT bit (LINOST.3).
2	RSTERR	Reset Error Bit. This bit always reads as 0. 0: No effect. 1: Reset the error bits in LINOST and LINOERR.
1	WUPREQ	Wakeup Request Bit. Set to 1 to terminate sleep mode by sending a wakeup signal. The bit will automati- cally be cleared to 0 by the LIN controller.
0	STREQ	Start Request Bit. (master mode only) 1: Start a LIN transmission. This should be set only after loading the identifier, data length and data buffer if necessary. The bit is reset to 0 upon transmission completion or error detection.

LIN Register Definition 21.6. LINOST: LINO Status Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ACTIVE	IDLTOUT	ABORT	DTREQ	LININT	ERROR	WAKEUP	DONE
Type	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Indirect Address $=0 \times 09$

Bit	Name	Function
7	ACTIVE	LIN Active Indicator Bit. 0: No transmission activity detected on the LIN bus. 1: Transmission activity detected on the LIN bus.
6	IDLT	Bus Idle Timeout Bit. (slave mode only) 0: The bus has not been idle for four seconds. 1: No bus activity has been detected for four seconds, but the bus is not yet in Sleep mode.
5	ABORT	Aborted Transmission Bit. (slave mode only) o: The current transmission has not been interrupted or stopped. This bit is reset to 0 after receiving a SYNCH BREAK that does not interrupt a pending transmission. 1: New SYNCH BREAK detected before the end of the last transmission or the STOP bit (LINOCTRL.7) has been set.
4	DTREQ	Data Request Bit. (slave mode only) 0: Data identifier has not been received. 1: Data identifier has been received.
3	LININT	Interrupt Request Bit. 0: An interrupt is not pending. This bit is cleared by setting RSTINT (LINOCTRL.3) 1: There is a pending LINO interrupt.
2	ERROR	Communication Error Bit. 0: No error has been detected. This bit is cleared by setting RSTERR (LINOCTRL.2) 1: An error has been detected.
1	WAKEUP	Wakeup Bit. 0: A wakeup signal is not being transmitted and has not been received. 1: A wakeup signal is being transmitted or has been received
0	DONE	Transmission Complete Bit. 0: A transmission is not in progress or has not been started. This bit is cleared at the start of a transmission. 1: The current transmission is complete.

C8051F58x/F59x

LIN Register Definition 21.7. LINOERR: LINO Error Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name				SYNCH	PRTY	TOUT	CHK	BITERR
Type	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Indirect Address $=0 \times 0 \mathrm{~A}$

Bit	Name	Function
$7: 5$	Unused	Read = O00b; Write = Don't Care
4	SYNCH	Synchronization Error Bit (slave mode only). 0: No error with the SYNCH FIELD has been detected. 1: Edges of the SYNCH FIELD are outside of the maximum tolerance.
3	PRTY	Parity Error Bit (slave mode only). 0: No parity error has been detected. 1: A parity error has been detected.
2	TOUT	Timeout Error Bit. 0: A timeout error has not been detected. 1: A timeout error has been detected. This error is detected whenever one of the fol- lowing conditions is met: - The master is expecting data from a slave and the slave does not respond. - The slave is expecting data but no data is transmitted on the bus. - A frame is not finished within the maximum frame length. The application does not set the DTACK bit (LINOCTRL.4) or STOP bit (LINOCTRL.7) until the end of the reception of the first byte after the identifier.
1	CHK	Checksum Error Bit. 0: Checksum error has not been detected. 1: Checksum error has been detected.
0	BITERR	Bit Transmission Error Bit. 0: No error in transmission has been detected. 1: The bit value monitored during transmission is different than the bit value sent.

LIN Register Definition 21.8. LINOSIZE: LINO Message Size Register

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | ENHCHK | | | | LINSIZE[3:0] | | | |
| Type | R/W | R | R | R | | R/W | | |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Indirect Address $=0 \times 0 B$

Bit	Name	Function
7	ENHCHK	Checksum Selection Bit. 0: Use the classic, specification 1.3 compliant checksum. Checksum covers the data bytes. 1: Use the enhanced, specification 2.0 compliant checksum. Checksum covers data bytes and protected identifier.
6:4	Unused	Read = 000b; Write = Don't Care
3:0	LINSIZE[3:0]	Data Field Size. 0000: 0 data bytes 0001: 1 data byte 0010: 2 data bytes 0011: 3 data bytes 0100: 4 data bytes 0101: 5 data bytes 0110: 6 data bytes 0111: 7 data bytes $1000: 8$ data bytes $1001-1110:$ RESERVED 1111: Use the ID[1:0] bits (LINOID[5:4]) to determine the data length.

C8051F58x/F59x

LIN Register Definition 21.9. LINODIV: LINO Divider Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	DIVLSB[3:0]							
Type	1	1	1	1	1	1	1	1
Reset	1							

Indirect Address $=0 \times 0 \mathrm{C}$

Bit	Name	Function
$7: 0$	DIVLSB	LIN Baud Rate Divider Least Significant Bits. The 8 least significant bits for the baud rate divider. The 9th and most significant bit is the DIV9 bit (LINOMUL.0). The valid range for the divider is 200 to 511.

LIN Register Definition 21.10. LINOMUL: LIN0 Multiplier Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$							
Name	PRESCL[1:0]							LINMUL[4:0]						R/W	DIV9
Type	R/W														
Reset	1	1	1	1	1	1	1	1							

Indirect Address = 0x0D

Bit	Name	Function
$7: 6$	PRESCL[1:0]	LIN Baud Rate Prescaler Bits. These bits are the baud rate prescaler bits.
$5: 1$	LINMUL[4:0]	LIN Baud Rate Multiplier Bits. These bits are the baud rate multiplier bits. These bits are not used in slave mode.
0	DIV9	LIN Baud Rate Divider Most Significant Bit. The most significant bit of the baud rate divider. The 8 least significant bits are in LINODIV. The valid range for the divider is 200 to 511.

C8051F58x/F59x

LIN Register Definition 21.11. LINOID: LINO Identifier Register

Bit	7	6	5	4	3	2	1	0
Name			ID[5:0]					
Type	R	R	R/W					
Reset	0	0	0	0	0	0	0	0

Indirect Address $=0 \times 0 E$

Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care.
5:0	ID[5:0]	LIN Identifier Bits. These bits form the data identifier. If the LINSIZE bits (LINOSIZE[3:0]) are 1111b, bits ID[5:4] are used to determine the data size and are interpreted as follows: 00: 2 bytes 01: 2 bytes 10: 4 bytes 11: 8 bytes

C8051F58x/F59x

22. Controller Area Network (CANO)

Important Documentation Note: The Bosch CAN Controller is integrated in the C8051F580/2/4/6/8-F590 devices. This section of the data sheet gives a description of the CAN controller as an overview and offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip Bosch CAN controller. In order to use the CAN controller, refer to Bosch's C_CAN User's Manual as an accompanying manual to the Silicon Labs' data sheet.

The C8051F580/2/4/6/8-F590 devices feature a Control Area Network (CAN) controller that enables serial communication using the CAN protocol. Silicon Labs CAN facilitates communication on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller consists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message handler state machine, and control registers. Silicon Labs CAN is a protocol controller and does not provide physical layer drivers (i.e., transceivers). Figure 22.1 shows an example typical configuration on a CAN bus.

Silicon Labs CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be configured to transmit or receive data. Incoming data, message objects and their identifier masks are stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data, and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.

Figure 22.1. Typical CAN Bus Configuration

C8051F58x/F59x

22.1. Bosch CAN Controller Operation

The CAN Controller featured in the C8051F580/2/4/6/8-F590 devices is a full implementation of Bosch's full CAN module and fully complies with CAN specification 2.0B. A block diagram of the CAN controller is shown in Figure 22.2. The CAN Core provides shifting (CANTX and CANRX), serial/parallel conversion of messages, and other protocol related tasks such as transmission of data and acceptance filtering. The message RAM stores 32 message objects which can be received or transmitted on a CAN network. The CAN registers and message handler provide an interface for data transfer and notification between the CAN controller and the CIP-51.
The function and use of the CAN Controller is detailed in the Bosch CAN User's Guide. The User's Guide should be used as a reference to configure and use the CAN controller. This data sheet describes how to access the CAN controller.

All of the CAN controller registers are located on SFR Page 0x0C. Before accessing any of the CAN registers, the SFRPAGE register must be set to $0 \times 0 \mathrm{C}$.

The CAN Controller is typically initialized using the following steps:

1. Set the SFRPAGE register to the CAN registers page (page 0x0C).
2. Set the INIT and the CCE bits to 1 in CANOCN. See the CAN User's Guide for bit definitions.
3. Set timing parameters in the Bit Timing Register and the BRP Extension Register.
4. Initialize each message object or set its MsgVal bit to NOT VALID.
5. Reset the INIT bit to 0 .

C8051F580-F590

Figure 22.2. CAN Controller Diagram

22.1.1. CAN Controller Timing

The CAN controller's clock (fsys) is derived from the CIP-51 system clock (SYSCLK). The internal oscillator is accurate to within 0.5% of 24 MHz across the entire temperature range and for VDD voltages greater than or equal to the minimum output of the on-chip voltage regulator, so an external oscillator is not required for CAN communication for most systems. Refer to Section "4.10.4 Oscillator Tolerance Range" in the Bosch CAN User's Guide for further information regarding this topic.

C8051F58x/F59x

The CAN controller clock must be less than or equal to 25 MHz . If the CIP-51 system clock is above 25 MHz , the divider in the CANOCFG register must be set to divide the CAN controller clock down to an appropriate speed.

22.1.2. CAN Register Access

The CAN controller clock divider selected in the CANOCFG SFR affects how the CAN registers can be accessed. If the divider is set to 1 , then a CAN SFR can immediately be read after it is written. If the divider is set to a value other than 1, then a read of a CAN SFR that has just been written must be delayed by a certain number of cycles. This delay can be performed using a NOP or some other instruction that does not attempt to read the register. This access limitation applies to read and read-modify-write instructions that occur immediately after a write. The full list of affected instructions is ANL, ORL, MOV, XCH, and XRL.

For example, with the CANOCFG divider set to 1, the CANOCN SFR can be accessed as follows:

```
MOV CANOCN, #O41 ; Enable access to Bit Timing Register
MOV R7, CANOCN ; Copy CANOCN to R7
```

With the CANOCFG divider set to $/ 2$, the same example code requires an additional NOP:

```
MOV CANOCN, #041 ; Enable access to Bit Timing Register
NOP ; Wait for write to complete
MOV R7, CANOCN ; Copy CANOCN to R7
```

The number of delay cycles required is dependent on the divider setting. With a divider of 2 , the read must wait for 1 system clock cycle. With a divider of 4 , the read must wait 3 system clock cycles, and with the divider set to 8 , the read must wait 7 system clock cycles. The delay only needs to be applied when reading the same register that was written. The application can write and read other CAN SFRs without any delay.

22.1.3. Example Timing Calculation for 1 Mbit/Sec Communication

This example shows how to configure the CAN controller timing parameters for a $1 \mathrm{Mbit} / \mathrm{Sec}$ bit rate. Table 18.1 shows timing-related system parameters needed for the calculation.

Table 22.1. Background System Information

Parameter	Value	Description
CIP-51 system clock (SYSCLK)	24 MHz	Internal Oscillator Max
CAN controller clock (fsys)	24 MHz	CANOCFG divider set to 1
CAN clock period (tsys)	41.667 ns	Derived from 1/fsys
CAN time quantum (tq)	41.667 ns	Derived from tsys \times BRP ${ }^{1,2}$
CAN bus length	10 m	$5 \mathrm{~ns} / \mathrm{m}$ signal delay between CAN nodes
Propogation delay time ${ }^{3}$	400 ns	$2 \times$ (transceiver loop delay + bus line delay)

Notes:

1. The CAN time quantum is the smallest unit of time recognized by the CAN controller. Bit timing parameters are specified in integer multiples of the time quantum.
2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP extension register has a reset value of 0×0000. The BRP has a reset value of 1 .
3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.

Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit rate). In this example, the desired bit rate is $1 \mathrm{Mbit} / \mathrm{sec}$; therefore, the desired bit time is 1000 ns .

C8051F58x/F59x

Figure 22.3. Four segments of a CAN Bit
The length of the 4 bit segments must be adjusted so that their sum is as close as possible to the desired bit time. Since each segment must be an integer multiple of the time quantum (tq), the closest achievable bit time is $24 \mathrm{tq}(1000.008 \mathrm{~ns})$, yielding a bit rate of $0.999992 \mathrm{Mbit} / \mathrm{sec}$. The Sync_Seg is a constant 1 tq . The Prop_Seg must be greater than or equal to the propagation delay of 400 ns and so the choice is 10 tq (416.67 ns).
The remaining time quanta (13 tq) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as shown in. Based on this equation, Phase_Seg1 = 6 tq and Phase_Seg2 $=7 \mathrm{tq}$.
Phase_Seg1 + Phase_Seg2 = Bit_Time - (Synch_Seg + Prop_Seg)

1. If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1. If the sum is odd, Phase_Seg2 = Phase_Seg1 + 1 .
2. Phase_Seg2 should be at least 2 tq.

Equation 22.1. Assigning the Phase Segments

The Synchronization Jump Width (SJW) timing parameter is defined by. It is used for determining the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.
SJW = minimum (4, Phase_Seg1)

Equation 22.2. Synchronization Jump Width (SJW)

The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension register is left at its reset value of 0×0000.

$$
\begin{gathered}
\text { BRPE }=\text { BRP }-1=\text { BRP Extension Register }=0 \times 0000 \\
\text { SJWp }=\text { SJW }-1=\text { minimum }(4,6)-1=3 \\
\text { TSEG1 }=\text { Prop_Seg }+ \text { Phase_Seg1 }-1=10+6-1=15 \\
\text { TSEG2 }=\text { Phase_Seg2 }-1=6 \\
\text { Bit Timing Register }=(\text { TSEG } 2 \times 0 \times 1000)+(\text { TSEG1 } \times 0 \times 0100)
\end{gathered}
$$

Equation 22.3. Calculating the Bit Timing Register Value

22.2. CAN Registers

CAN registers are classified as follows:

1. CAN Controller Protocol Registers: CAN control, interrupt, error control, bus status, test modes.
2. Message Object Interface Registers: Used to configure 32 Message Objects, send and receive data to and from Message Objects. The CIP-51 MCU accesses the CAN message RAM via the Message Object Interface Registers. Upon writing a message object number to an IF1 or IF2 Command Request Register, the contents of the associated Interface Registers (IF1 or IF2) will be transferred to or from the message object in CAN RAM.
3. Message Handler Registers: These read only registers are used to provide information to the CIP-51 MCU about the message objects (MSGVLD flags, Transmission Request Pending, New Data Flags) and Interrupts Pending (which Message Objects have caused an interrupt or status interrupt condition).
For the registers other than CANOCFG, refer to the Bosch CAN User's Guide for information on the function and use of the CAN Control Protocol Registers.

22.2.1. CAN Controller Protocol Registers

The CAN Control Protocol Registers are used to configure the CAN controller, process interrupts, monitor bus status, and place the controller in test modes.

The registers are: CAN Control Register (CANOCN), CAN Clock Configuration (CANOCFG), CAN Status Register (CANOSTA), CAN Test Register (CANOTST), Error Counter Register, Bit Timing Register, and the Baud Rate Prescaler (BRP) Extension Register.

22.2.2. Message Object Interface Registers

There are two sets of Message Object Interface Registers used to configure the 32 Message Objects that transmit and receive data to and from the CAN bus. Message objects can be configured for transmit or receive, and are assigned arbitration message identifiers for acceptance filtering by all CAN nodes.
Message Objects are stored in Message RAM, and are accessed and configured using the Message Object Interface Registers.

22.2.3. Message Handler Registers

The Message Handler Registers are read only registers. The message handler registers provide interrupt, error, transmit/receive requests, and new data information.

C8051F58x/F59x

22.2.4. CAN Register Assignment

The standard Bosch CAN registers are mapped to SFR space as shown below and their full definitions are available in the CAN User's Guide. The name shown in the Name column matches what is provided in the CAN User's Guide. One additional SFR which is not a standard Bosch CAN register, CANOCFG, is provided to configure the CAN clock. All CAN registers are located on SFR Page 0x0C.

