VP Series Relay

Miniature Cradle Relays

- World-wide compatibility
- $\mathrm{mA} / \mathrm{mV}$ to 5 A or 250 V switching
- RoHS compliant
- Bistable magnetic latching types available
- Mounting options
- BT23 and BT32 approved types available
- Life tested to $100,000,000$ mechanical operations
- Comprehensive technical service
- Broad custom capability

Keyswitch Varley ${ }^{\text {TM }}$ VP Series miniature cradle relays offer contact, coil and mounting options to meet a wide range of applications. They are extremely reliable, proven through many years manufacture and use and are compatible with all similar products manufactured world-wide.

1. SUMMARY OF TYPES

1.1. BASIC VP SERIES

Contacts: - 2, 4, 6 \& 8 pole contact arrangements are available, with a choice of contact materials to suit applications from low to heavy duty.

Coils: - Nominal coil voltages range from 6 to 200V DC and 6 to 110V AC to give the user a liberal choice of operating voltages.

AC Operation:- For AC operation a range is available with built in rectifiers.

Sensitive operation:- Special adjustments can be made which provide increased sensitivity of operation, denoted by 'SEN' in the ordering code.

Mounting:- Available as a plug-in relay (also suitable for direct wiring) or for printed circuit board mounting with alternative pin layouts.

Socket and Retaining Clip:- Relay sockets and retaining clips (ordered separately) are available to suit the different case sizes. Sockets are available with printed circuit pins or solder tags.

Omission of Earth Screw/Pin:- For Applications where an earth facility is not required, the earth screw or pin can be omitted, obviating the need to drill printed circuit boards or panels.

Earth Clip:- Wiring sockets are supplied complete with an earth clip (loose piece) enabling the relay to be earthed via the fixing screw.

1.2. VPR Series

Bistable, polarised relays with either single or double wound coils, capable of being pulsed at a minimum of 10 milliseconds.

1.3. Telecom approved relays

These relays conform to British Telecom codes BT23 and BT32. For BT23 the contact material is always code ' G ' while for BT 32 code ' F ' is used.

2. SCHEMATIC DIAGRAMS

The arrangements shown are applicable to all Basic VP Series relays. They are also applicable to the VPR Series where relevant; see Standard Contact Arrangements and Case Sizes. For additional contact arrangements available contact sales.
2 POLE

HI

1 make + 1 break

4 POLE

HD
4 changeover

Light duty
4 make before break

6 POLE

Light duty, TC, or 5A
6 changeover

Light duty
6 make before break

Light duty, TC, or 5A
6 break

Light duty, TC, or 5 A 6 make

8 POLE

3. STANDARD CONTACT ARRANGEMENTS AND CASE SIZES

- Note that the 5 amp (5 A \& I) contact material is 90% Silver with 10% Cadmium Oxide (D54X alloy). A relay fitted with 5 amp contacts in a quantity greater than two changeover or four make or four break, will have $>0.1 \%$ Cadmium Oxide content.

3.1 Case Sizes, Socket \& Retaining Clip Order Codes.

Table 2

Case Size	Dimensions (See drawing)			Printed Circuit Socket	Wiring Socket	Retaining Clip	
	A	B	C	Order Code	Order Code	Order Code	
1	24.4	30.1	18.5	SVP10P01	SVP10W01	SVP10RC01	
2	30	30.1	18.5	SVP16P01	SVP16W01	SVP16RC01	
3	36.6	30.1	18.5	SVP22P01	SVP22W01	SVP22RC00	
An earth clip is supplied with each wiring socket (loose part)							

4. COIL DATA

4.1. BASIC VP SERIES - Table 3.

Short coils (case 1, 2, 3, see tables $1 \& 2$). The tables below list the characteristics of all standard Basic VP Series relay coils. Note, against 'Minimum Volts' the subheadings refer to various options, i.e. $\mathrm{S}=$ Low level or light duty single contacts, $T C=$ twin contacts, $5 \mathrm{~A}=5 \mathrm{Amp}$ contacts, $\mathrm{HD}=$ heavy duty contacts, $\mathrm{SEN}=$ sensitive adjustment. The characters below these subheadings refer to the number of poles and contact action, i.e. $\mathrm{M}=$ make, $\mathrm{B}=$ break, $\mathrm{C}=$ changeover.