Table 22.2. Standard CAN Registers and Reset Values

CAN Addr.	Name	SFR Name (High)	SFR Addr.	$\begin{aligned} & \text { SFR Name } \\ & \text { (Low) } \end{aligned}$	$\begin{aligned} & \text { SFR } \\ & \text { Addr. } \end{aligned}$	$\begin{aligned} & \hline \text { 16-bit } \\ & \text { SFR } \end{aligned}$	Reset Value
0x00	CAN Control Register	-	-	CANOCN	0xC0	-	0x01
0x02	Status Register			CANOSTAT	0x94		0x00
0x04	Error Counter ${ }^{1}$	CANOERRH	0x97	CANOERRL	0x96	CANOERR	0x0000
0x06	Bit Timing Register ${ }^{2}$	CANOBTH	0x9B	CANOBTL	0x9A	CANOBT	0x2301
0x08	Interrupt Register ${ }^{1}$	CANOIIDH	0x9D	CANOIIDL	0x9C	CANOIID	0x0000
0x0A	Test Register			CANOTST	0x9E		,4
0x0C	BRP Extension Register ${ }^{2}$	-		CANOBRPE	0xA1	-	0x00
0x10	IF1 Command Request	CANOIF1CRH	0xBF	CANOIF1CRL	0xBE	CANOIF1CR	0x0001
0x12	IF1 Command Mask	CANOIF1CMH	0xC3	CANOIF1CML	0xC2	CANOIF1CM	0x0000
0x14	IF1 Mask 1	CANOIF1M1H	0xC5	CAN0IF1M1L	0xC4	CANOIF1M1	0xFFFF
0x16	IF1 Mask 2	CANOIF1M2H	0xC7	CANOIF1M2L	0xC6	CANOIF1M2	0xFFFF
0x18	IF1 Arbitration	CANOIF1A1H	0xCB	CANOIF1A1L	0xCA	CANOIF1A1	0x0000
0x1A	IF1 Arbitration 2	CANOIF1A2H	0xCD	CANOIF1A2L	0xCC	CANOIF1A2	0x0000
0x1C	IF1 Message Control	CANOIF1MCH	0xD3	CANOIF1MCL	0xD2	CANOIF1MC	0x0000
0x1E	IF1 Data A 1	CANOIF1DA1H	0xD5	CANOIF1DA1L	0xD4	CANOIF1DA1	0x0000
0x20	IF1 Data A 2	CANOIF1DA2H	0xD7	CANOIF1DA2L	0xD6	CANOIF1DA2	0x0000
0x22	IF1 Data B 1	CANOIF1DB1H	0xDB	CANOIF1DB1L	0xDA	CANOIF1DB1	0x0000
0x24	IF1 Data B 2	CANOIF1DB2H	0xDD	CANOIF1DB2L	0xDC	CANOIF1DB2	0x0000
0x40	IF2 Command Request	CANOIF2CRH	0xDF	CANOIF2CRL	0xDE	CANOIF2CR	0x0001
0x42	IF2 Command Mask	CANOIF2CMH	0xE3	CANOIF2CML	0xE2	CANOIF2CM	0x0000
0x44	IF2 Mask 1	CANOIF2M1H	0xEB	CANOIF2M1L	0xEA	CANOIF2M1	0xFFFF
0x46	IF2 Mask 2	CANOIF2M2H	0xED	CANOIF2M2L	0xEC	CANOIF2M2	0xFFFF
0x48	IF2 Arbitration 1	CANOIF2A1H	0xEF	CANOIF2A1L	0xEE	CANOIF2A1	0x0000
0x4A	IF2 Arbitration 2	CANOIF2A2H	0xF3	CANOIF2A2L	0xF2	CANOIF2A2	0x0000
0x4C	IF2 Message Control	CANOIF2MCH	0xCF	CANOIF2MCL	0xCE	CANOIF2MC	0x0000
0x4E	IF2 Data A 1	CANOIF2DA1H	0xF7	CANOIF2DA1L	0xF6	CANOIF2DA1	0x0000

Notes:

1. Read-only register.
2. Write-enabled by CCE.
3. The reset value of CANOTST could also be r0000000b, where r signifies the value of the CAN $R X$ pin.
4. Write-enabled by Test.

C8051F58x/F59x

Table 22.2. Standard CAN Registers and Reset Values (Continued)

CAN Addr.	Name	SFR Name (High)	SFR Addr.	$\begin{aligned} & \text { SFR Name } \\ & \text { (Low) } \end{aligned}$	$\begin{aligned} & \text { SFR } \\ & \text { Addr. } \end{aligned}$	$\begin{gathered} \text { 16-bit } \\ \text { SFR } \end{gathered}$	Reset Value
0x50	IF2 Data A 2	CANOIF2DA2H	0xFB	CANOIF2DA2L	0xFA	CANOIF2DA2	0×0000
0x52	IF2 Data B 1	CANOIF2DB1H	0xFD	CANOIF2DB1L	0xFC	CANOIF2DB1	0x0000
0x54	IF2 Data B 2	CANOIF2DB2H	0xFF	CANOIF2DB2L	0xFE	CANOIF2DB2	0x0000
0x80	Transmission Request 1^{1}	CANOTR1H	0xA3	CANOTR1L	0xA2	CANOTR1	0x0000
0x82	Transmission Request 2^{1}	CANOTR2H	0xA5	CANOTR2L	0xA4	CANOTR2	0x0000
0x90	New Data 1^{1}	CANOND1H	0xAB	CANOND1L	0xAA	CANOND1	0x0000
0x92	New Data 2^{1}	CANOND2H	OxAD	CANOND2L	0xAC	CANOND2	0x0000
0xA0	Interrupt Pending 1^{1}	CANOIP1H	0xAF	CANOIP1L	OxAE	CANOIP1	0x0000
0xA2	Interrupt Pending 2^{1}	CANOIP2H	0xB3	CANOIP2L	0xB2	CANOIP2	0x0000
0xB0	Message Valid 1^{1}	CANOMV1H	0xBB	CANOMV1L	0xBA	CANOMV1	0x0000
0xB2	Message Valid 2^{1}	CANOMV2H	0xBD	CANOMV2L	0xBC	CANOMV2	0x0000

Notes:

1. Read-only register.
2. Write-enabled by CCE.
3. The reset value of CANOTST could also be ro000000b, where r signifies the value of the CAN RX pin.
4. Write-enabled by Test.

SFR Definition 22.1. CAN0CFG: CAN Clock Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Unused	Unused	Unused	Unused	Unused	Unused	SYSDIV[1:0]	
Type	R	R	R	R	R	R	R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 92$; SFR Page $=0 \times 0 C$

Bit	Name	Function
$7: 2$	Unused	Read = 000000b; Write = Don't Care.
1:0	SYSDIV[1:0]	CAN System Clock Divider Bits. The CAN controller clock is derived from the CIP-51 system clock. The CAN control- ler Clock must be less than or equal to 25 MHz. 00: CAN controller clock = System Clock/1. 01: CAN controller clock = System Clock/2. 10: CAN controller clock = System Clock/4. 11: CAN controller clock = System Clock/8.

23. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to $1 / 20$ th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.
The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. A block diagram of the SMBus peripheral and the associated SFRs is shown in Figure 23.1.

Figure 23.1. SMBus Block Diagram

C8051F58x/F59x

23.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

1. The $I^{2} \mathrm{C}$-Bus and How to Use It (including specifications), Philips Semiconductor.
2. The $I^{2} \mathrm{C}$-Bus Specification-Version 2.0, Philips Semiconductor.
3. System Management Bus Specification-Version 1.1, SBS Implementers Forum.

23.2. SMBus Configuration

Figure 23.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V ; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns , respectively.

Figure 23.2. Typical SMBus Configuration

23.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. It is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Bytes that are received (by a master or slave) are acknowledged (ACK) with a low SDA during a high SCL (see Figure 23.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 23.3 illustrates a typical SMBus transaction.

Figure 23.3. SMBus Transaction

23.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

23.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "23.3.5. SCL High (SMBus Free) Timeout" on page 242). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

23.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to $I^{2} \mathrm{C}$, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

23.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMBOCF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

C8051F58x/F59x

overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

23.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that $50 \mu \mathrm{~s}$, the bus is designated as free. When the SMBFTE bit in SMBOCF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

23.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. The point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e. sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e. receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See Section 23.5 for more details on transmission sequences.
Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMBOCN (SMBus Control register) to find the cause of the SMBus interrupt. The SMBOCN register is described in Section 23.4.2; Table 23.4 provides a quick SMB0CN decoding reference.

23.4.1. SMBus Configuration Register

The SMBus Configuration register (SMBOCF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

Table 23.1. SMBus Clock Source Selection

SMBCS1	SMBCSO	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

The SMBCS1-0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 23.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "27. Timers" on page 285.

$$
\mathrm{T}_{\text {HighMin }}=\mathrm{T}_{\text {LowMin }}=\frac{1}{\mathrm{f}_{\text {ClockSourceOverflow }}}
$$

Equation 23.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 23.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 23.2.

$$
\text { BitRate }=\frac{\mathrm{f}_{\text {ClockSourceOverflow }}}{3}
$$

Equation 23.2. Typical SMBus Bit Rate

Figure 23.4 shows the typical SCL generation described by Equation 23.2. Notice that $\mathrm{T}_{\text {HIGH }}$ is typically twice as large as $\mathrm{T}_{\text {Low. }}$. The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 23.1.

Figure 23.4. Typical SMBus SCL Generation

C8051F58x/F59x

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns , respectively. Table 23.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz .

Table 23.2. Minimum SDA Setup and Hold Times

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time
0	$\mathrm{T}_{\text {low }}-4$ system clocks or 1 system clock + s/w delay	3 system clocks
1	11 system clocks	12 system clocks
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using		
software acknowledgement, the s/w delay occurs between the time SMBODAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.		

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "23.3.4. SCL Low Timeout" on page 241). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 23.4).

SFR Definition 23.1. SMB0CF: SMBus Clock/Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS[1:0]	
Type	R/W	R/W	R	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 1$; SFR Page $=0 \times 00$

Bit	Name	Function
7	ENSMB	SMBus Enable. This bit enables the SMBus interface when set to 1 . When enabled, the interface constantly monitors the SDA and SCL pins.
6	INH	SMBus Slave Inhibit. When this bit is set to logic 1 , the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected.
5	BUSY	SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD	SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 23.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled.
3	SMBTOE	SMBus SCL Timeout Detection Enable. This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms , and the Timer 3 interrupt service routine should reset SMBus communication.
2	SMBFTE	SMBus Free Timeout Detection Enable. When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.
1:0	SMBCS[1:0]	SMBus Clock Source Selection. These two bits select the SMBus clock source, which is used to generate the SMBus bit rate. The selected device should be configured according to Equation 23.1. 00: Timer 0 Overflow 01: Timer 1 Overflow 10:Timer 2 High Byte Overflow 11: Timer 2 Low Byte Overflow

23.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 23.2). The higher four bits of SMBOCN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.
As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 23.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI .

SFR Definition 23.2. SMBOCN: SMBus Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Type	R	R	R / W	R / W	R	R	R / W	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 0$; Bit-Addressable; SFR Page $=0 \times 00$

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge. 0	0: NACK received. 1: ACK received.	0: Send NACK 1: Send ACK
SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initi- ate next state machine event. 1: Force interrupt.	

C8051F58x/F59x

Table 23.3. Sources for Hardware Changes to SMBOCN

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	- A START is generated.	- A STOP is generated. - Arbitration is lost.
TXMODE	- START is generated. - SMBODAT is written before the start of an SMBus frame.	- A START is detected. - Arbitration is lost. - SMBODAT is not written before the start of an SMBus frame.
STA	- A START followed by an address byte is received.	- Must be cleared by software.
STO	- A STOP is detected while addressed as a slave. - Arbitration is lost due to a detected STOP.	- A pending STOP is generated.
ACKRQ	- A byte has been received and an ACK response value is needed.	- After each ACK cycle.
ARBLOST	- A repeated START is detected as a MASTER when STA is low (unwanted repeated START). - SCL is sensed low while attempting to generate a STOP or repeated START condition. - SDA is sensed low while transmitting a 1 (excluding ACK bits).	- Each time SI is cleared.
ACK	- The incoming ACK value is low (ACKNOWLEDGE).	- The incoming ACK value is high (NOT ACKNOWLEDGE).
SI	- A START has been generated. - Lost arbitration. - A byte has been transmitted and an ACK/NACK received. - A byte has been received. - A START or repeated START followed by a slave address + R/W has been received. - A STOP has been received.	- Must be cleared by software.

23.4.3. Data Register

The SMBus Data register SMBODAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMBODAT register when the SMBus is enabled and the SI flag is cleared to logic 0 , as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMBODAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMBODAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMBODAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMBODAT.

SFR Definition 23.3. SMBODAT: SMBus Data

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SMBODAT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	0	0					

SFR Address $=0 \times C 2$; SMB0DAT $=0 \times 00$

Bit	Name	Function
$7: 0$	SMBODAT[7:0]	SMBus Data. The SMBODAT register contains a byte of data to be transmitted on the SMBus serial interface or a byte that has just been received on the SMBus serial interface. The CPU can read from or write to this register whenever the SI serial interrupt flag (SMBOCN.0) is set to logic 1. The serial data in the register remains stable as long as the SI flag is set. When the SI flag is not set, the system may be in the process of shifting data in/out and the CPU should not attempt to access this register.

23.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. As a receiver, the interrupt for an ACK occurs before the ACK. As a transmitter, interrupts occur after the ACK.

C8051F58x/F59x

23.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMBODAT is not written following a Master Transmitter interrupt. Figure 23.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the 'data byte transferred' interrupts occur after the ACK cycle in this mode.

Received by SMBus Interface

Transmitted by
SMBus Interface

S = START
$\mathrm{P}=\mathrm{STOP}$
A = ACK
W=WRITE
SLA = Slave Address

Figure 23.5. Typical Master Write Sequence

C8051F58x/F59x

23.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generate the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. An interrupt is generated after each received byte.

Software must write the ACK bit at that time to ACK or NACK the received byte. Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMBODAT is written while an active Master Receiver. Figure 23.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur before the ACK cycle in this mode.

$$
\begin{aligned}
& S=S T A R T \\
& P=S T O P \\
& A=A C K \\
& N=N A C K \\
& R=R E A D \\
& \text { ILA }=\text { Slave Address }
\end{aligned}
$$

Figure 23.6. Typical Master Read Sequence

C8051F58x/F59x

23.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled $($ INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK.

If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received. Software must write the ACK bit at that time to ACK or NACK the received byte.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMBODAT is written while an active Slave Receiver. Figure 23.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur before the ACK in this mode.

$$
\begin{aligned}
& \mathrm{S}=\mathrm{START} \\
& \mathrm{P}=\mathrm{STOP} \\
& \mathrm{~A}=\mathrm{ACK} \\
& \mathrm{~W}=\mathrm{WRITE} \\
& \text { SLA }=\text { Slave Address }
\end{aligned}
$$

Figure 23.7. Typical Slave Write Sequence

23.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled ($\mathrm{INH}=0$), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. The interrupt will occur after the ACK cycle.

If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMBODAT to be transmitted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMBODAT should be written with the next data byte. If the acknowledge bit is a NACK, SMBODAT should not be written to before SI is cleared (Note: an error condition may be generated if SMBODAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMBODAT is not written following a Slave Transmitter interrupt. Figure 23.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the 'data byte transferred' interrupts occur after the ACK cycle in this mode.

$$
\begin{aligned}
& S=S T A R T \\
& P=S T O P \\
& N=N A C K \\
& R=R E A D \\
& S L A=\text { Slave Address }
\end{aligned}
$$

Figure 23.8. Typical Slave Read Sequence

23.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMBOCN register. In the tables, STATUS VECTOR refers to the four upper bits of SMBOCN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

C8051F58x/F59x

Table 23.4. SMBus Status Decoding

C8051F58x/F59x

Table 23.4. SMBus Status Decoding

$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \sum \end{aligned}$	Values Read				Current SMbus State	Typical Response Options	Values to Write				
		$$	$\begin{aligned} & \text { Le } \\ & 0 \\ & 0 \\ & \text { n } \\ & \text { 孚 } \end{aligned}$	¢			$\stackrel{\leftarrow}{6}$	O	¢		
	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	X	0001	
		0	0	1	A slave byte was transmitted; ACK received.	Load SMBODAT with next data byte to transmit.	0	0	X	0100	
		0	1	X	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	X	0001	
	0101	0	X	X	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	X	-	
	0010	1	0	X	A slave address + R/W was received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000	
						If Read, Load SMBODAT with data byte; ACK received address	0	0	1	0100	
						NACK received address.	0	0	0	-	
		1	1		Lost arbitration as master; slave address + R/W received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000	
					If Read, Load SMBODAT with data byte; ACK received address	0	0	1	0100		
					NACK received address.	0	0	0	-		
					Reschedule failed transfer; NACK received address.	1	0	0	1110		
	0001	0	0	X		A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X	-
		1	1	X		Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0	-
	0000	1	0	X		A slave byte was received; ACK requested.	Acknowledge received byte; Read SMBODAT.	0	0	1	0000
					NACK received byte.		0	0	0	-	
¢	0010	0	1	X	Lost arbitration while attempting a repeated START.	Abort failed transfer.	0	0	X	-	
						Reschedule failed transfer.	1	0	X	1110	
	0001	0	1	X	Lost arbitration due to a detected STOP.	Abort failed transfer.	0	0	X	-	
						Reschedule failed transfer.	1	0	X	1110	
	0000	1	1	X	Lost arbitration while transmitting a data byte as master.	Abort failed transfer.	0	0	0	-	
						Reschedule failed transfer.	1	0	0	1110	

24. UARTO

UARTO is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16 -bit timer and selectable prescaler is included, which can generate a wide range of baud rates (details in Section "24.1. Baud Rate Generator" on page 256). A received data FIFO allows UARTO to receive up to three data bytes before data is lost and an overflow occurs.

UART0 has six associated SFRs. Three are used for the Baud Rate Generator (SBCONO, SBRLH0, and SBRLLO), two are used for data formatting, control, and status functions (SCONO, SMODO), and one is used to send and receive data (SBUF0). The single SBUFO location provides access to both transmit and receive registers. Writes to SBUFO always access the Transmit register. Reads of SBUFO always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UARTO interrupts enabled, an interrupt is generated each time a transmit is completed (TIO is set in SCONO), or a data byte has been received (RIO is set in SCONO). The UART0 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UARTO interrupt (transmit complete or receive complete). If additional bytes are available in the Receive FIFO, the RIO bit cannot be cleared by software.

Figure 24.1. UARTO Block Diagram

24.1. Baud Rate Generator

The UARTO baud rate is generated by a dedicated 16-bit timer which runs from the controller's core clock (SYSCLK) and has prescaler options of 1, 4, 12, or 48. The timer and prescaler options combined allow for a wide selection of baud rates over many clock frequencies.

The baud rate generator is configured using three registers: SBCONO, SBRLH0, and SBRLLO. The UARTO Baud Rate Generator Control Register (SBCONO, SFR Definition 24.4) enables or disables the baud rate generator, selects the clock source for the baud rate generator, and selects the prescaler value for the timer. The baud rate generator must be enabled for UARTO to function. Registers SBRLHO and SBRLLO contain a 16-bit reload value for the dedicated 16-bit timer. The internal timer counts up from the reload value on every clock tick. On timer overflows ($0 x F F F F$ to $0 x 0000$), the timer is reloaded. The baud rate for UARTO is defined in Equation 24.1, where "BRG Clock" is the baud rate generator's selected clock source. For reliable UART operation, it is recommended that the UART baud rate is not configured for baud rates faster than SYSCLK/16.

C8051F58x/F59x

$$
\text { Baud Rate }=\frac{\text { SYSCLK }}{(65536-(\text { SBRLHO:SBRLLO }))} \times \frac{1}{2} \times \frac{1}{\text { Prescaler }}
$$

Equation 24.1. UARTO Baud Rate

A quick reference for typical baud rates and clock frequencies is given in Table 24.1.
Table 24.1. Baud Rate Generator Settings for Standard Baud Rates

	Target Baud Rate (bps)	Actual Baud Rate (bps)	Baud Rate Error	Oscillator Divide Factor	$\begin{gathered} \text { SBOPS[1:0] } \\ \text { (Prescaler Bits) } \end{gathered}$	Reload Value in SBRLHO:SBRLLO
	230400	230769	0.16\%	208	11	0xFF98
	115200	115385	0.16\%	416	11	0xFF30
	57600	57554	0.08\%	834	11	0xFE5F
	28800	28812	0.04\%	1666	11	0xFCBF
	14400	14397	0.02\%	3334	11	0xF97D
	9600	9600	0.00\%	5000	11	0xF63C
	2400	2400	0.00\%	20000	11	0xD8F0
	1200	1200	0.00\%	40000	11	0xB1E0
	230400	230769	0.16\%	104	11	0xFFCC
	115200	115385	0.16\%	208	11	0xFF98
	57600	57692	0.16\%	416	11	0xFF30
	28800	28777	0.08\%	834	11	0xFE5F
	14400	14406	0.04\%	1666	11	0xFCBF
	9600	9600	0.00\%	2500	11	0xFB1E
	2400	2400	0.00\%	10000	11	0xEC78
	1200	1200	0.00\%	20000	11	0xD8F0
	230400	230769	0.16\%	52	11	0xFFE6
	115200	115385	0.16\%	104	11	0xFFCC
	57600	57692	0.16\%	208	11	0xFF98
	28800	28846	0.16\%	416	11	0xFF30
	14400	14388	0.08\%	834	11	0xFE5F
	9600	9600	0.00\%	1250	11	0xFD8F
	2400	2400	0.00\%	5000	11	0xF63C
	1200	1200	0.00\%	10000	11	0xEC78

24.2. Data Format

UARTO has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between 1 and 2 bit times, and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMODO register, shown in SFR Definition 24.2. Figure 24.2 shows the timing for a UARTO transaction without parity or an extra bit enabled. Figure 24.3 shows the timing for a UARTO transaction with parity enabled ($\mathrm{PEO}=1$). Figure 24.4 is an example of a UARTO transaction when the extra bit is enabled $(X B E 0=1)$. Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6,7 , or 8 bits.

Figure 24.2. UARTO Timing Without Parity or Extra Bit

Figure 24.3. UARTO Timing With Parity

Figure 24.4. UARTO Timing With Extra Bit

C8051F58x/F59x

24.3. Configuration and Operation

UARTO provides standard asynchronous, full duplex communication. It can operate in a point-to-point serial communications application, or as a node on a multi-processor serial interface. To operate in a point-to-point application, where there are only two devices on the serial bus, the MCEO bit in SMODO should be cleared to 0 . For operation as part of a multi-processor communications bus, the MCEO and XBEO bits should both be set to 1 . In both types of applications, data is transmitted from the microcontroller on the TX0 pin, and received on the RXO pin. The TX0 and RXO pins are configured using the crossbar and the Port I/O registers, as detailed in Section "20. Port Input/Output" on page 188.
In typical UART communications, The transmit (TX) output of one device is connected to the receive (RX) input of the other device, either directly or through a bus transceiver, as shown in Figure 24.5.

Figure 24.5. Typical UART Interconnect Diagram

24.3.1. Data Transmission

Data transmission begins when software writes a data byte to the SBUFO register. The TIO Transmit Interrupt Flag (SCONO.1) will be set at the end of any transmission (the beginning of the stop-bit time). If enabled, an interrupt will occur when TIO is set.
Note: THREO can have a momentary glitch high when the UART Transmit Holding Register is not empty. The glitch will occur some time after SBUFO was written with the previous byte and does not occur if THREO is checked in the instruction(s) immediately following the write to SBUFO. When firmware writes SBUFO and SBUFO is not empty, TX0 will be stuck low until the next device reset. Firmware should use or poll on TIO rather than THREO for asynchronous UART writes that may have a random delay in between transactions.

If the extra bit function is enabled ($\mathrm{XBE} 0=1$) and the parity function is disabled ($\mathrm{PE}=0$), the value of the TBXO (SCONO.3) bit will be sent in the extra bit position. When the parity function is enabled (PEO = 1), hardware will generate the parity bit according to the selected parity type (selected with SOPT[1:0]), and append it to the data field. Note: when parity is enabled, the extra bit function is not available.

24.3.2. Data Reception

Data reception can begin any time after the RENO Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be stored in the receive FIFO if the following conditions are met: the receive FIFO (3 bytes deep) must not be full, and the stop bit(s) must be logic 1. In the event that the receive FIFO is full, the incoming byte will be lost, and a Receive FIFO Overrun Error will be generated (OVRO in register SCONO will be set to logic 1). If the stop bit(s) were logic 0 , the incoming data will not be stored in the receive FIFO. If the reception conditions are met, the data is stored in the receive FIFO, and the RIO flag will be set. Note: when MCEO = 1, RIO will only be set if the extra bit was equal to 1 . Data can be read from the receive FIFO by reading the SBUFO register. The SBUFO register represents the oldest byte in the FIFO. After SBUFO is read, the next byte in the FIFO is immediately loaded into SBUFO, and space is made available in the FIFO for another incoming byte. If enabled, an interrupt will occur when RIO

C8051F58x/F59x

is set.RIO can only be cleared to ' 0 ' by software when there is no more information in the FIFO. The recommended procedure to empty the FIFO contents is as follows:

1. Clear RIO to 0 .
2. Read SBUFO.
3. Check RIO, and repeat starting at step 1 if RIO is set to 1.

If the extra bit function is enabled ($\mathrm{XBE} 0=1$) and the parity function is disabled $(\mathrm{PE}=0)$, the extra bit for the oldest byte in the FIFO can be read from the RBXO bit (SCONO.2). If the extra bit function is not enabled, the value of the stop bit for the oldest FIFO byte will be presented in RBXO. When the parity function is enabled (PEO = 1), hardware will check the received parity bit against the selected parity type (selected with SOPT[1:0]) when receiving data. If a byte with parity error is received, the PERRO flag will be set to 1 . This flag must be cleared by software. Note: when parity is enabled, the extra bit function is not available.

Note: The UART Receive FIFO pointer can be corrupted if the UART receives a byte and firmware reads a byte from the FIFO at the same time. When this occurs, firmware will lose the received byte and the FIFO receive overrun flag (OVR0) will also be set to 1 . Systems using the UART Receive FIFO should ensure that the FIFO isn't accessed by hardware and firmware at the same time. In other words, firmware should ensure to read the FIFO before the next byte is received.

24.3.3. Multiprocessor Communications

UART0 supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its extra bit is logic 1; in a data byte, the extra bit is always set to logic 0 .

Setting the MCEO bit (SMOD0.7) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the extra bit is logic 1 (RBXO $=1$) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned address. If the addresses match, the slave will clear its MCEO bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCEO bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCEO bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 24.6. UART Multi-Processor Mode Interconnect Diagram

C8051F58x/F59x

SFR Definition 24.1. SCONO: Serial Port 0 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	OVRO	PERR0	THRE0	REN0	TBXO	RBX0	TIO	RIO
Type	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	0	0	0	0	0

SFR Address = 0x98; Bit-Addressable; SFR Page = 0x00

Bit	Name	Function
7	OVR0	Receive FIFO Overrun Flag. 0 : Receive FIFO Overrun has not occurred 1: Receive FIFO Overrun has occurred; A received character has been discarded due to a full FIFO.
6	PERR0	Parity Error Flag. When parity is enabled, this bit indicates that a parity error has occurred. It is set to 1 when the parity of the oldest byte in the FIFO does not match the selected Parity Type. 0 : Parity error has not occurred 1: Parity error has occurred. This bit must be cleared by software.
5	THRE0	Transmit Holding Register Empty Flag. Firmware should use or poll on TIO rather than THREO for asynchronous UART writes that may have a random delay in between transactions. 0: Transmit Holding Register not Empty—do not write to SBUFO. 1: Transmit Holding Register Empty-it is safe to write to SBUFO.
4	REN0	Receive Enable. This bit enables/disables the UART receiver. When disabled, bytes can still be read from the receive FIFO. 0: UART1 reception disabled. 1: UART1 reception enabled.
3	TBX0	Extra Transmission Bit. The logic level of this bit will be assigned to the extra transmission bit when XBEO is set to 1 . This bit is not used when Parity is enabled.
2	RBX0	Extra Receive Bit. RBXO is assigned the value of the extra bit when XBE1 is set to 1 . If XBE1 is cleared to $0, R B X 1$ will be assigned the logic level of the first stop bit. This bit is not valid when Parity is enabled.
1	TIO	Transmit Interrupt Flag. Set to a 1 by hardware after data has been transmitted, at the beginning of the STOP bit. When the UARTO interrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.
0	RIO	Receive Interrupt Flag. Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UART0 interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UARTO ISR. This bit must be cleared manually by software. Note that RIO will remain set to ' 1 ' as long as there is data still in the UART FIFO. RIO can be cleared after the last byte has been shifted from the FIFO to SBUF0.

SFR Definition 24.2. SMODO: Serial Port 0 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	MCE0	SOPT[1:0]		PE0	SODL[1:0]		XBE0	SBL0
Type	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	0	0

SFR Address = 0xA9; SFR Page $=0 \times 00$

Bit	Name	Function
7	MCEO	Multiprocessor Communication Enable. 0 : RIO will be activated if stop bit(s) are 1. 1: RIO will be activated if stop bit(s) and extra bit are 1. Extra bit must be enabled using XBEO.
6:5	SOPT[1:0]	Parity Type Select Bits. 00: Odd Parity 01: Even Parity 10: Mark Parity 11: Space Parity.
4	PE0	Parity Enable. This bit enables hardware parity generation and checking. The parity type is selected by bits SOPT[1:0] when parity is enabled. 0 : Hardware parity is disabled. 1: Hardware parity is enabled.
3:2	SODL[1:0]	Data Length. 00: 5-bit data 01: 6-bit data 10: 7-bit data 11: 8-bit data
1	XBE0	Extra Bit Enable. When enabled, the value of TBXO will be appended to the data field 0 : Extra Bit is disabled. 1: Extra Bit is enabled.
0	SBL0	Stop Bit Length. 0 : Short—stop bit is active for one bit time 1: Long—stop bit is active for two bit times (data length $=6,7$, or 8 bits), or 1.5 bit times (data length $=5$ bits).

C8051F58x/F59x

SFR Definition 24.3. SBUF0: Serial (UART0) Port Data Buffer

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SBUFO[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 99$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	SBUFO[7:0]	Serial Data Buffer Bits 7-0 (MSB-LSB). This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUFO, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUFO initiates the transmission. A read of SBUFO returns the contents of the receive latch.

SFR Definition 24.4. SBCON0: UARTO Baud Rate Generator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Reserved	SB0RUN	Reserved	Reserved	Reserved	Reserved	SB0PS[1:0]	
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A B ;$ SFR Page $=0 \times 0 F$

Bit	Name	
7	Reserved	Read = Ob; Must Write Ob;
6	SBORUN	Baud Rate Generator Enable. 0: Baud Rate Generator disabled. UART0 will not function. 1: Baud Rate Generator enabled.
$5: 2$	Reserved	Read = 0000b; Must Write $=0000 \mathrm{~b} ;$
$1: 0$	SBOPS[1:0]	Baud Rate Prescaler Select. 00: Prescaler $=12$. 01: Prescaler $=4$. 10: Prescaler $=48$. $11: ~ P r e s c a l e r ~=~ 1 . ~$

SFR Definition 24.5. SBRLH0: UART0 Baud Rate Generator Reload High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SBRLHO[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address = 0xAD; SFR Page $=0 x 0 F$

| Bit | Name | Function |
| :---: | :---: | :---: | :---: |
| $7: 0$ | SBRLH0[7:0] | High Byte of Reload Value for UART0 Baud Rate Generator.
 This value is loaded into the high byte of the UART0 baud rate generator when the
 counter overflows from 0xFFFF to 0x0000. |

SFR Definition 24.6. SBRLLO: UARTO Baud Rate Generator Reload Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SBRLLO[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 x A C ;$ SFR Page $=0 x 0 F$

Bit	Name	Function
$7: 0$	SBRLL0[7:0]	Low Byte of Reload Value for UART0 Baud Rate Generator. This value is loaded into the low byte of the UART0 baud rate generator when the counter overflows from 0xFFFF to 0x0000.

C8051F58x/F59x

25. UART1

UART1 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "25.1. Enhanced Baud Rate Generation" on page 266). Received data buffering allows UART1 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART1 has two associated SFRs: Serial Control Register 1 (SCON1) and Serial Data Buffer 1 (SBUF1). The single SBUF1 location provides access to both transmit and receive registers. Writes to SBUF1 always access the Transmit register. Reads of SBUF1 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive complete).

Figure 25.1. UART1 Block Diagram

C8051F58x/F59x

25.1. Enhanced Baud Rate Generation

The UART1 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 25.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Figure 25.2. UART1 Baud Rate Logic
Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "27.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 288). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART1 baud rate is determined by Equation 25.1-A and Equation 25.1-B.
A) UartBaudRate $=\frac{1}{2} \times$ T1_Overflow_Rate
B) $\quad \mathrm{T} 1 _$Overflow_Rate $=\frac{\mathrm{T} 1_{\mathrm{CLK}}}{256-\mathrm{TH} 1}$

Equation 25.1. UART1 Baud Rate

Where $T 1_{C L K}$ is the frequency of the clock supplied to Timer 1 , and $T 1 H$ is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "27. Timers" on page 285. A quick reference for typical baud rates and system clock frequencies is given in Table 25.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

25.2. Operational Modes

UART1 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S1MODE bit (SCON1.7). Typical UART connection options are shown in Figure 25.3.

Figure 25.3. UART Interconnect Diagram

25.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX1 pin and received at the RX1 pin. On receive, the eight data bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).

Data transmission begins when software writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: RIO must be logic 0 , and if MCEO is logic 1 , the stop bit must be logic 1 . In the event of a receive data overrun, the first received 8 bits are latched into the SBUF1 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF1, the stop bit is stored in RB81 and the RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not be set. An interrupt will occur if enabled when either TI1 or RI1 is set.

Figure 25.4. 8-Bit UART Timing Diagram

25.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81 (SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB81 (SCON1.2) and the stop bit is ignored.

C8051F58x/F59x

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to 1. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: (1) RI1 must be logic 0 , and (2) if MCE1 is logic 1 , the 9 th bit must be logic 1 (when MCE1 is logic 0 , the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to 1 . If the above conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not be set to 1. A UART1 interrupt will occur if enabled when either TII or RI1 is set to ' 1 '.

Figure 25.5. 9-Bit UART Timing Diagram

25.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1 ; in a data byte, the ninth bit is always set to logic 0 .

Setting the MCE1 bit (SCON1.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB81 $=1$) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE1 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE1 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 25.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 25.1. SCON1: Serial Port 1 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	S1MODE		MCE1	REN1	TB81	RB81	TI1	RI1
Type	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address $=0 \times 98$; SFR Page $=0 \times 10$; Bit-Addressable

Bit	Name	\quad Function		
7	S1MODE	$\begin{array}{l}\text { Serial Port 1 Operation Mode. } \\ \text { Selects the UART1 Operation Mode. } \\ \text { 0: 8-bit UART with Variable Baud Rate. } \\ \text { 1: 9-bit UART with Variable Baud Rate. }\end{array}$		
6	Unused	Read = 1b, Write = Don't Care.		
5	MCE1	$\begin{array}{l}\text { Multiprocessor Communication Enable. } \\ \text { The function of this bit is dependent on the Serial Port 1 Operation Mode: } \\ \text { Mode 0: Checks for valid stop bit. }\end{array}$		
4	REN1 Logic level of stop bit is ignored.			
1: RI1 will only be activated if stop bit is logic level 1.				
Mode 1: Multiprocessor Communications Enable.				
0: Logic level of ninth bit is ignored.				
1: RI1 is set and an interrupt is generated only when the ninth bit is logic 1.			$\}$	Receive Enable.
:---				
0: UART1 reception disabled.				
1: UART1 reception enabled.				

SFR Definition 25.2. SBUF1: Serial (UART1) Port Data Buffer

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SBUF1[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 99$; SFR Page $=0 \times 10$

Bit	Name	Function
$7: 0$	SBUF1[7:0]	Serial Data Buffer Bits 7-0 (MSB-LSB) This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF1, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF1 initiates the transmission. A read of SBUF1 returns the contents of the receive latch.

C8051F58x/F59x

Table 25.1. Timer Settings for Standard Baud Rates Using The Internal 24 MHz Oscillator

	Frequency: 24 MHz						
	Target Baud Rate (bps)	Baud Rate \% Error	$\begin{aligned} & \text { Oscilla- } \\ & \text { tor Divide } \\ & \text { Factor } \end{aligned}$	Timer Clock Source	$\begin{gathered} \hline \text { SCA1-SCA0 } \\ \text { (pre-scale }^{\text {select) }} \text { ¹ } \end{gathered}$	T1M ${ }^{1}$	Timer 1 Reload Value (hex)
	230400	0.16\%	104	SYSCLK	$X X^{2}$	1	0xCC
	115200	0.16\%	208	SYSCLK	XX	1	0×98
	57600	-0.08\%	417	SYSCLK	XX	1	0×30
	28800	0.04\%	833	SYSCLK/4	01	0	0×98
	14400	-0.02\%	1667	SYSCLK/12	00	0	0x30
	9600	0.00\%	2500	SYSCLK/12	00	0	0×98
	2400	0.00\%	10000	SYSCLK/48	10	0	0×98
	1200	0.00\%	20000	SYSCLK/48	10	0	0x30

Notes:

1. SCA1-SCA0 and T1M bit definitions can be found in Section 27.1.
2. $X=$ Don't care.

C8051F58x/F59x

26. Enhanced Serial Peripheral Interface (SPIO)

The Enhanced Serial Peripheral Interface (SPIO) provides access to a flexible, full-duplex synchronous serial bus. SPIO can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPIO in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

Figure 26.1. SPI Block Diagram

C8051F58x/F59x

26.1. Signal Descriptions

The four signals used by SPIO (MOSI, MISO, SCK, NSS) are described below.

26.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPIO is operating as a master and an input when SPIO is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3 - and 4 -wire mode.

26.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPIO is operating as a master and an output when SPIO is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4 -wire mode as a slave that is not selected. When acting as a slave in 3 -wire mode, MISO is always driven by the MSB of the shift register.