Table 3

DC Coil (Nominal Voltage) Max. power at $20^{\circ} \mathrm{C}$ ambient $=2 \mathrm{~W}$						6	12	14	21	26	34	47	72	90	120
Resistance (ohm) $\pm 10 \%$ (except * $\pm 15 \%$) Number of Turns						52	185	280	430	700	1250	2500	5800	*9000	*15000
						1750	3200	3800	4700	5900	7700	11000	16000	20000	24000
MAXIMUM VOLTS ($40^{\circ} \mathrm{C}$ ambient)						10	19	23	29	37	49	70	106	128	166
Min Volts	S	TC	5A	HD	SEN										
	2 C					2.6	5.0	6.5	8.0	11.0	15.0	21.0	33.0	42.0	58.0
	4C,6M,6B			2C		4.0	8.0	10.0	11.0	16.0	22.0	31.0	50.0	62.0	86.0
		2 C	2 C			3.4	6.8	7.7	10.2	13.2	19.0	27.0	41.0	50.0	70.0
					2C	2.3	4.3	5.3	6.4	8.2	11.0	17.0	23.5	30.0	43.0
		4C,6M,6B	4C 6M 6B	4C		4.8	9.6	11.4	14.6	19.0	27.0	38.4	58.0	72.0	100.0
					4C,6M,6B	3.3	6.3	7.7	10.0	12.3	16.5	26.0	35.0	43.5	58.0

4.2. M TYPE COILS - Table 4.

M Type (Short) coils for relays with 6C, 8M or 8B contact actions and for other actions where lower minimum operating voltage is required. Designated in the ordering code by ' M ' immediately after the coil voltage.
Table 4

DC Coil (Nominal Voltage)						6M	12M	17M	21M	26M	34M	47M	65M	100M	120M
Resistance (ohm) $\pm 10 \%$ (except * $\pm 15 \%$) Number of Turns						28	110	220	325	530	890	1700	3200	7600	*11750
						1350	2700	3700	4450	5800	7300	9900	13400	20700	24800
MAXIMUM VOLTS ($40^{\circ} \mathrm{C}$ ambient)						7.4	14.6	20.6	25	32	42	56	77	120	150
Min Volts	S	TC	5A	HD	SEN										
	2C					1.9	3.9	5.4	6.5	8.3	11.0	15.5	21.5	33.0	43.0
	4C,6M,6B			2C		2.82	5.8	8.2	10.1	12.4	17.0	23.8	32.0	51.0	65.0
		2C	2 C			2.36	4.9	6.9	8.5	10.6	14.3	20.4	29.0	46.0	59.0
					2 C	2.54	3.2	4.4	5.6	6.9	8.9	11.9	19.2	28.0	35.0
		4C,6M,6B	4C,6M,6B	4C	6C,8M 8B	3.3	6.9	9.5	11.7	14.9	19.6	27.2	38.4	60.0	71.0
					4C,6M,6B	2.2	4.6	6.2	7.8	9.6	12.5	18.7	25.0	39.0	50.0
	6C,8M,8B					4.3	8.6	12.4	15.3	19.0	25.0	36.0	50.0	76.0	98.0
		6C,8M,8B	6C,8M,8B			6.0	11.0	17.0	20.0	25.0	33.0	45.0	60.0	90.0	115.0

4.3. BASIC VP SERIES WITH BUILT-IN RECTIFIERS FOR AC OPERATION - Table 5.

Designated in the ordering code by 'AC' immediately followed by the nominal voltage.
Short coils (Case 1, 2 or 3 see tables $1 \& 2$).
Table 5