26.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPIO generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

26.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMDO bits in the SPIOCN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPIO operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPIO is always selected in 3 -wire mode. Since no select signal is present, SPIO must be the only slave on the bus in 3 -wire mode. This is intended for point-topoint communication between a master and one slave.
2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPIO operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPIO device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPIO so that multiple master devices can be used on the same SPI bus.
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPIO operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMDO determines what logic level the NSS pin will output. This configuration should only be used when operating SPIO as a master device.
See Figure 26.2, Figure 26.3, and Figure 26.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3 -wire master or 3 -wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "20. Port Input/Output" on page 188 for general purpose port I/O and crossbar information.

C8051F58x/F59x

26.2. SPIO Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPIO is placed in master mode by setting the Master Enable flag (MSTEN, SPIOCN.6). Writing a byte of data to the SPIO data register (SPIODAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPIO master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPIOCN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPIO master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPIODAT.

When configured as a master, SPIO can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMD0 (SPIOCN.2) $=1$. In this mode, NSS is an input to the device, and is used to disable the master SPIO when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPIOCN.6) and SPIEN (SPIOCN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPIOCN. 5 = 1). Mode Fault will generate an interrupt if enabled. SPIO must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 26.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMD0 (SPIOCN.2) $=0$. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 26.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPIOCN.3) = 1 . In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMDO (SPIOCN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 26.4 shows a connection diagram for a master device in 4 -wire master mode and two slave devices.

Figure 26.2. Multiple-Master Mode Connection Diagram

Figure 26.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Figure 26.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

26.3. SPIO Slave Mode Operation

When SPIO is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPIO logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPIODAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPIODAT. Writes to SPIODAT are doublebuffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

When configured as a slave, SPIO can be configured for 4 -wire or 3 -wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=1$. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPIO is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 26.4 shows a connection diagram between two slave devices in 4 -wire slave mode and a master device.

3 -wire slave mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPIO must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and reenabling SPIO with the SPIEN bit. Figure 26.3 shows a connection diagram between a slave device in 3wire slave mode and a master device.

26.4. SPIO Interrupt Sources

When SPIO interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

1. The SPI Interrupt Flag, SPIF (SPIOCN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPIO modes.
2. The Write Collision Flag, WCOL (SPIOCN.6) is set to logic 1 if a write to SPIODAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPIO modes.
3. The Mode Fault Flag MODF (SPIOCN.5) is set to logic 1 when SPIO is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPIOCN are set to logic 0 to disable SPIO and allow another master device to access the bus.
4. The Receive Overrun Flag RXOVRN (SPIOCN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

C8051F58x/F59x

26.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPIO Configuration Register (SPIOCFG). The CKPHA bit (SPIOCFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPIOCFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPIO should be disabled (by clearing the SPIEN bit, SPIOCN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 26.5. For slave mode, the clock and data relationships are shown in Figure 26.6 and Figure 26.7. CKPHA must be set to 0 on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x.

The SPIO Clock Rate Register (SPIOCKR) as shown in SFR Definition 26.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz , whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is $1 / 10$ the system clock frequency, provided that the master issues SCK, NSS (in 4wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than $1 / 10$ the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of $1 / 4$ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 26.5. Master Mode Data/Clock Timing

Figure 26.6. Slave Mode Data/Clock Timing (CKPHA = 0)

Figure 26.7. Slave Mode Data/Clock Timing (CKPHA = 1)

26.6. SPI Special Function Registers

SPIO is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPIO Bus are described in the following figures.

C8051F58x/F59x

SFR Definition 26.1. SPIOCFG: SPIO Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Type	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address $=0 \times A 1 ;$ SFR Page $=0 \times 00$

Bit	Name	Function			
7	SPIBSY	SPI Busy. This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).			
6	MSTEN	Master Mode Enable. 0: Disable master mode. Operate in slave mode. 1: Enable master mode. Operate as a master.			
5	CKPHA	SPIO Clock Phase. 0: Data centered on first edge of SCK period.			
1: Data centered on second edge of SCK period.			$	$	CKPOL
:---					
4					
2					

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 26.1 for timing parameters.

SFR Definition 26.2. SPIOCN: SPIO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIF	WCOL	MODF	RXOVRN	NSSMD[1:0]	TXBMT	SPIEN	
Type	R/W	R/W	R/W	R/W	R/W		R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Address $=0 \times F 8$; Bit-Addressable; SFR Page $=0 \times 00$

Bit	Name	Function
7	SPIF	SPIO Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPIO interrupt service rou- tine. This bit is not automatically cleared by hardware. It must be cleared by soft- ware.
6	WCOL	Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPIO interrupt) to indicate a write to the SPIO data register was attempted while a data transfer was in progress. It must be cleared by software.
5	MODF	Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when a mas- ter mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only). This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPIO shift register. This bit is not automatically cleared by hardware. It must be cleared by software.
$3: 2$	NSSMD[1:0]	Slave Select Mode. Selects between the following NSS operation modes: (See Section 26.2 and Section 26.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMDO.
1	TXBMT	Transmit Buffer Empty. This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI0 Enable. 0: SPI disabled. 1: SPI enabled.

C8051F58x/F59x

SFR Definition 26.3. SPIOCKR: SPIO Clock Rate

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\operatorname{SCR}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times A 2$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	SCR[7:0]	SPIO Clock Rate. These bits determine the frequency of the SCK output when the SPIO module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPIOCKR is the 8-bit value held in the SPIOCKR register. $\begin{aligned} & \mathrm{f}_{\text {SCK }}=\frac{\text { SYSCLK }}{2 \times(\text { SPIOCKR[7:0] + 1) }} \\ & \text { for } 0<=\text { SPIOCKR <= } 255 \\ & \text { Example: If SYSCLK }=2 \mathrm{MHz} \text { and SPIOCKR }=0 \times 04, \\ & \mathrm{f}_{\text {SCK }}=\frac{2000000}{2 \times(4+1)} \quad \mathrm{f}_{\text {SCK }}=200 \mathrm{kHz} \end{aligned}$

SFR Definition 26.4. SPIODAT: SPIO Data

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIODAT[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 3$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	SPIODAT[7:0]	SPIO Transmit and Receive Data. The SPIODAT register is used to transmit and receive SPIO data. Writing data to SPIODAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPIODAT returns the contents of the receive buffer.

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 26.8. SPI Master Timing $(C K P H A=0)$

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for $C K P O L=1$.

Figure 26.9. SPI Master Timing (CKPHA = 1)

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 26.10. SPI Slave Timing (CKPHA = 0)

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 26.11. SPI Slave Timing (CKPHA = 1)

C8051F58x/F59x

Table 26.1. SPI Slave Timing Parameters

Parameter	Description	Min	Max	Units
Master Mode Timing* (See Figure 26.8 and Figure 26.9)				
$\mathrm{T}_{\text {мСК }}$	SCK High Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MCKL }}$	SCK Low Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MIS }}$	MISO Valid to SCK Shift Edge	$1 \times \mathrm{T}_{\text {SYSCLK }}+20$	-	ns
$\mathrm{T}_{\text {MIH }}$	SCK Shift Edge to MISO Change	0	-	ns
Slave Mode Timing ${ }^{*}$ (See Figure 26.10 and Figure 26.11)				
$\mathrm{T}_{\text {SE }}$	NSS Falling to First SCK Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SD }}$	Last SCK Edge to NSS Rising	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SEZ }}$	NSS Falling to MISO Valid	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
TsDZ	NSS Rising to MISO High-Z	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {CKH }}$	SCK High Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {CKL }}$	SCK Low Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {sIS }}$	MOSI Valid to SCK Sample Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIH }}$	SCK Sample Edge to MOSI Change	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SOH }}$	SCK Shift Edge to MISO Change	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {SLH }}$	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	$6 \times \mathrm{T}_{\text {SYSCLK }}$	$8 \times \mathrm{T}_{\text {SYSCLK }}$	ns

*Note: $\mathrm{T}_{\text {SYSCLK }}$ is equal to one period of the device system clock (SYSCLK).

27. Timers

Each MCU includes six counter/timers: two are 16 -bit counter/timers compatible with those found in the standard 8051, and the other four are 16-bit auto-reload timers for use with the ADC, SMBus, or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16 -bit and split 8 -bit timer functionality with auto-reload. Timer 4 and Timer 5 have 16 -bit auto reload and capture and can also produce a 50% duty-cycle square wave (toggle output) at an general purpose port pin.

Timer $\mathbf{0}$ and Timer 1 Modes	Timer 2 and 3 Modes	Timer 4 and 5 Modes
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer		
8-bit counter/timer with auto-reload	Two 8-bit timers with auto-reload	16-bit counter/timer with capture
Two 8-bit counter/timers (Timer 0 only)		Toggle Output

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1MTOM) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 27.1 for pre-scaled clock selection).Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock.

Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8 .

Timer 4 and Timer 5 may be clocked by the system clock, system clock divided by 2 or 12, or the external oscillator clock source divided by 8 .

Timers $0,1,4$, and 5 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin. Events with a frequency of up to one-fourth the system clock frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

C8051F58x/F59x

SFR Definition 27.1. CKCON: Clock Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	T 3 MH	T 3 ML	T 2 MH	T 2 ML	T 1 M	TOM	SCA[1:0]	
Type	R / W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 8 E$; SFR Page $=$ All Pages

Bit	Name	Function
7	T3MH	Timer 3 High Byte Clock Select. Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only). 0 : Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 high byte uses the system clock.
6	T3ML	Timer 3 Low Byte Clock Select. Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer in split 8-bit timer mode. 0 : Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 low byte uses the system clock.
5	T2MH	Timer 2 High Byte Clock Select. Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only). 0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 high byte uses the system clock.
4	T2ML	Timer 2 Low Byte Clock Select. Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer. 0 : Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 low byte uses the system clock.
3	T1	Timer 1 Clock Select. Selects the clock source supplied to Timer 1. Ignored when C/T1 is set to 1 . 0 : Timer 1 uses the clock defined by the prescale bits SCA[1:0]. 1: Timer 1 uses the system clock.
2	T0	Timer 0 Clock Select. Selects the clock source supplied to Timer 0 . Ignored when C / TO is set to 1 . 0 : Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0]. 1: Counter/Timer 0 uses the system clock.
1:0	SCA[1:0]	Timer 0/1 Prescale Bits. These bits control the Timer 0/1 Clock Prescaler: 00: System clock divided by 12 01: System clock divided by 4 10: System clock divided by 48 11: External clock divided by 8 (synchronized with the system clock)

27.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TLO or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ETO bit in the IE register (Section "14.2. Interrupt Register Descriptions" on page 129); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "14.2. Interrupt Register Descriptions" on page 129). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

27.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0 . The following describes the configuration and operation of Timer 0 . However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The THO register holds the eight MSBs of the 13-bit counter/timer. TLO holds the five LSBs in bit positions TLO.4-TLO.0. The three upper bits of TLO (TLO.7-TLO.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0×0000, the timer overflow flag TFO (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (TO) increment the timer register (Refer to Section "20.3. Priority Crossbar Decoder" on page 192 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the TOM bit (CKCON.3). When TOM is set, Timer 0 is clocked by the system clock. When TOM is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 27.1).

Setting the TR0 bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or the input signal $\overline{\text { INTO }}$ is active as defined by bit INOPL in register IT01CF (see SFR Definition 14.7). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INTO (see Section "14.2. Interrupt Register Descriptions" on page 129), facilitating pulse width measurements.

TR0	GATE0	$\overline{\text { INT0 }}$	Counter/Timer
0	X	X	Disabled
1	0	X	Enabled
1	1	0	Disabled
1	1	1	Enabled
Note: X = Don't Care			

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT1 is used with Timer 1; the INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 14.7).

Figure 27.1. TO Mode 0 Block Diagram

27.1.2. Mode 1: 16 -bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

27.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8 -bit counter/timers with automatic reload of the start value. TLO holds the count and THO holds the reload value. When the counter in TLO overflows from all ones to 0×00, the timer overflow flag TFO (TCON.5) is set and the counter in TLO is reloaded from THO. If Timer 0 interrupts are enabled, an interrupt will occur when the TFO flag is set. The reload value in THO is not changed. TLO must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0 . Setting the TRO bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or when the input signal INTO is active as defined by bit INOPL in register IT01CF (see Section "14.3. External Interrupts INTO and INT1" on page 136 for details on the external input signals $\overline{\mathrm{NTO}}$ and $\overline{\mathrm{NT} 1}$).

Figure 27.2. TO Mode 2 Block Diagram

27.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8 -bit counter/timers held in TLO and THO. The counter/timer in TLO is controlled using the Timer 0 control/status bits in TCON and TMOD: TRO, C/TO, GATEO and TFO. TLO can use either the system clock or an external input signal as its timebase. The THO register is restricted to a timer function sourced by the system clock or prescaled clock. THO is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0 , 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0 , 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 27.3. TO Mode 3 Block Diagram

SFR Definition 27.2. TCON: Timer Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x88; Bit-Addressable; SFR Page = All Pages

Bit	Name	Function
7	TF1	Timer 1 Overflow Flag. Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.
6	TR1	Timer 1 Run Control. Timer 1 is enabled by setting this bit to 1 .
5	TF0	Timer 0 Overflow Flag. Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.
4	TRO	Timer 0 Run Control. Timer 0 is enabled by setting this bit to 1 .
3	IE1	External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.
2	IT1	Interrupt 1 Type Select. This bit selects whether the configured $\overline{\mathrm{INT1}}$ interrupt will be edge or level sensitive. $\overline{\text { INT1 }}$ is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 14.7). 0 : $\overline{\mathrm{INT} 1}$ is level triggered. 1: $\overline{\mathrm{INT} 1}$ is edge triggered.
1	IEO	External Interrupt 0. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.
0	ITO	Interrupt 0 Type Select. This bit selects whether the configured $\overline{\mathrm{INTO}}$ interrupt will be edge or level sensitive. $\overline{\text { INTO }}$ is configured active low or high by the INOPL bit in register IT01CF (see SFR Definition 14.7). 0 : $\overline{\mathrm{INTO}}$ is level triggered. 1: $\overline{\mathrm{INTO}}$ is edge triggered.

C8051F58x/F59x

SFR Definition 27.3. TMOD: Timer Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GATE1	C/T1	T1M[1:0]		GATE0	C/T0	TOM[1:0]	
Type	R/W	R/W	R/W		R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 89$; SFR Page $=$ All Pages

Bit	Name	Function
7	GATE1	Timer 1 Gate Control. 0 : Timer 1 enabled when TR1 $=1$ irrespective of $\overline{\text { INT1 }}$ logic level. 1: Timer 1 enabled only when TR1 $=1$ AND $\overline{\text { INT1 }}$ is active as defined by bit IN1PL in register IT01CF (see SFR Definition 14.7).
6	C/T1	Counter/Timer 1 Select. 0 : Timer: Timer 1 incremented by clock defined by T1M bit in register CKCON. 1: Counter: Timer 1 incremented by high-to-low transitions on external pin (T1).
5:4	T1M[1:0]	Timer 1 Mode Select. These bits select the Timer 1 operation mode. 00: Mode 0, 13-bit Counter/Timer 01: Mode 1, 16-bit Counter/Timer 10: Mode 2, 8-bit Counter/Timer with Auto-Reload 11: Mode 3, Timer 1 Inactive
3	GATEO	Timer 0 Gate Control. 0 : Timer 0 enabled when TRO $=1$ irrespective of $\overline{\mathrm{NTO}}$ logic level. 1: Timer 0 enabled only when TRO $=1$ AND $\overline{\text { INTO }}$ is active as defined by bit INOPL in register IT01CF (see SFR Definition 14.7).
2	C/TO	Counter/Timer 0 Select. 0 : Timer: Timer 0 incremented by clock defined by TOM bit in register CKCON. 1: Counter: Timer 0 incremented by high-to-low transitions on external pin (TO).
1:0	TOM[1:0]	Timer 0 Mode Select. These bits select the Timer 0 operation mode. 00: Mode 0, 13-bit Counter/Timer 01: Mode 1, 16-bit Counter/Timer 10: Mode 2, 8-bit Counter/Timer with Auto-Reload 11: Mode 3, Two 8-bit Counter/Timers

SFR Definition 27.4. TLO: Timer 0 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{TLO}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times 8 A$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 0$	TLO[7:0]	Timer 0 Low Byte. The TLO register is the low byte of the 16-bit Timer 0.

SFR Definition 27.5. TL1: Timer 1 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TL1[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 8 B$; SFR Page $=$ All Pages

Bit	Name	Function
$7: 0$	TL1[7:0]	Timer 1 Low Byte. The TL1 register is the low byte of the 16-bit Timer 1.

C8051F58x/F59x

SFR Definition 27.6. TH0: Timer 0 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{THO}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 8 C$; SFR Page $=$ All Pages

Bit	Name	Function
7:0	THO[7:0]	Timer 0 High Byte. The TH0 register is the high byte of the 16-bit Timer 0.

SFR Definition 27.7. TH1: Timer 1 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TH1[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 8 \mathrm{D} ;$ SFR Page $=$ All Pages

Bit	Name	Function
7:0	TH1[7:0]	Timer 1 High Byte. The TH1 register is the high byte of the 16-bit Timer 1.

C8051F58x/F59x

27.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8 . The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

27.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8 . As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 27.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE. 5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from $0 x F F$ to 0×00.

Figure 27.4. Timer 2 16-Bit Mode Block Diagram

27.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 27.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	X	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	X	SYSCLK

C8051F58x/F59x

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from $0 x F F$ to $0 x 00$. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 27.5. Timer 2 8-Bit Mode Block Diagram

27.2.3. External Oscillator Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 2 can be clocked from the system clock, or the system clock divided by 12, depending on the T2ML (CKCON.4), and T2XCLK bits. When a capture event is generated, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator / 8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the capture clock to achieve an accurate reading. Timer 2 should be in 16 -bit auto-reload mode when using Capture Mode.

For example, if T2ML $=1 b$ and TF2CEN $=1 b$, Timer 2 will clock every SYSCLK and capture every external clock divided by 8. If the SYSCLK is 24 MHz and the difference between two successive captures is 5984 , then the external clock frequency is as follows:
$24 \mathrm{MHz} /(5984 / 8)=0.032086 \mathrm{MHz}$ or 32.086 kHz

This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

Figure 27.6. Timer 2 External Oscillator Capture Mode Block Diagram

C8051F58x/F59x

SFR Definition 27.8. TMR2CN: Timer 2 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK
Type	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC8; Bit-Addressable; SFR Page $=0 \times 00$

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag. Set by hardware when the Timer 2 high byte overflows from 0xFF to 0×00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0×0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag. Set by hardware when the Timer 2 low byte overflows from 0xFF to 0×00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable. When set to 1 , this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Capture Mode Enable. 0 : Timer 2 Capture Mode is disabled. 1: Timer 2 Capture Mode is enabled.
3	T2SPLIT	Timer 2 Split Mode Enable. When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload. 0 : Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control. Timer 2 is enabled by setting this bit to 1 . In 8 -bit mode, this bit enables/disables TMR2H only; TMR2L is always enabled in split mode.
1	Unused	Read = 0b; Write = Don't Care
0	T2XCLK	Timer 2 External Clock Select. This bit selects the external clock source for Timer 2. If Timer 2 is in 8 -bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0 : Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

SFR Definition 27.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2RLL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times C A ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR2RLL[7:0]	Timer 2 Reload Register Low Byte. TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 27.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2RLH[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times C B ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR2RLH[7:0]	Timer 2 Reload Register High Byte. TMR2RLH holds the high byte of the reload value for Timer 2.

SFR Definition 27.11. TMR2L: Timer 2 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2L[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C C$; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR2L[7:0]	Timer 2 Low Byte. In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.

SFR Definition 27.12. TMR2H Timer 2 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2H[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address = 0xCD; SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 High Byte. In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

C8051F58x/F59x

27.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator source divided by 8 . The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

27.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8 . As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 27.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from $0 x F F$ to 0×00.

Figure 27.7. Timer 3 16-Bit Mode Block Diagram

27.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 27.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

T3MH	T3XCLK	TMR3H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	X	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	X	SYSCLK

C8051F58x/F59x

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from $0 x F F$ to 0×00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 27.8. Timer 3 8-Bit Mode Block Diagram

27.3.3. External Oscillator Capture Mode

Capture Mode allows the external oscillator to be measured against the system clock. Timer 3 can be clocked from the system clock, or the system clock divided by 12, depending on the T3ML (CKCON.6), and T3XCLK bits. When a capture event is generated, the contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set. A capture event is generated by the falling edge of the clock source being measured, which is the external oscillator/8. By recording the difference between two successive timer capture values, the external oscillator frequency can be determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture clock to achieve an accurate reading. Timer 3 should be in 16 -bit auto-reload mode when using Capture Mode.

If the SYSCLK is 24 MHz and the difference between two successive captures is 5861 , then the external clock frequency is as follows:
$24 \mathrm{MHz} /(5861 / 8)=0.032754 \mathrm{MHz}$ or 32.754 kHz
This mode allows software to determine the external oscillator frequency when an RC network or capacitor is used to generate the clock source.

Figure 27.9. Timer 3 External Oscillator Capture Mode Block Diagram

C8051F58x/F59x

SFR Definition 27.13. TMR3CN: Timer 3 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3		T3XCLK
Type	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 91$; SFR Page $=0 \times 00$

Bit	Name	Function
7	TF3H	$\begin{array}{l}\text { Timer 3 High Byte Overflow Flag. } \\ \text { Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In } 16 \text { bit } \\ \text { mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the } \\ \text { Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 } \\ \text { interrupt service routine. This bit is not automatically cleared by hardware. }\end{array}$
6	TF3L	$\begin{array}{l}\text { Timer 3 Low Byte Overflow Flag. } \\ \text { Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will } \\ \text { be set when the low byte overflows regardless of the Timer 3 mode. This bit is not } \\ \text { automatically cleared by hardware. }\end{array}$
5	TF3LEN	$\begin{array}{l}\text { Timer 3 Low Byte Interrupt Enable. } \\ \text { When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are } \\ \text { also enabled, an interrupt will be generated when the low byte of Timer 3 overflows. }\end{array}$
4	TF3CEN	$\begin{array}{l}\text { Timer 3 Capture Mode Enable. } \\ \text { 0: Timer 3 Capture Mode is disabled. } \\ \text { 1: Timer 3 Capture Mode is enabled. }\end{array}$
3	T3SPLIT	$\begin{array}{l}\text { Timer 3 Split Mode Enable. } \\ \text { When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload. } \\ \text { 0: Timer 3 operates in 16-bit auto-reload mode. } \\ \text { 1: Timer 3 operates as two 8-bit auto-reload timers. }\end{array}$
1	Unused	T3XCLK
0	TR3	$\begin{array}{l}\text { Timer 3 Run Control. } \\ \text { Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables } \\ \text { TMR3H only; TMR3L is always enabled in split mode. }\end{array}$
This bit selects the external clock source for Timer 3. If Timer 3 is in 8-bit mode, this		
bit selects the external oscillator clock source for both timer bytes. However, the		
Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to		
select between the external clock and the system clock for either timer.		
0: Timer 3 clock is the system clock divided by 12.		
1: Timer 3 clock is the external clock divided by 8 (synchronized with SYSCLK).		

C8051F58x/F59x

SFR Definition 27.14. TMR3RLL: Timer 3 Reload Register Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR3RLL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 92 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR3RLL[7:0]	Timer 3 Reload Register Low Byte. TMR3RLL holds the low byte of the reload value for Timer 3.

SFR Definition 27.15. TMR3RLH: Timer 3 Reload Register High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR3RLH[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 93 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR3RLH[7:0]	Timer 3 Reload Register High Byte. TMR3RLH holds the high byte of the reload value for Timer 3.

SFR Definition 27.16. TMR3L: Timer 3 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR3L[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 94 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	TMR3L[7:0]	Timer 3 Low Byte. In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8- bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 27.17. TMR3H Timer 3 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR3H[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times 95$; SFR Page $=0 \times 00$

| Bit | Name | Function |
| :---: | :---: | :--- | :--- |
| 7:0 | TMR3H[7:0] | Timer 3 High Byte.
 In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-
 bit mode, TMR3H contains the 8-bit high byte timer value. |

27.4. Timer 4 and Timer 5

Timers 4 and 5 are 16-bit counter/timers, each formed by two 8-bit SFRs: TMRnL (low byte) and TMRnH (high byte) where $\mathrm{n}=4$ and 5 for timers 4 and 5 respectively. Timers 4 and 5 feature auto-reload, capture, and toggle output modes with the ability to count up or down. Capture mode and Auto-Reload mode are selected using bits in the Timer4 and 5 Control registers (TMRnCN). Toggle Output mode is selected using the Timer 4 and 5 Configuration registers (TMRnCF). These timers may also be used to generate a square-wave at an external pin. As with Timers 0 and 1, Timers 4 and 5 can use either the system clock (divided by one, two, or twelve), external clock (divided by eight) or transitions on an external input pin as its clock source.
The Counter/Timer Select bit CTn bit (TMRnCN.1) configures the peripheral as a counter or timer. Clearing CTn to 0 configures the Timer to be in a timer mode (i.e., the system clock or transitions on an external pin as the input for the timer). When CTn is set to 1 , the timer is configured as a counter (i.e., high-to-low transitions at the Tn input pin increment (or decrement) the counter/timer register. Refer to Section "20.4. Port I/O Initialization" on page 195 for information on selecting and configuring external I/O pins for digital peripherals, such as the Tn pin.

The Timers can use either SYSCLK, SYSCLK divided by 2, SYSCLK divided by 12, an external clock divided by 8, or high-to-low transitions on the Tn input pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the CTn bit (TMRnCN.1) selects the system clock/external clock as the input for the timer. The Timer Clock Select bits TnM0 and TnM1 in TMRnCF can be used to select the system clock undivided, system clock divided by two, system clock divided by 12 , or an external clock provided at the XTAL1/XTAL2 pins divided by 8 (see SFR Definition 27.19). When CTn is set to logic 1, a high-to-low transition at the Tn input pin increments the counter/timer register (i.e., configured as a counter).

27.4.1. Configuring Timer 4 and 5 to Count Down

Timers 4 and 5 have the ability to count down. When the timer's Decrement Enable Bit (DCENn) in the Timer Configuration Register (see SFR Definition 27.19) is set to 1 , the timer can then count up or down. When DCEN $=1$, the direction of the timer's count is controlled by the TnEX pin's logic level. When $\operatorname{TnEX}=1$, the counter/timer will count up; when $\operatorname{TnEX}=0$, the counter/timer will count down. To use this feature, TnEX must be enabled in the digital crossbar and configured as a digital input.

Note: When DCENn = 1, other functions of the TnEX input (i.e., capture and auto-reload) are not available. TnEX will only control the direction of the timer when DCENn = 1 .

27.4.2. Capture Mode

In Capture Mode, Timers 4 and 5 will operate as a 16 -bit counter/timer with capture facility. When the Timer External Enable bit (see SFR Definition 27.18) is set to 1, a high-to-low transition on the TnEX input pin causes the 16 -bit value in the associated timer (THn, TLn) to be loaded into the capture registers (TMRnCAPH, TMRnCAPL). If a capture is triggered in the counter/timer, the Timer External Flag (TMRnCN.6) will be set to 1 and an interrupt will occur if the interrupt is enabled. See Section "14. Interrupts" on page 126 for further information concerning the configuration of interrupt sources.

As the 16-bit timer register increments and overflows TMRnH:TMRnL, the TFn Timer Overflow/Underflow Flag (TMRnCN.7) is set to 1 and an interrupt will occur if the interrupt is enabled. The timer can be configured to count down by setting the Decrement Enable Bit (TMRnCF.0) to 1 . This will cause the timer to decrement with every timer clock/count event and underflow when the timer transitions from 0x0000 to 0xFFFF. Just as in overflows, the Overflow/Underflow Flag (TFn) will be set to 1, and an interrupt will occur if enabled.

C8051F58x/F59x

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CPRLn (TMRnCN.0) and the Timer 4 and 5 Run Control bit TRn (TMRnCN.2) to logic 1. The Timer 4 and 5 respective External Enable EXENn (TMRnCN.3) must also be set to logic 1 to enable captures. If EXENn is cleared, transitions on TnEX will be ignored.

Figure 27.10. Timer 4 and 5 Capture Mode Block Diagram

27.4.3. Auto-Reload Mode

In Auto-Reload mode, the counter/timer can be configured to count up or down and cause an interrupt/flag to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, and the values in the Reload/Capture Registers (TMRnCAPH and TMRnCAPL) are loaded into the timer and the timer is restarted. When the Timer External Enable Bit (EXENn) bit is set to 1 and the Decrement Enable Bit (DCENn) is 0 , a falling edge (1-to-0 transition) on the TnEX pin will cause a timer reload. Note that timer overflows will also cause auto-reloads. When DCENn is set to 1 , the state of the TnEX pin controls whether the counter/timer counts up (increments) or down (decrements), and will not cause an auto-reload or interrupt event. See Section 27.4.1 for information concerning configuration of a timer to count down.

When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) when the value in the TMRnH and TMRnL registers matches the 16 -bit value in the Reload/Capture Registers (TMRnCAPH and TMRnCAPL). This is considered an underflow event, and will cause the timer to load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.
Counter/Timer with Auto-Reload mode is selected by clearing the CPRLn bit. Setting TRn to logic 1 enables and starts the timer. In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not cause an interrupt. The EXFn flag can be used as the most significant bit (MSB) of a 17-bit counter.

Figure 27.11. Timer 4 and 5 Auto Reload and Toggle Mode Block Diagram

27.4.4. Toggle Output Mode

Timers 4 and 5 have the capability to toggle the state of their respective output port pins (T4 or T5) to produce a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of the respective timer (depending on whether the timer is counting up or down). The toggle frequency is determined by the clock source of the timer and the values loaded into TMRnCAPH and TMRnCAPL. When counting down, the auto-reload value for the timer is OxFFFF, and underflow will occur when the value in the timer matches the value stored in TMRnCAPH:TMRCAPL. When counting up, the auto-reload value for the timer is TMRnCAPH:TMRCAPL, and overflow will occur when the value in the timer transitions from 0xFFFF to the reload value.

To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN and the Timer/Counter Select Bit in TMRnCN are cleared to 0). The timer output is enabled by setting the Timer Output Enable Bit in TMRnCF to 1. The timer should be configured via the timer clock source and reload/underflow values such that the timer overflow/underflows at $1 / 2$ the desired output frequency. The port pin assigned by the crossbar as the timer's output pin should be configured as a digital output (see Section "20. Port Input/Output" on page 188). Setting the timer's Run Bit (TRn) to 1 will start the toggle of the pin. A Read/Write of the Timer's Toggle Output State Bit (TMRnCF.2) is used to read the state of the toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in a known state, or to force the pin into a desired state when the toggle mode is halted.

$$
F_{s q}=\frac{F_{T C L K}}{2 \times(65536-\text { TMRnCAP })}
$$

Equation 27.1. Square Wave Frequency

C8051F58x/F59x

SFR Definition 27.18. TMRnCN: Timer 4 and 5 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TFn	EXFn			EXEn	TRn	CTn	CPRLn
Type	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

TMR4CN SFR Address $=0 \times C 8$; Bit-Addressable; SFR Page $=0 \times 10$
TMR5CN SFR Address $=0 \times 91$; SFR Page $=0 \times 10$;

Bit	Name	Function
7	TFn	Timer 4 and 5 16-bit Overflow/Underflow Flag. Set by hardware when either the Timer overflows from 0xFFFF to 0x0000, underflows from the value placed in TMRnCAPH:TMRnCAPL to 0xFFFF (in Auto-reload Mode), or underflows from 0×0000 to 0xFFFF (in Capture Mode). When the Timer interrupt is enabled, setting this bit causes the CPU to vector to the Timer interrupt service routine. This bit is not automatically cleared by hardware.
6	EXFn	Timer 4 and 5 External Flag. Set by hardware when either a capture or reload is caused by a high-to-low transition on the TnEX input pin and EXENn is logic 1 . This bit is not automatically cleared by hardware.
5:4	Reserved	Must Write 00b.
3	EXEn	Timer 4 and 5 External Enable. Enables high-to-low transitions on TnEX to trigger captures, reloads, and control the direction of the timer/counter (up or down count). If DCENn $=1, \mathrm{TnEX}$ will determine if the timer counts up or down when in Auto-reload Mode. If EXENn $=1$, TnEX should be configured as a digital input. 0 : Transitions on the TnEX pin are ignored. 1: Transitions on the TnEX pin cause capture, reload, or control the direction of timer count (up or down) as follows: Capture Mode: '1'-to-'0' Transition on TnEX pin causes TMRnCAPH:TMRnCAPL to capture timer value. Auto-Reload Mode: $\mathrm{DCENn}=0$: ' 1 '-to-'0' transition causes reload of timer and sets the EXFn Flag. DCENn = 1: TnEX logic level controls direction of timer (up or down).
2	TRn	Timer 4 and 5 Run Control. 0 : Timer is disabled. 1: Timer enabled and running / counting.
1	CTn	Timer 4 and 5 Counter / Timer Select. 0 : Timer Function: Timer incremented by clocked defined in TnM1:TnM0 (TMRnCF). 1: Counter Function: Timer incremented by high-to-low transitions on TnEX pin.
0	CPRLn	Timer 4 and 5 Capture / Reload Select. 0 : Timer is in Auto-Reload mode. 1: Timer is in Capture mode.

SFR Definition 27.19. TMRnCF: Timer 4 and 5 Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name				TnM[1:0]		TOGn	TnOE	DCENn
Type	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

TMR4CF SFR Address $=0 \times C 9$; TMR5CF SFR Address $=0 \times 96$; SFR Page $=0 \times 10$;

Bit	Name	Function
$7: 5$	Reserved	Must Write 000b.
$4: 3$	TnM[1:0]	Timer 4 and 5 Clock Mode Select Bits. 00: Timer clock is SYSCLK / 12. 01: Timer clock is SYSCLK. 10: Timer clock is External Clock / 8 (synchronized to system clock). 11: Timer clock is SYSCLK / 2.
2	TOGn	Timer 4 and 5 Toggle Output State. When Timer 4 or 5 are used to toggle a port pin, this bit can be used to read the state of the output or can be written to force the state of the output.
1	TnOE	Timer 4 and 5 Output Enable. This bit enables the timer to output a 50\% duty cycle output to the timer's assigned external port pin. The Timer is configured for Square Wave Output as follows: CPRLn = 0. CTn = 0. TnOE 1. Load TMRnCAPH:TMRnCAPL. 0: Output of toggle mode not available at Timer's assigned port pin. 1: Output of toggle mode available at Timer's assigned port pin.
0	DCENn	Decrement Enable. This bit enables the timer to count up or down as determined by the state of TnEX. 0: Timer will count up, regardless of the state of TnEX. 1: Timer will count up or down, depending on the state of TnEX as follows: If TnEx = 0, the timer counts down. If TnEx = 1, the timer counts up.

C8051F58x/F59x

SFR Definition 27.20. TMRnCAPL: Timer 4 and 5 Capture Register Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMRnRLL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

TMR4CAPL SFR Address $=0 \times C A ;$ TMR5CAPL SFR Address $=0 \times 92$; SFR Page $=0 \times 10$

Bit	Name	Function
7:0	TMRnCAPL[7:0]	Timer \mathbf{n} Reload Register Low Byte. TMRnCAPL captures the low byte of Timer 4 and 5 when Timer 4 and 5 are con- figured in capture mode. When Timer 4 and 5 are configured in auto-reload mode, it holds the low byte of the reload value.

SFR Definition 27.21. TMRnCAPH: Timer 4 and 5 Capture Register High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMRnRLH[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

TMR4CAPH SFR Address $=0 \times C B ;$ TMR5CAPH SFR Address $=0 \times 93$; SFR Page $=0 \times 10$

Bit	Name	Function
$7: 0$	TMRnCAPH[7:0]	Timer \mathbf{n} Reload Register High Byte. TMRnCAPH captures the high byte of Timer 4 and 5 when Timer 4 and 5 are configured in capture mode. When Timer 4 and 5 are configured in auto-reload mode, it holds the high byte of the reload value.

SFR Definition 27.22. TMRnL: Timer 4 and 5 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMRnL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

TMR4L SFR Address $=0 \times C C ;$ TMR5L SFR Address $=0 \times 94 ;$ SFR Page $=0 \times 10$

Bit	Name	Function
7:0	TMRnL[7:0]	Timer n Low Byte. In 16-bit mode, the TMRnL register contains the low byte of the 16-bit Timer n. In 8- bit mode, TMRnL contains the 8-bit low byte timer value.