Coil Type (Nominal Voltage)	Resistance Ohms $\pm 10 \%$	Voltage @ 50 Hz	
	Maximum	Minimum	
$6 A C$ (Double coil)	26×2	6.6	4.8
$12 A C^{*}$	52	13.5	9.5
$24 A C^{*}$	185	27	19
$42 A C^{*}$	700	46	33
$50 A C^{*}$	890	55	45
$60 A C^{*}$	1250	66	48
$110 A C^{*}$	4700	121	88

Coil power:
Frequency range:
Available contact combinations:
1.6VA max. 1.3W max $50-120 \mathrm{~Hz}$
2C \& 4C light duty contacts
2C, 4C, 6M or 6B twin contacts
2C, 4C, 6M or 6B 5amp contacts
2 C heavy duty contacts (HD)
*12AC to 110AC have a single coil with a series/parallel diode arrangement.
4.4. VPR SERIES BISTABLE POLARISED RELAYS

Short coils (Case 1, 2 or 3 see tables $1 \& 2$)
These are bistable polarised relays having magnetic latching by means of a ceramic magnet. The relay can be pulsed at 10 milliseconds (minimum) sine or square wave. The physical dimensions and base terminals are identical to the Basic VP Series, and they are available in single or double wound coils.
Data in the tables below apply to available contact arrangements i.e. 2 or 4 pole changeover, 6 pole make or break.

4.4.1. SINGLE WOUND COILS AT $20^{\circ} \mathrm{C}$ (TERMINALS $1 \& 4$) - Table 6.

Polarity (NC closed)
To change state
a) Apply positive to terminal 1
b) To return to NC closed, apply negative to terminal 1

Table 6

DC Coil (Nominal Voltage)	3	5	6	12	24	34	47	72	120
Resistance ohms $\pm 10 \%$ (except * $\pm 15 \%)$	9.6	23	49	200	560	1080	2040	4800	$* 13300$
Number of turns	660	1020	1430	3000	5000	6800	9350	14000	24000
Nominal Voltage	3	5	6	12	24	34	47	72	120
Minimum Voltage	1.9	3	4.5	8.9	15.4	22	30	47	87
Maximum Voltage	4.2	6.5	9.4	19	33	44	60	93	150
Max. Pulse Voltage	6.5	10	16	30	51	72	98	154	280

4.4.2. DOUBLE WOUND COILS AT $20^{\circ} \mathrm{C}$ (TERMINALS 1 \& 4 AND 2 \& 3) - Table 7.

Table 7
Each coil may be used separately as above. To change state using both coils
a) Apply positive to either terminal 1 or terminal 2.
b) To return to original position apply negative to terminal 1 or terminal 2

DC Coils (nominal volts)	2.5	4	6	12	24	36	47	60	100
Resistance ohms $\pm 10 \%$ (${ }^{*} \pm 15 \%$)	4.8	11.5	24.5	100	340	1020	1400	*2400	*6650
	4.8	11.5	24.5	100	400	1020	1400	*2400	*6650
Number of turns	310	490	730	1450	2600	4600	5100	6700	10900
	310	490	700	1450	3020	4220	5650	6700	10600
Minimum volts	2.0	3.2	4.8	9.4	19.5	33	38	51.5	92
Maximum volts (continuous)	3.0	4.6	6.7	13.4	26.5	42.5	50	65	108
Maximum pulse volts	7.0	10.5	15.5	31	65	100	120	160	280

5. RELAY CONTACTS.

5.1 CONTACT MATERIALS

Code A - Fine silver (gold flashed) - the most effective material for general purposes and has the highest conductivity of all metals. The bare metal is prone to tarnishing in sulphurous atmospheres, but in all but the very lightest of settings, the wiping action of all the contacts rapidly breaks down the film.