SFR Definition 27.23. TMRnH Timer 4 and 5 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\operatorname{TMRnH}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

TMR4H SFR Address = 0xCD; TMR5H SFR Address $=0 \times 95$; SFR Page $=0 \times 10$

Bit	Name	Function
7:0	TMRnH[7:0]	Timer \mathbf{n} High Byte. In 16-bit mode, the TMRnH register contains the high byte of the 16-bit Timer n. In 8- bit mode, TMRnH contains the 8-bit high byte timer value.

28. Programmable Counter Array 0 (PCAO)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. PCA0 consists of a dedicated 16-bit counter/timer and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between eight sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8 , Timer 0,4 , or 5 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 11 -Bit PWM, or 16 -Bit PWM (each mode is described in Section "28.3. Capture/Compare Modules" on page 317). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing PCAO to be clocked by a precision external oscillator while the internal oscillator drives the system clock. PCA0 is configured and controlled through the system controller's Special Function Registers. The PCAO block diagram is shown in Figure 28.1

Important Note: PCAO Module 5 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCAO registers is restricted while WDT mode is enabled. See Section 28.4 for details.

Figure 28.1. PCAO Block Diagram

C8051F58x/F59x

28.1. PCAO Counter/Timer

The 16-bit PCAO counter/timer consists of two 8-bit SFRs: PCAOL and PCAOH. PCAOH is the high byte (MSB) of the 16-bit counter/timer and PCAOL is the low byte (LSB). Reading PCAOL automatically latches the value of PCAOH into a "snapshot" register; the following PCAOH read accesses this "snapshot" register. Reading the PCAOL Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Reading PCAOH or PCAOL does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 28.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCAOMD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCAOMD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL bit in the PCAOMD register allows the PCAO to continue normal operation while the CPU is in Idle mode.

Table 28.1. PCAO Timebase Input Options

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12.
0	0	1	System clock divided by 4.
0	1	0	Timer 0 overflow.
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4).
1	0	0	System clock.
1	0	1	External oscillator source divided by 8.
1	1	0	Timer 4 Overflow.
1	1	1	Timer 5 Overflow.
*Note: External oscillator source divided by 8 is synchronized with the system clock.			

Figure 28.2. PCAO Counter/Timer Block Diagram

28.2. PCAO Interrupt Sources

Figure 28.3 shows a diagram of the PCAO interrupt tree. There are five independent event flags that can be used to generate a PCAO interrupt. They are as follows: the main PCAO counter overflow flag (CF), which is set upon a 16-bit overflow of the PCAO counter, an intermediate overflow flag (COVF), which can be set on an overflow from the 8th, 9th, 10th, or 11th bit of the PCAO counter, and the individual flags for each PCA0 channel (CCF0, CCF1, CCF2, CCF3, CCF4 and CCF5), which are set according to the operation mode of that module. These event flags are always set when the trigger condition occurs. Each of these flags can be individually selected to generate a PCAO interrupt, using the corresponding interrupt enable flag (ECF for CF, ECOV for COVF, and ECCFn for each CCFn). PCAO interrupts must be globally enabled before any individual interrupt sources are recognized by the processor. PCAO interrupts are globally enabled by setting the EA bit and the EPCAO bit to logic 1.

Figure 28.3. PCAO Interrupt Block Diagram

C8051F58x/F59x

28.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8 to 11-Bit Pulse Width Modulator, or 16Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 28.2 summarizes the bit settings in the PCAOCPMn and PCAOPWM registers used to select the PCAO capture/compare module's operating mode. All modules set to use 8,9 , 10 , or 11 -bit PWM mode must use the same cycle length ($8-11$ bits). Setting the ECCF bit in a PCAOCPMn register enables the module's CCFn interrupt.

Table 28.2. PCAOCPM and PCAOPWM Bit Settings for PCAO Capture/Compare Modules

Bit Number Operational Mode	PCA0CPMn								PCAOPWM				
	7	6	5	4	3	2	1	0	7	6	5	4-2	1-0
Capture triggered by positive edge on CEXn	X	X	1	0	0	0	0	A	0	X	B	XXX	XX
Capture triggered by negative edge on CEXn	X	X	0	1	0	0	0	A	0	X	B	XXX	XX
Capture triggered by any transition on CEXn	X	X	1	1	0	0	0	A	0	X	B	XXX	XX
Software Timer	X	C	0	0	1	0	0	A	0	X	B	XXX	XX
High Speed Output	X	C	0	0	1	1	0	A	0	X	B	XXX	XX
Frequency Output	X	C	0	0	0	1	1	A	0	X	B	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	0	X	B	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	11
16-Bit Pulse Width Modulator	1	C	0	0	E	0	1	A	0	X	B	XXX	XX

Notes:

1. $X=$ Don't Care (no functional difference for individual module if 1 or 0).
2. $A=$ Enable interrupts for this module (PCAO interrupt triggered on CCFn set to 1).
3. $B=$ Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).
4. $C=$ When set to 0 , the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output $=0$).
5. $\mathrm{D}=$ Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCAOCPHn and PCAOCPLn.
6. $E=$ When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to $8,9,10$ or 11 -bit PWM mode use the same cycle length setting.

28.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCAO to capture the value of the PCAO counter/timer and load it into the corresponding module's 16 -bit capture/compare register (PCAOCPLn and PCAOCPHn). The CAPPn and CAPNn bits in the PCAOCPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1 , then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

Figure 28.4. PCAO Capture Mode Diagram
Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

28.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCAO counter/timer value is compared to the module's 16-bit capture/compare register (PCAOCPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCAOCPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

Figure 28.5. PCAO Software Timer Mode Diagram

28.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCAO Counter and the module's 16 -bit capture/compare register (PCAOCPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCAOCPMn register enables the HighSpeed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

Figure 28.6. PCAO High-Speed Output Mode Diagram

28.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCAO clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 28.1.

$$
F_{\text {CEXn }}=\frac{F_{\text {PCA }}}{2 \times \text { PCA0CPHn }}
$$

Note: A value of 0×00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 28.1. Square Wave Frequency Output

Where $\mathrm{F}_{\mathrm{PCA}}$ is the frequency of the clock selected by the CPS2-0 bits in the PCAO mode register, PCAOMD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCAOCPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCAOCPMn register. Note that the MATn bit should normally be set to 0 in this mode. If the MATn bit is set to 1 , the CCFn flag for the channel will be set when the 16-bit PCAO counter and the 16-bit capture/compare register for the channel are equal.

C8051F58x/F59x

Figure 28.7. PCAO Frequency Output Mode

28.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCAO counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9,10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCAO channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

28.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCAO counter/timer (PCAOL) is equal to the value in PCAOCPLn, the output on the CEXn pin will be set. When the count value in PCAOL overflows, the CEXn output will be reset (see Figure 28.8). Also, when the counter/timer low byte (PCAOL) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCAOCPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCAOCPMn register, and setting the CLSEL bits in register PCAOPWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF flag in PCAOPWM can be used to detect the overflow (falling edge), which will occur every 256 PCA0 clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 28.2.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

$$
\text { Duty Cycle }=\frac{(256-\text { PCAOCPHn })}{256}
$$

Equation 28.2. 8-Bit PWM Duty Cycle

Using Equation 28.2, the largest duty cycle is 100% ($\mathrm{PCAOCPHn}=0$), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0\% duty cycle may be generated by clearing the ECOMn bit to 0 .

Figure 28.8. PCAO 8-Bit PWM Mode Diagram

28.3.5.2. 9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an "AutoReload" Register, which is dual-mapped into the PCAOCPHn and PCAOCPLn register locations. The data written to define the duty cycle should be right-justified in the registers. The auto-reload registers are accessed (read or written) when the bit ARSEL in PCAOPWM is set to 1 . The capture/compare registers are accessed when ARSEL is set to 0 .

When the least-significant N bits of the PCAO counter match the value in the associated module's capture/compare register (PCAOCPn), the output on CEXn is asserted high. When the counter overflows from the Nth bit, CEXn is asserted low (see Figure 28.9). Upon an overflow from the Nth bit, the COVF flag is set, and the value stored in the module's auto-reload register is loaded into the capture/compare register. The value of N is determined by the CLSEL bits in register PCAOPWM.
The 9,10 or 11-bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCAOCPMn register, and setting the CLSEL bits in register PCAOPWM to the desired cycle length (other than 8 -bits). If the MATn bit is set to 1 , the CCFn flag for the module will be set each time a comparator match (rising edge) occurs. The COVF flag in PCAOPWM can be used to detect the overflow (falling edge), which will occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCAO clock cycles. The duty cycle for 9/10/11-Bit PWM Mode is given in Equation 28.2, where N is the number of bits in the PWM cycle.

Important Note About PCAOCPHn and PCAOCPLn Registers: When writing a 16 -bit value to the PCAOCPn registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

$$
\text { Duty Cycle }=\frac{\left(2^{\mathrm{N}}-\mathrm{PCAOCPn}\right)}{2^{\mathrm{N}}}
$$

Equation 28.3. 9, 10, and 11-Bit PWM Duty Cycle
A 0\% duty cycle may be generated by clearing the ECOMn bit to 0 .

C8051F58x/F59x

Figure 28.9. PCAO 9, 10 and 11-Bit PWM Mode Diagram

28.3.6. 16-Bit Pulse Width Modulator Mode

A PCAO module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCAO clocks for the low time of the PWM signal. When the PCAO counter matches the module contents, the output on CEXn is asserted high; when the 16 -bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCAO CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCAOCPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn $=1$ AND MATn $=1$) to help synchronize the capture/compare register writes. If the MATn bit is set to 1 , the CCFn flag for the module will be set each time a 16 -bit comparator match (rising edge) occurs. The CF flag in PCAOCN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 28.4.
Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

$$
\text { Duty Cycle }=\frac{(65536-\text { PCA0CPn })}{65536}
$$

Equation 28.4. 16-Bit PWM Duty Cycle

Using Equation 28.4, the largest duty cycle is 100% (PCAOCPn = 0), and the smallest duty cycle is 0.0015% (PCAOCPn $=0 x F F F F)$. A 0% duty cycle may be generated by clearing the ECOMn bit to 0 .

Figure 28.10. PCAO 16-Bit PWM Mode

28.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCAO Module 5. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.
With the WDTE bit set in the PCAOMD register, Module 5 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCAO counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCAO registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

28.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCAO counter is forced on.
- Writes to PCAOL and PCAOH are not allowed.
- PCA0 clock source bits (CPS2-CPSO) are frozen.
- PCAO Idle control bit (CIDL) is frozen.
- PCAO Module 5 is forced into software timer mode.
- Writes to the Module 5 mode register (PCAOCPM5) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA0 counter state; the counter will run until the WDT is disabled. The PCA0 counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA0 counter. If a match occurs between PCAOCPH5 and PCAOH while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCAOCPH5. Upon a PCAOCPH5 write, PCAOH plus the offset held in PCA0CPL5 is loaded into PCA0CPH5 (See Figure 28.11).

C8051F58x/F59x

Figure 28.11. PCAO Module 5 with Watchdog Timer Enabled

Note that the 8-bit offset held in PCA0CPH5 is compared to the upper byte of the 16-bit PCA0 counter. This offset value is the number of PCAOL overflows before a reset. Up to 256 PCAO clocks may pass before the first PCAOL overflow occurs, depending on the value of the PCAOL when the update is performed. The total offset is then given (in PCAO clocks) by Equation 28.5, where PCAOL is the value of the PCAOL register at the time of the update.

$$
\text { Offset }=(256 \times \text { PCAOCPL5 })+(256-P C A 0 L)
$$

Equation 28.5. Watchdog Timer Offset in PCAO Clocks

The WDT reset is generated when PCAOL overflows while there is a match between PCA0CPH5 and PCAOH. Software may force a WDT reset by writing a 1 to the CCF5 flag (PCAOCN.5) while the WDT is enabled.

28.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

- Disable the WDT by writing a 0 to the WDTE bit.
- Select the desired PCA0 clock source (with the CPS2-CPS0 bits).
- Load PCA0CPL5 with the desired WDT update offset value.
- Configure the PCAO Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
- Enable the WDT by setting the WDTE bit to 1.
- Reset the WDT timer by writing to PCAOCPH5.

C8051F58x/F59x

The PCA0 clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCAOMD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCA0 counter clock defaults to the system clock divided by 12, PCAOL defaults to 0x00, and PCA0CPL5 defaults to 0x00. Using Equation 28.5, this results in a WDT timeout interval of 256 PCA0 clock cycles, or 3072 system clock cycles. Table 28.3 lists some example timeout intervals for typical system clocks.

Table 28.3. Watchdog Timer Timeout Intervals ${ }^{1}$

System Clock (Hz)	PCA0CPL5	Timeout Interval (ms)
$24,000,000$	255	32.8
$24,000,000$	128	16.5
$24,000,000$	32	4.2
$3,000,000$	255	262.1
$3,000,000$	128	132.1
$3,000,000$	32	33.8
$187,500^{2}$	255	4194
$187,500^{2}$	128	2114
$187,500^{2}$	32	541

Notes:

1. Assumes SYSCLK/12 as the PCA0 clock source, and a PCAOL value of 0×00 at the update time.
2. Internal SYSCLK reset frequency = Internal Oscillator divided by 128.

C8051F58x/F59x

28.5. Register Descriptions for PCAO

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 28.1. PCAOCN: PCAO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable; SFR Page $=0 \times 00$

Bit	Name	Function
7	CF	PCA0 Counter/Timer Overflow Flag. Set by hardware when the PCAO Counter/Timer overflows from OxFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCAO interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCAO Counter/Timer Run Control. This bit enables/disables the PCAO Counter/Timer. 0: PCA0 Counter/Timer disabled. 1: PCA0 Counter/Timer enabled.
5	CCF5	PCA0 Module 5 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF5 interrupt is enabled, setting this bit causes the CPU to vector to the PCAO interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
4	CCF4	PCAO Module 4 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCAO interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
3	CCF3	PCA0 Module 3 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt
is enabled, setting this bit causes the CPU to vector to the PCAO interrupt service rou-		
tine. This bit is not automatically cleared by hardware and must be cleared by software.		

SFR Definition 28.2. PCAOMD: PCAO Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF
Type	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address $=0 \times D 9$; SFR Page $=0 \times 00$

Bit	Name	Function
7	CIDL	PCAO Counter/Timer Idle Control. Specifies PCAO behavior when CPU is in Idle Mode. 0 : PCAO continues to function normally while the system controller is in Idle Mode. 1: PCAO operation is suspended while the system controller is in Idle Mode.
6	WDTE	Watchdog Timer Enable If this bit is set, PCAO Module 5 is used as the watchdog timer. 0 : Watchdog Timer disabled. 1: PCAO Module 5 enabled as Watchdog Timer.
5	WDLCK	Watchdog Timer Lock This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog Timer may not be disabled until the next system reset. 0 : Watchdog Timer Enable unlocked. 1: Watchdog Timer Enable locked.
4	Unused	Read = 0b, Write $=$ Don't care
3:1	CPS[2:0]	PCAO Counter/Timer Pulse Select. These bits select the timebase source for the PCAO counter 000: System clock divided by 12 001: System clock divided by 4 010: Timer 0 overflow 011: High-to-low transitions on ECI (max rate = system clock divided by 4) 100: System clock 101: External clock divided by 8 (synchronized with the system clock) 110: Timer 4 overflow 111: Timer 5 overflow
0	ECF	PCAO Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA0 Counter/Timer Overflow (CF) interrupt. 0 : Disable the CF interrupt. 1: Enable a PCAO Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.
Note:	When the WDTE bit is set to 1 , the other bits in the PCAOMD register cannot be modified. To change the contents of the PCAOMD register, the Watchdog Timer must first be disabled.	

C8051F58x/F59x

SFR Definition 28.3. PCAOPWM: PCAO PWM Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ARSEL	ECOV	COVF				CLSEL[1:0]	
Type	R/W	R/W	R/W	R	R	R	R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times$ D9; SFR Page $=0 \times 0 F$

Bit	Name	Function
7	ARSEL	Auto-Reload Register Select. This bit selects whether to read and write the normal PCAO capture/compare registers (PCAOCPn), or the Auto-Reload registers at the same SFR addresses. This function is used to define the reload value for 9,10 , and 11-bit PWM modes. In all other modes, the Auto-Reload registers have no function. 0: Read/Write Capture/Compare Registers at PCAOCPHn and PCA0CPLn. 1: Read/Write Auto-Reload Registers at PCAOCPHn and PCAOCPLn.
6	ECOV	Cycle Overflow Interrupt Enable. This bit sets the masking of the Cycle Overflow Flag (COVF) interrupt. 0 : COVF will not generate PCAO interrupts. 1: A PCAO interrupt will be generated when COVF is set.
5	COVF	Cycle Overflow Flag. This bit indicates an overflow of the 8th, 9th, 10th, or 11th bit of the main PCAO counter (PCAO). The specific bit used for this flag depends on the setting of the Cycle Length Select bits. The bit can be set by hardware or software, but must be cleared by software. 0: No overflow has occurred since the last time this bit was cleared. 1: An overflow has occurred since the last time this bit was cleared.
4:2	Unused	Read = 000b; Write = Don't care.
1:0	CLSEL[1:0]	Cycle Length Select. When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle, between $8,9,10$, or 11 bits. This affects all channels configured for PWM which are not using 16-bit PWM mode. These bits are ignored for individual channels configured to16-bit PWM mode. 00: 8 bits. 01: 9 bits. 10: 10 bits. 11: 11 bits.

SFR Definition 28.4. PCAOCPMn: PCAO Capture/Compare Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PWM16n	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Addresses: $\mathrm{PCAOCPM0}=0 \times D A, \mathrm{PCAOCPM} 1=0 x D B, \mathrm{PCA} 0 C P M 2=0 x D C ; P C A 0 C P M 3=0 x D D$, PCA0CPM4 $=0 \times D E$, PCA0CPM5 $=0 \times D F$, SFR Page (all registers) $=0 \times 00$

Bit	Name	Function
7	PWM16n	16-bit Pulse Width Modulation Enable. This bit enables 16 -bit mode when Pulse Width Modulation mode is enabled. 0: 8 to 11-bit PWM selected. 1: 16-bit PWM selected.
6	ECOMn	Comparator Function Enable. This bit enables the comparator function for PCAO module n when set to 1 .
5	CAPPn	Capture Positive Function Enable. This bit enables the positive edge capture for PCAO module n when set to 1 .
4	CAPNn	Capture Negative Function Enable. This bit enables the negative edge capture for PCAO module n when set to 1 .
3	MATn	Match Function Enable. This bit enables the match function for PCAO module n when set to 1 . When enabled, matches of the PCA0 counter with a module's capture/compare register cause the CCFn bit in PCAOMD register to be set to logic 1.
2	TOGn	Toggle Function Enable. This bit enables the toggle function for PCAO module n when set to 1 . When enabled, matches of the PCAO counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1 , the module operates in Frequency Output Mode.
1	PWMn	Pulse Width Modulation Mode Enable. This bit enables the PWM function for PCAO module n when set to 1 . When enabled, a pulse width modulated signal is output on the CEXn pin. 8 to 11-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.
0	ECCFn	Capture/Compare Flag Interrupt Enable. This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt. 0: Disable CCFn interrupts. 1: Enable a Capture/Compare Flag interrupt request when CCFn is set.

Note: When the WDTE bit is set to 1, the PCA0CPM5 register cannot be modified, and module 5 acts as the watchdog timer. To change the contents of the PCAOCPM5 register or the function of module 5 , the Watchdog Timer must be disabled.

C8051F58x/F59x

SFR Definition 28.5. PCA0L: PCAO Counter/Timer Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PCAO[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times F 9 ;$ SFR Page $=0 \times 00$

Bit	Name	Function
7:0	PCA0[7:0]	PCA0 Counter/Timer Low Byte. The PCA0L register holds the low byte (LSB) of the 16-bit PCA0 Counter/Timer.

Note: When the WDTE bit is set to 1 , the PCAOL register cannot be modified by software. To change the contents of the PCAOL register, the Watchdog Timer must first be disabled.

SFR Definition 28.6. PCAOH: PCAO Counter/Timer High Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | PCAO[15:8] | | | | | | | |
| Type | R/W |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Address = 0xFA; SFR Page $=0 \times 00$

| Bit | Name | Function |
| :---: | :---: | :--- | :--- |
| 7:0 | PCA0[15:8] | PCA0 Counter/Timer High Byte.
 The PCA0H register holds the high byte (MSB) of the 16-bit PCA0 Counter/Timer.
 Reads of this register will read the contents of a "snapshot" register, whose contents
 are updated only when the contents of PCA0L are read (see Section 28.1). |

Note: When the WDTE bit is set to 1 , the PCAOH register cannot be modified by software. To change the contents of the PCAOH register, the Watchdog Timer must first be disabled.

SFR Definition 28.7. PCAOCPLn: PCAO Capture Module Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	R/W							
Type	R/WCA0CPn[7:0]							
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPL0 $=0 x F B$, PCA0CPL1 $=0 x E 9$, PCA0CPL2 $=0 x E B$, PCA0CPL3 $=0 x E D$, PCA0CPL4 $=0 \times F D$, PCA0CPL5 $=0 \times C E ;$ SFR Page (all registers) $=0 \times 00$

Bit	Name	Function
$7: 0$	PCA0CPn[7:0]	PCA0 Capture Module Low Byte. The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA0 channel's auto-reload value for 9,10, or 11-bit PWM mode. The ARSEL bit in register PCAOPWM controls which register is accessed.

SFR Definition 28.8. PCAOCPHn: PCAO Capture Module High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Type	R/W						
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPH0 = 0xFC, PCA0CPH1 = 0xEA, PCA0CPH2 = 0xEC, PCAOCPH3 = 0xEE, PCA0CPH4 = 0xFE, PCA0CPH5 = 0xCF; SFR Page (all registers) $=0 \times 00$

Bit	Name	Function
$7: 0$	PCA0CPn[15:8]	PCA0 Capture Module High Byte. The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA0 channel's auto-reload value for 9,10, or 11-bit PWM mode. The ARSEL bit in register PCAOPWM controls which register is accessed.
Note: A write to this register will set the module's ECOMn bit to a 1.		

29. Programmable Counter Array 1 (PCA1)

The Programmable Counter Array (PCA1) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. PCA1 consists of a dedicated 16-bit counter/timer and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between eight sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8 , Timer 0,4 , or 5 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 11 -Bit PWM, or 16 -Bit PWM (each mode is described in Section "29.3. Capture/Compare Modules" on page 336). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing PCA1 to be clocked by a precision external oscillator while the internal oscillator drives the system clock. PCA1 is configured and controlled through the system controller's Special Function Registers. The PCA1 block diagram is shown in Figure 29.1

Note: PCA0 and PCA1 are fully independent peripherals. PCA0 offers channels CEX0 - CEX5, and PCA1 offers channels CEX6-CEX11. PCA0 and PCA1 are identical, except that PCA0 Module 5 may be used as a watchdog timer.

Figure 29.1. PCA1 Block Diagram

SILICON LABS

C8051F58x/F59x

29.1. PCA1 Counter/Timer

The 16-bit PCA1 counter/timer consists of two 8-bit SFRs: PCA1L and PCA1H. PCA1H is the high byte (MSB) of the 16-bit counter/timer and PCA1L is the low byte (LSB). Reading PCA1L automatically latches the value of PCA1H into a "snapshot" register; the following PCA1H read accesses this "snapshot" register. Reading the PCA1L Register first guarantees an accurate reading of the entire 16-bit PCA1 counter. Reading PCA1H or PCA1L does not disturb the counter operation. The CPS12-CPS10 bits in the PCA1MD register select the timebase for the counter/timer as shown in Table 29.1.

When the counter/timer overflows from 0xFFFF to 0×0000, the Counter Overflow Flag (CF1) in PCA1MD is set to logic 1 and an interrupt request is generated if CF1 interrupts are enabled. Setting the ECF1 bit in PCA1MD to logic 1 enables the CF1 flag to generate an interrupt request. The CF1 bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL1 bit in the PCA1MD register allows the PCA1 to continue normal operation while the CPU is in Idle mode.

Table 29.1. PCA1 Timebase Input Options

CPS12	CPS11	CPS10	Timebase
0	0	0	System clock divided by 12.
0	0	1	System clock divided by 4.
0	1	0	Timer 0 overflow.
0	1	1	High-to-low transitions on ECI1 (max rate = system clock divided by 4).
1	0	0	System clock.
1	0	1	External oscillator source divided by 8.
1	1	0	Timer 4 Overflow.
1	1	1	Timer 5 Overflow.
*Note: External oscillator source divided by 8 is synchronized with the system clock.			

Figure 29.2. PCA1 Counter/Timer Block Diagram

29.2. PCA1 Interrupt Sources

Figure 29.3 shows a diagram of the PCA1 interrupt tree. There are five independent event flags that can be used to generate a PCA1 interrupt. They are as follows: the main PCA1 counter overflow flag (CF1), which is set upon a 16-bit overflow of the PCA1 counter, an intermediate overflow flag (COVF1), which can be set on an overflow from the 8th, 9th, 10th, or 11th bit of the PCA1 counter, and the individual flags for each PCA1 channel (CCF6, CCF7, CCF8, CCF9, CCF10 and CCF11), which are set according to the operation mode of that module. These event flags are always set when the trigger condition occurs. Each of these flags can be individually selected to generate a PCA1 interrupt, using the corresponding interrupt enable flag (ECF1 for CF1, ECOV1 for COVF1, and ECCF1n for each CCFn). PCA1 interrupts must be globally enabled before any individual interrupt sources are recognized by the processor. PCA1 interrupts are globally enabled by setting the EA bit and the EPCA1 bit to logic 1.

Figure 29.3. PCA1 Interrupt Block Diagram

C8051F58x/F59x

29.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8 to 11-Bit Pulse Width Modulator, or 16Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 29.2 summarizes the bit settings in the PCA1CPMn and PCA1PWM registers used to select the PCA1 capture/compare module's operating mode. All modules set to use 8, 9, 10 , or 11-bit PWM mode must use the same cycle length (8-11 bits). Setting the ECCF1n bit in a PCA1CPMn register enables the module's CCFn interrupt.

Table 29.2. PCA1CPM and PCA1PWM Bit Settings for PCA1 Capture/Compare Modules

Operational Mode	PCA1CPMn									PCA1PWM				
Bit Number	7	6	5	4	3	2	1	0		7	6	5	4-2	1-0
Capture triggered by positive edge on CEXn	X	X	1	0	0	0	0	A	A	0	X	B	XXX	XX
Capture triggered by negative edge on CEXn	X	x	0	1	0	0	0	A		0	X	B	XXX	XX
Capture triggered by any transition on CEXn	X	x	1	1	0	0	0	A		0	X	B	XXX	XX
Software Timer	X	C	0	0	1	0	0	A		0	X	B	XXX	XX
High Speed Output	X	C	0	0	1	1	0	A		0	X	B	XXX	XX
Frequency Output	X	C	0	0	0	1	1	A		0	X	B	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A		0	X	B	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	A	D	X	B	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A		D	X	B	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A		D	X	B	XXX	11
16-Bit Pulse Width Modulator	1	C	0	0	E	0	1	A		0	X	B	XXX	XX

Notes:

1. $X=$ Don't Care (no functional difference for individual module if 1 or 0).
2. $A=$ Enable interrupts for this module (PCA1 interrupt triggered on CCFn set to 1).
3. $\mathrm{B}=$ Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL1[1:0]).
4. $C=$ When set to 0 , the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output $=0$).
5. $\mathrm{D}=$ Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA1CPHn and PCA1CPLn.
6. $E=$ When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to $8,9,10$ or 11-bit PWM mode use the same cycle length setting.

29.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA1 to capture the value of the PCA1 counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA1CPLn and PCA1CPHn). The CAPP1n and CAPN1n bits in the PCA1CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA1CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPP1n and CAPN1n bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 29.4. PCA1 Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

29.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA1 counter/timer value is compared to the module's 16-bit capture/compare register (PCA1CPHn and PCA1CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA1CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOM1n and MAT1n bits in the PCA1CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA1 Capture/Compare registers, the low byte should always be written first. Writing to PCA1CPLn clears the ECOM1n bit to 0; writing to PCA1CPHn sets ECOM1n to 1.

Figure 29.5. PCA1 Software Timer Mode Diagram

29.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA1 Counter and the module's 16-bit capture/compare register (PCA1CPHn and PCA1CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA1CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOG1n, MAT1n, and ECOM1n bits in the PCA1CPMn register enables the HighSpeed Output mode. If ECOM1n is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA1 Capture/Compare registers, the low byte should always be written first. Writing to PCA1CPLn clears the ECOM1n bit to 0; writing to PCA1CPHn sets ECOM1n to 1.

Figure 29.6. PCA1 High-Speed Output Mode Diagram

C8051F58x/F59x

29.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA1 clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 29.1.

$$
F_{\text {CEXn }}=\frac{F_{\text {PCA }}}{2 \times \text { PCA1CPHn }}
$$

Note: A value of 0×00 in the PCA1CPHn register is equal to 256 for this equation.

Equation 29.1. Square Wave Frequency Output

Where $\mathrm{F}_{\mathrm{PCA}}$ is the frequency of the clock selected by the CPS12-0 bits in the PCA1 mode register, PCA1MD. The lower byte of the capture/compare module is compared to the PCA1 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA1CPLn. Frequency Output Mode is enabled by setting the ECOM1n, TOG1n, and PWM1n bits in the PCA1CPMn register. Note that the MAT1n bit should normally be set to 0 in this mode. If the MAT1n bit is set to 1 , the CCFn flag for the channel will be set when the 16-bit PCA1 counter and the 16-bit capture/compare register for the channel are equal.

Figure 29.7. PCA1 Frequency Output Mode

29.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA1 counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8 -bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9,10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8-bit PWM mode and another for 11bit mode (for example). However, other PCA1 channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

29.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA1CPLn capture/compare register. When the value in the low byte of the PCA1 counter/timer (PCA1L) is equal to the value in PCA1CPLn, the output on the CEXn pin will be set. When the count value in PCA1L overflows, the CEXn output will be reset (see Figure 29.8). Also, when the counter/timer low byte (PCA1L) overflows from 0xFF to 0x00, PCA1CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA1CPHn) without software intervention. Setting the ECOM1n and PWM1n bits in the PCA1CPMn register, and setting the CLSEL1 bits in register PCA1PWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MAT1n bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF1 flag in PCA1PWM can be used to detect the overflow (falling edge), which will occur every 256 PCA1 clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 29.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA1 Capture/Compare registers, the low byte should always be written first. Writing to PCA1CPLn clears the ECOM1n bit to 0; writing to PCA1CPHn sets ECOM1n to 1.

$$
\text { Duty Cycle }=\frac{(256-\text { PCA0CPHn })}{256}
$$

Equation 29.2. 8-Bit PWM Duty Cycle

Using Equation 29.2, the largest duty cycle is 100% ($\mathrm{PCA} 1 \mathrm{CPHn}=0$), and the smallest duty cycle is 0.39% ($\mathrm{PCA} 1 \mathrm{CPH}=0 \times F F$). A 0\% duty cycle may be generated by clearing the ECOM1n bit to 0 .

Figure 29.8. PCA1 8-Bit PWM Mode Diagram

29.3.5.2. 9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an "AutoReload" Register, which is dual-mapped into the PCA1CPHn and PCA1CPLn register locations. The data written to define the duty cycle should be right-justified in the registers. The auto-reload registers are accessed (read or written) when the bit ARSEL1 in PCA1PWM is set to 1. The capture/compare registers are accessed when ARSEL1 is set to 0 .

When the least-significant N bits of the PCA1 counter match the value in the associated module's capture/compare register (PCA1CPn), the output on CEXn is asserted high. When the counter overflows from the Nth bit, CEXn is asserted low (see Figure 29.9). Upon an overflow from the Nth bit, the COVF1 flag is set, and the value stored in the module's auto-reload register is loaded into the capture/compare register. The value of N is determined by the CLSEL1 bits in register PCA1PWM.

The 9, 10 or 11-bit PWM mode is selected by setting the ECOM1n and PWM1n bits in the PCA1CPMn register, and setting the CLSEL1 bits in register PCA1PWM to the desired cycle length (other than 8-bits). If the MAT1n bit is set to 1 , the CCFn flag for the module will be set each time a comparator match (rising edge) occurs. The COVF1 flag in PCA1PWM can be used to detect the overflow (falling edge), which will occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCA1 clock cycles. The duty cycle for 9/10/11-Bit PWM Mode is given in Equation 29.2, where N is the number of bits in the PWM cycle.

Important Note About PCA1CPHn and PCA1CPLn Registers: When writing a 16 -bit value to the PCA1CPn registers, the low byte should always be written first. Writing to PCA1CPLn clears the ECOM1n bit to 0; writing to PCA1CPHn sets ECOM1n to 1.

$$
\text { Duty Cycle }=\frac{\left(2^{\mathrm{N}}-\mathrm{PCA} 1 \mathrm{CPn}\right)}{2^{\mathrm{N}}}
$$

Equation 29.3. 9, 10, and 11-Bit PWM Duty Cycle
A 0% duty cycle may be generated by clearing the ECOM1n bit to 0 .

Figure 29.9. PCA1 9, 10 and 11-Bit PWM Mode Diagram

C8051F58x/F59x

29.3.6. 16-Bit Pulse Width Modulator Mode

A PCA1 module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA1 clocks for the low time of the PWM signal. When the PCA1 counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA1 CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOM1n, PWM1n, and PWM161n bits in the PCA1CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCF1n = 1 AND MAT1n $=1$) to help synchronize the capture/compare register writes. If the MAT1n bit is set to 1 , the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF1 flag in PCA1CN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 29.4.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA1 Capture/Compare registers, the low byte should always be written first. Writing to PCA1CPLn clears the ECOM1n bit to 0; writing to PCA1CPHn sets ECOM1n to 1.

$$
\text { Duty Cycle }=\frac{(65536-\text { PCA1CPn })}{65536}
$$

Equation 29.4. 16-Bit PWM Duty Cycle

Using Equation 29.4, the largest duty cycle is 100% (PCA1CPn $=0$), and the smallest duty cycle is $0.0015 \%(P C A 1 C P n=0 x F F F F)$. A 0\% duty cycle may be generated by clearing the ECOM1n bit to 0 .

Figure 29.10. PCA1 16-Bit PWM Mode

29.4. Register Descriptions for PCA1

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 29.1. PCA1CN: PCA1 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CF1	CR1	CCF6	CCF7	CCF8	CCF9	CCF10	CCF11
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable; SFR Page $=0 \times 10$

Bit	Name	Function
7	CF1	$\begin{array}{l}\text { PCA1 Counter/Timer Overflow Flag. } \\ \text { Set by hardware when the PCA1 Counter/Timer overflows from 0xFFFF to 0x0000. } \\ \text { When the Counter/Timer Overflow (CF1) interrupt is enabled, setting this bit causes the } \\ \text { CPU to vector to the PCA1 interrupt service routine. This bit is not automatically } \\ \text { cleared by hardware and must be cleared by software. }\end{array}$
6	CR1	$\begin{array}{l}\text { PCA1 Counter/Timer Run Control. } \\ \text { This bit enables/disables the PCA1 Counter/Timer. } \\ \text { 0: PCA1 Counter/Timer disabled. } \\ \text { 1: PCA1 Counter/Timer enabled. }\end{array}$
5	CCF11	$\begin{array}{l}\text { PCA1 Module 11 Capture/Compare Flag. } \\ \text { This bit is set by hardware when a match or capture occurs. When the CCF11 interrupt } \\ \text { is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou- } \\ \text { tine. This bit is not automatically cleared by hardware and must be cleared by software. }\end{array}$
4	CCF10	$\begin{array}{l}\text { PCA1 Module 10 Capture/Compare Flag. } \\ \text { This bit is set by hardware when a match or capture occurs. When the CCF10 interrupt } \\ \text { is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou- } \\ \text { tine. This bit is not automatically cleared by hardware and must be cleared by software. }\end{array}$
3	CCF9	$\begin{array}{l}\text { PCA1 Module 9 Capture/Compare Flag. } \\ \text { This bit is set by hardware when a match or capture occurs. When the CCF9 interrupt } \\ \text { is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou- } \\ \text { tine. This bit is not automatically cleared by hardware and must be cleared by software. }\end{array}$
2	CCF8	$\begin{array}{l}\text { PCA1 Module 8 Capture/Compare Flag. } \\ \text { This bit is set by hardware when a match or capture occurs. When the CCF8 interrupt } \\ \text { is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou- } \\ \text { tine. This bit is not automatically cleared by hardware and must be cleared by software. }\end{array}$
0	CCF6	$\begin{array}{l}\text { PCA1 Module 7 Capture/Compare Flag. } \\ \text { This bit is set by hardware when a match or capture occurs. When the CCF7 interrupt } \\ \text { is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou- } \\ \text { tine. This bit is not automatically cleared by hardware and must be cleared by software. }\end{array}$
PCA1 Module 6 Capture/Compare Flag.		
This bit is set by hardware when a match or capture occurs. When the CCF6 interrupt		
is enabled, setting this bit causes the CPU to vector to the PCA1 interrupt service rou-		
tine. This bit is not automatically cleared by hardware and must be cleared by software.		