Code F - 95\% Gold 5\% Nickel - arc and weld resistant, hard wearing and the best material for low level applications.
(BT type 32 Contact Material)
Code G-60\% Palladium, 40\% Silver - It is arc resistant and the least costly of the tarnish-free alloys at normal temperatures. (BT type 23 Contact Material)

Code I - Silver Cadmium Oxide - a hard sintered alloy ideally suited for heavy duty applications with inductive loads. It is less prone to material transfer than Silver on DC circuits, but it is not suitable for low voltage low current applications.

5.2 CONTACT RATINGS - Table 8.

Table 8

Contact Type	Code	Max. Amps	Max. Volts	Max. Watts	Max. VA
Light duty Gold/Nickel (95\%:5\%) Single \& Twin Contacts	F	0.25	100	10	25
Light duty Fine Silver (Gold Flash) Single \& Twin Contacts	A	1.0	100	30	60
Light duty Palladium/Silver (60\%:40\%) Single \& Twin Contacts	G	1.0	100	30	60
5 Amp Silver/Cadmium Oxide Single contact	I	5.0	250	100	200
HD Fine Silver (Gold Flash) Single Contact	A	5.0	250	100	200

5.3 CONTACT TYPES

Single light duty \& 5 Amp
Suitable for most general purpose applications
Twin (TC) light duty Recommended for all critical applications that require reliable high integrity switching. The relays are constructed using two sets of standard contacts (of the selected type and rating) fixed to bifurcated contact springs.

Heavy duty (HD) Made from fine silver (code A), the contacts are physically larger than the standard light duty contact to allow for increased dissipation. Double spacers are inserted between springs so that the spring set is larger than that on the normal duty $5 \mathrm{Amp}(5 \mathrm{~A})$ contacts. Consequently the case size and terminal numbering is different from the 5A types.

6. RELAY CODE RECOGNITION.

Example of Relay Descriptive code $=$ VP $4 /$ SEN/ PB/ 5A/ C I B /26 / T

Typical examples of relay codes: -

VP4/PB/CAB/26/RSD/T/LES
Basic 4 pole changeover action with 2.8 mm pitch PC terminals, 1 amp silver contacts, 26 volt DC coil, anti-residual stud, tropicalised, less earth screw.

VP4/CAB/24AC

VP2/HD/CAB/430ohmB

Basic 4 pole changeover action with 1 amp silver contacts, 24 volt coil with built-in rectifier for AC operation.

Basic 2 pole changeover action with heavy duty silver contacts, 430ohm bifilar windings.

VP6/BFB/26W26 (pull and hold) Basic 6 pole break action with 0.25 Amp gold nickel contacts, overlaid coils (26volt inner 'pull', 26 volt outer 'hold').

For product support, information on our extensive range of VP relay configurations and options available, project support enquiries and replacement support for cradle relays not available from their OEM's, contact sales.

7. Outline drawings and layout diagrams.

Figure 1

Figure 2

Figure 3

Terminal numbering is identical to plug-in wiring relays (figure 1), but with 'staggered' pin layout on DM \& PC sockets as shown.
A - Hole for manual relay operation if required
B - Hole required for PB relay with standard 8BA earth/mounting stud. Not required for DM relay, PC socket or PB relay with LES in its code.

7.1 CONTACT NUMBERING

(See figs 1 \& 2 for pin positions for each case size)
Relays with changeover contacts see table 9
Relays with make or break contacts see table 10
Table 9

	2 - pole				4 - pole								6 - pole					
Type	S, TC \& 5A		HD		S, TC \& 5A				HD				S, TC \& 5A					
Case size	1		2		2				3				3					
NO	7	10	8	14	7	10	13	16	8	13	17	22	7	10	13	16	19	22
COM	6	9	7	13	6	9	12	15	7	11	16	20	6	9	12	15	18	21
NC	5	8	5	11	5	8	11	14	5	10	14	19	5	8	11	14	17	20

Table 10

	2-pole (case size 2)		6-pole (case size 2)						8-pole (case size 3)								
Contact	5	11	13	5	7	9	11	13	15	5	7	9	11	14	16	18	20
pairs	8	14	16	6	8	10	12	14	16	6	8	10	12	15	17	19	21