C8051F58x/F59x

SFR Definition 29.2. PCA1MD: PCA1 Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CIDL1				CPS12	CPS11	CPS10	ECF1
Type	R/W	R	R / W	R	R / W	R / W	R / W	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times D 9$; SFR Page $=0 \times 10$

Bit	Name	Function
7	CIDL1	$\begin{array}{l}\text { PCA1 Counter/Timer Idle Control. } \\ \text { Specifies PCA1 behavior when CPU is in Idle Mode. } \\ \text { 0: PCA1 continues to function normally while the system controller is in Idle Mode. } \\ \text { 1: PCA1 operation is suspended while the system controller is in Idle Mode. }\end{array}$
$6: 4$	Unused	Read = 000b, Write = Don't care.

CPS1[2:0]\end{array} \begin{array}{l}PCA1 Counter/Timer Pulse Select.

These bits select the timebase source for the PCA1 counter

000: System clock divided by 12

001: System clock divided by 4

010: Timer 0 overflow

011: High-to-low transitions on ECI (max rate = system clock divided by 4)

100: System clock

101: External clock divided by 8 (synchronized with the system clock)

110: Timer 4 overflow

111: Timer 5 overflow\end{array}\right.\right]\)| PCA1 Counter/Timer Overflow Interrupt Enable. |
| :--- |
| This bit sets the masking of the PCA1 Counter/Timer Overflow (CF1) interrupt. |
| 0: Disable the CF1 interrupt. |
| 1: Enable a PCA1 Counter/Timer Overflow interrupt request when CF1 (PCA1CN.7) is |
| set. |

SFR Definition 29.3. PCA1PWM: PCA1 PWM Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ARSEL1	ECOV1	COVF1				CLSEL1[1:0]	
Type	R/W	R/W	R/W	R	R	R	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times D A ;$ SFR Page $=0 \times 0 F$

Bit	Name	Function
7	ARSEL1	Auto-Reload Register Select. This bit selects whether to read and write the normal PCA1 capture/compare regis- ters (PCA1CPn), or the Auto-Reload registers at the same SFR addresses. This function is used to define the reload value for 9, 10, and 11-bit PWM modes. In all other modes, the Auto-Reload registers have no function. 0: Read/Write Capture/Compare Registers at PCA1CPHn and PCA1CPLn. 1: Read/Write Auto-Reload Registers at PCA1CPHn and PCA1CPLn.
6	ECOV1	Cycle Overflow Interrupt Enable. This bit sets the masking of the Cycle Overflow Flag (COVF1) interrupt. 0: COVF1 will not generate PCA1 interrupts. $1:$ A PCA1 interrupt will be generated when COVF1 is set.
5	COVF1	Cycle Overflow Flag. This bit indicates an overflow of the 8th, 9th, 10th, or 11th bit of the main PCA1 counter (PCA1). The specific bit used for this flag depends on the setting of the Cycle Length Select bits. The bit can be set by hardware or software, but must be cleared by software. $0:$ No overflow has occurred since the last time this bit was cleared. $1:$ An overflow has occurred since the last time this bit was cleared.
$4: 2$	Unused	Read = 000b; Write = Don't care. $1: 0$ CLSEL1[1:0]
Cycle Length Select. When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle, between 8, 9, 10, or 11 bits. This affects all channels configured for PWM which are not using 16-bit PWM mode. These bits are ignored for individual chan- nels configured to16-bit PWM mode. 00: 8 bits. 01: 9 bits. $10: 10$ bits. $11: 11 ~ b i t s . ~$		

C8051F58x/F59x

SFR Definition 29.4. PCA1CPMn: PCA1 Capture/Compare Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PWM161n	ECOM1n	CAPP1n	CAPN1n	MAT1n	TOG1n	PWM1n	ECCF1n
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA1CPM6 $=0 x D A, P C A 1 C P M 7=0 x D B$, PCA1CPM8 $=0 x D C ; P C A 1 C P M 9=0 x D D$, PCA1CPM10 $=0 \times D E$, PCA1CPM11 $=0 \times D F$, SFR Page (all registers) $=0 \times 10$

Bit	Name	Function
7	PWM161n	16-bit Pulse Width Modulation Enable. This bit enables 16-bit mode when Pulse Width Modulation mode is enabled. $0: 8$ to 11-bit PWM selected. $1: 16-b i t ~ P W M ~ s e l e c t e d . ~$
6	ECOM1n	Comparator Function Enable. This bit enables the comparator function for PCA1 module n when set to 1.
5	CAPP1n	Capture Positive Function Enable. This bit enables the positive edge capture for PCA1 module n when set to 1.
4	CAPN1n	Capture Negative Function Enable. This bit enables the negative edge capture for PCA1 module n when set to 1.
3	MAT1n	Match Function Enable. This bit enables the match function for PCA1 module n when set to 1. When enabled, matches of the PCA1 counter with a module's capture/compare register cause the CCFn bit in PCA1MD register to be set to logic 1.
2	TOG1n	Toggle Function Enable. This bit enables the toggle function for PCA1 module n when set to 1. When enabled, matches of the PCA1 counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module oper- ates in Frequency Output Mode.
1	PWM1n	Pulse Width Modulation Mode Enable. This bit enables the PWM function for PCA1 module n when set to 1. When enabled, a pulse width modulated signal is output on the CEXn pin. 8 to 11-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.
0	ECC1n	Capture/Compare Flag Interrupt Enable. This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt. 0: Disable CCFn interrupts. $1: ~ E n a b l e ~ a ~ C a p t u r e / C o m p a r e ~ F l a g ~ i n t e r r u p t ~ r e q u e s t ~ w h e n ~ C C F n ~ i s ~ s e t . ~$

C8051F58x/F59x

SFR Definition 29.5. PCA1L: PCA1 Counter/Timer Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PCA1[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times F 9 ;$ SFR Page $=0 \times 10$

Bit	Name	Function
7:0	PCA1[7:0]	PCA1 Counter/Timer Low Byte. The PCA1L register holds the low byte (LSB) of the 16-bit PCA1 Counter/Timer.

SFR Definition 29.6. PCA1H: PCA1 Counter/Timer High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Type	R/W						
Reset	0	0	0	0	0	0	0	R/W

SFR Address $=0 \times F A$; SFR Page $=0 \times 10$

Bit	Name	Function
7:0	PCA1[15:8]	PCA1 Counter/Timer High Byte. The PCA1H register holds the high byte (MSB) of the 16-bit PCA1 Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCA1L are read (see Section 29.1).

C8051F58x/F59x

SFR Definition 29.7. PCA1CPLn: PCA1 Capture Module Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	R/W							
Type	R/WCA1CPn[7:0]							
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA1CPL6 $=0 \times F B$, PCA1CPL7 $=0 x E 9$, PCA1CPL8 $=0 x E B$, PCA1CPL9 $=0 x E D$, PCA1CPL10 $=0 \times F D$, PCA1CPL11 $=0 \times C E ;$ SFR Page (all registers) $=0 \times 10$

Bit	Name	Function
$7: 0$	PCA1CPn[7:0]	PCA1 Capture Module Low Byte. The PCA1CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA1 channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL1 bit in register PCA1PWM controls which register is accessed.

SFR Definition 29.8. PCA1CPHn: PCA1 Capture Module High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	Type	R/W						
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA1CPH6 = 0xFC, PCA1CPH7 = 0xEA, PCA1CPH8 = 0xEC, PCA1CPH9 = 0xEE, PCA1CPH10 $=0 \times F E$, PCA1CPH11 $=0 \times C F ;$ SFR Page (all registers) $=0 \times 10$

Bit	Name	Function
$7: 0$	PCA1CPn[15:8]	PCA1 Capture Module High Byte. The PCA1CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA1 channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL1 bit in register PCA1PWM controls which register is accessed.
Note: A write to this register will set the module's ECOM1n bit to a 1.		

30. C2 Interface

C8051F58x/F59x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

30.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 30.1. C2ADD: C2 Address

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	$\mathrm{C} 2 \operatorname{ADD}[7: 0]$								
Type	R / W								
Reset	0	0	0	0	0	0	0	0	

Bit	Name		Function
7:0	C2ADD[7:0]	C2 Address. The C2ADD register is accessed via the C2 interface to select the target Data register for C2 Data Read and Data Write commands.	
		Address	Description
		0x00	Selects the Device ID register for Data Read instructions
		0x01	Selects the Revision ID register for Data Read instructions
		0x02	Selects the C2 Flash Programming Control register for Data Read/Write instructions
		0xB4	Selects the C2 Flash Programming Data register for Data Read/Write instructions

C8051F58x/F59x

C2 Register Definition 30.2. DEVICEID: C2 Device ID

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	DEVICEID[7:0]							
Type	0	0	1	0	0	0	0	0
Reset	0		R/W					

C2 Address $=0 \times F D$; SFR Address $=0 \times F D$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	DEVICEID[7:0]	Device ID. This read-only register returns the 8-bit device ID: 0x20 (C8051F58x/F59x).

C2 Register Definition 30.3. REVID: C2 Revision ID

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | REVID[7:0] | | | | | | | |
| Type | R/W | | | | | | | |
| Reset | Varies |

C2 Address $=0 \times F E ;$ SFR Address $=0 \times F E$; SFR Page $=0 \times 0 F$

Bit	Name	Function
7:0	REVID[7:0]	Revision ID. This read-only register returns the 8-bit revision ID. For example: $0 \times 00=$ Revision A.

C2 Register Definition 30.4. FPCTL: C2 Flash Programming Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	FPCTL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

C2 Address: 0x02

Bit	Name	Function
7:0	FPCTL[7:0]	Flash Programming Control Register. This register is used to enable Flash programming via the C2 interface. To enable C2 Flash programming, the following codes must be written in order: 0x02, Ox01. Note that once C2 Flash programming is enabled, a system reset must be issued to resume normal operation.

C2 Register Definition 30.5. FPDAT: C2 Flash Programming Data

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	FPDAT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: 0xB4

Bit	Name	Function	
$7: 0$	FPDAT[7:0]	C2 Flash Programming Data Register. This register is used to pass Flash commands, addresses, and data during C2 Flash accesses. Valid commands are listed below.	
		Code	Command
		0×06	Flash Block Read
		0×07	Flash Block Write
		$0 x 08$	Flash Page Erase
		0×03	Device Erase

C8051F58x/F59x

The FPSEL register is a Special Function Register (SFR) that is only accessible through the C2 interface. When reading, writing. or erasing Flash through the C2 interface, this register must be set first in order to access the different banks. SFRs are accessed through the C2 interface using the WriteAR and ReadDR / Write DR commands described in Application Note 127: Flash Programming via the C2 Interface.

C2 Register Definition 30.6. FPSEL: C2 Flash Bank Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								BSEL
Type	R	R	R	R	R	R	R	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 6 ;$ SFR Page $=0 \times 01$

Bit	Name	Function
$7: 1$	Unused	Read = 0000000b; Write = Don't Care.
0	BSEL	Flash Programming Bank Select. 0: The address range 0x0000 - 0xFFFF accesses Banks 0-1 1: The address range 0x0000-0xFFFF accesses Banks 2-3

30.2. C2 Pin Sharing

The C 2 protocol allows the C 2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK ($\overline{\mathrm{RST}}$) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 30.1.

Figure 30.1. Typical C2 Pin Sharing
The configuration in Figure 30.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.
2. The $\overline{\mathrm{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

Document Change List

Revision 0.1 to Revision 1.0

- Updated all specification TBDs

Clarified and corrected text throughout the document.

Revision 1.0 to Revision 1.1

- Updated "Ordering Information" on page 22 to include -A (Automotive) devices and automotive qualification information.
- Updated supply current related specifications throughout "5. Electrical Characteristics" .
- Updated SFR Definition 8.1 to change VREF high setting to 2.20 V from 2.25 V .
- Updated Table 5.13 on page 53 and Figure 9.1 on Page 77 to indicate that Comparators are powered from $V_{1 O}$ and not $V_{D D A}$.
- Updated the Gain Table in "Calculating the Gain Value" on page 60 to fix the ADCOGNH Value in the last row.
- Updated Table 11.1 on page 94 with correct timing for all branch instructions, MOVC, and CPL A.
- Updated "Programming The Flash Memory" on page 138 to clarify behavior of 8-bit MOVX instructions and when writing/erasing Flash.
- Updated SFR Definition 15.3 (FLSCL) to include FLEWT bit definition. This bit must be set before writing or erasing Flash. Also updated Table 5.5 on page 48 to reflect new Flash Write and Erase timing.
- Updated "17.7. Flash Error Reset" with an additional cause of a Flash Error reset.
- Updated "20.1. Port I/O Modes of Operation" to remove note regarding interfacing to voltages above VIO.
- Updated "23. SMBus" to remove all hardware ACK features, including SMBOADM and SMBOADR SFRs.
- Updated "24.3.2. Data Reception" to clarify UART receive FIFO behavior.
- Updated SFR Definition 24.1 (SCONO) to correct SFR Page to 0x00 from All Pages.
- Various formatting changes and corrections throughout the document.

Note: All items from the C8051F58x/59x Errata dated July 1, 2009 are incorporated into this data sheet.

Revision 1.1 to Revision 1.2

■ Updated "1. System Overview" with a voltage range specification for the internal oscillator.

- Updated Table 5.6, "Internal High-Frequency Oscillator Electrical Characteristics," on page 49 with new conditions for the internal oscillator accuracy. The internal oscillator accuracy is dependent on the operating voltage range.
■ Updated "5. Electrical Characteristics" to remove the internal oscillator curve across temperature diagram.
- Updated Figure 6.4 with new timing diagram when using CNVSTR pin.
- Updated SFR Definition 8.1 (REFOCN) with oscillator suspend requirement for ZTCEN.
- Fixed incorrect cross references in "9. Comparators" .
- Updated SFR Definition 10.1 (REG0CN) with a new definition for Bit 6 . The bit 6 reset value is $1 b$ and must be written to 1b.
- Updated SFR Definition 12.1 (PSBANK) with correct reset value.
- Updated "16.3. Suspend Mode" with note regarding ZTCEN.

C8051F58x/F59x

■ Added Port 2 Event and Port 3 Events to wake-up sources in "19.2.1. Internal Oscillator Suspend Mode" .
■ Updated SFR Definition 20.3 with correct names for bits CP2AE and CP2E.

- Updated "21. Local Interconnect Network (LINO)" with a voltage range specification for the internal oscillator.
- Updated LIN Register Definitions 21.9 and 21.10 with correct reset values.

■ Updated "22. Controller Area Network (CANO)" with a voltage range specification for the internal oscillator.
■ Updated C2 Register Definitions 30.2 and 30.3 with correct C2 and SFR addresses.

Revision 1.2 to Revision 1.3

■ Updated the note in "Power-Fail Reset/VDD Monitor" on page 154 to use a larger font.

- Added the note regarding the voltage regulator and VDD monitor in the high setting from "Power-Fail Reset/VDD Monitor" on page 154 to "Voltage Regulator (REG0)" on page 89 and " V_{DD} Maintenance and the V_{DD} monitor" on page 143. Also adjusted the language regarding the solution with the highest system reliability.
- Updated the steps in " $V_{D D}$ Maintenance and the $V_{D D}$ monitor" on page 143 to mention using the VDD monitor in the high setting during flash write/erase operations.
■ Updated the SUSPEND bit description in OSCICN (SFR Definition 19.2) to mention that firmware must set the ZTCEN bit in REFOCN (SFR Definition 8.1) before entering suspend.
- Added a note to the IFRDY flag in the OSCICN register (SFR Definition 19.2) that the flag may not accurately reflect the state of the oscillator.
- Added VDD Ramp Time for Power On spec to Table 5.4, "Reset Electrical Characteristics," on page 48.
- Added a note regarding programming at cold temperatures on -I devices to "Programming The Flash Memory" on page 138 and added Temperature during Programming Operations specification to Table 5.5, "Flash Electrical Characteristics," on page 48.
- Added a note regarding P0.0/VREF when VDD is used as the reference to Table 20.1, "Port I/O Assignment for Analog Functions," on page 191 and to the description of the REFSL bit in REFOCN (SFR Definition 8.1).
- Added a note regarding a potential unknown state on GPIO during power up if VIO ramps significantly before VDD to "Port Input/Output" on page 188 and "Reset Sources" on page 152.
- Added steps to set the FLEWT bit in the flash write/erase procedures in "Flash Erase Procedure" on page 139, "Flash Write Procedure" on page 139, and "Flash Write Optimization" on page 140.
- Added the "Reprogramming the VDD Monitor High Threshold" on page 138 section.
- Added a note regarding fast changes on VDD causing the V_{DD} Monitor to trigger to "Power-Fail Reset/VDD Monitor" on page 154.
- Added notes regarding UART TX and RX behavior in "Data Transmission" on page 259 and "Data Reception" on page 259.
■ Added a note regarding an issue with /RST low time on some older devices to "Power-On Reset" on page 153.
- Added Table 5.8, "Crystal Oscillator Electrical Characteristics," on page 50.
- Added a paragraph in "External Crystal Example" on page 185 regarding surface mount crystals and drive current.
- Removed recommendations to introduce a delay after enabling the VDD Monitor before enabling it as a reset source in "Power-Fail Reset/VDD Monitor" on page 154.

IoT Portfolio www.silabs.com/loT

SWIHW www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem $®$, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

