Onsemi

FIN1101

General Description

LVDS Single Port High Speed Repeater

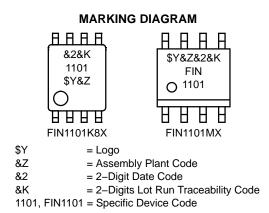
This single port repeater is designed for high speed interconnects

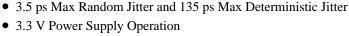
utilizing Low Voltage Differential Signaling (LVDS) technology. It

accepts and outputs LVDS levels with a typical differential output

swing of 330 mV which provides low EMI at ultra low power

dissipation even at high frequencies. It can directly accept multiple


differential I/O including: LVPECL, HSTL, and SSTL-2 for



SOIC8 CASE 751EB

US8 CASE 846AN

- Wide Rail-To-Rail Common Mode Range
- Ultra Low Power Consumption

translating directly to LVDS.

Features

- LVDS Receiver Inputs Accept LVPECL, HSTL, and SSTL-2 Directly
- Power Off Protection
- 7 kV HBM ESD Protection (All Pins)

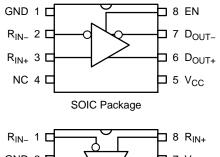
• Up to 1.6 Gb/s Full Differential Path

- Meets or Exceed the TA/EIA-644-A LVDS Standard
- Packaged in 8–Pin SOIC and US8
- Open Circuit Fail Safe Protection
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

PIN DESCRIPTIONS

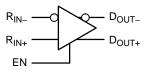
Pin Name	Description		
R _{IN+}	Non–Inverting LVDS Inputs		
R _{IN-}	Inverting LVDS Inputs		
D _{OUT+}	Non–Inverting Driver Outputs		
D _{OUT-}	Inverting Driver Outputs		
EN	Driver Enable Pin		
V _{CC}	Power Supply		
GND	Ground		

FUNCTION TABLE


Inputs			Outputs		
EN	R _{IN+}	R _{IN-}	D _{OUT+}	D _{OUT-}	
Н	н	L	н	L	
Н	L	Н	L	Н	
Н	Fail Sat	fe Case	н	L	
L	Х	Х	Z	Z	

H = HIGH Logic Level X = Don't Care

L = LOW Logic Level


Z = High Impedance

CONNECTION DIAGRAMS

FUCTIONAL DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

© Semiconductor Components Industries, LLC, 2002 November, 2022 - Rev. 1

Downloaded from Arrow.com.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5 V to +4.6 V
V _{IN}	LVDS DC Input Voltage	–0.5 V to +4.6 V
V _{OUT}	LVDS DC Output Voltage	–0.5 V to +4.6 V
I _{OSD}	Driver Short Circuit Current	Continuous 10 mA
T _{STG}	Storage Temperature Range	–65°C to +150°C
ТJ	Max Junction Temperature	150°C
Т	Lead Temperature (Soldering, 10 seconds)	260°C
	ESD (Human Body Model)	7000 V
	ESD (Machine Model)	300 V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value
V _{CC}	Supply Voltage	3.0 V to 3.6 V
T _A	Operating Temperature	−40°C to +85°C
V _{ID}	Magnitude of Input Differential Voltage	100 mV to V_{CC}
V _{IC}	Common Mode Input Voltage	(0 V + $ VID / 2$) to (V _{CC} - $ V_{ID} / 2$)

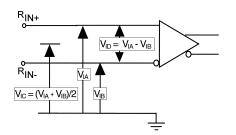
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Over supply voltage and operating temperature ranges, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ (Note 1)	Max	Unit
V _{TH}	Differential Input Threshold HIGH	See Figure 1; V _{IC} = +0.05 V, +1.2 V, or (V _{CC} – 0.05 V)	_	-	100	mV
V_{TL}	Differential Input Threshold LOW	See Figure 1; V _{IC} = +0.05 V, +1.2 V, or (V _{CC} – 0.05 V)	-100	-	_	mV
VIH	Input High Voltage (EN)		2.0	-	V _{CC}	V
V _{IL}	Input Low Voltage (EN)		GND	-	0.8	V
V _{OD}	Output Differential Voltage	R_L = 100 Ω , Driver Enabled, See Figure 2	250	330	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW–to–HIGH	R _L = 100 Ω, Driver Enabled, See Figure 2	-	-	25	mV
V _{OS}	Offset Voltage	R_L = 100 Ω , Driver Enabled, See Figure 2	1.125	1.23	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH	R _L = 100 Ω, Driver Enabled, See Figure 2	-	-	25	mV
I _{OS}	Short Circuit Output Current	D _{OUT+} = 0 V & D _{OUT-} = 0 V, Driver Enabled	_	-3.4	-6	mA
I _{OS}	Short Circuit Output Current	V _{OD} = 0 V, Driver Enabled	_	±3.4	±6	mA
I _{IN}	Input Current (EN, D _{INX+} , D _{INX-})	$V_{IN} = 0 V$ to V_{CC} , Other Input = V_{CC} or $0 V$ (for Differential Inputs)	-	-	±20	μΑ
I _{OFF}	Power–Off Input or Output Current	$V_{CC} = 0 \text{ V}, \text{ V}_{IN} \text{ or } \text{ V}_{OUT} = 0 \text{ V to } 3.6 \text{ V}$	_	-	±20	μΑ
I _{CCZ}	Disabled Power Supply Current	Drivers Disabled	_	3.2	5.5	mA
I _{CC}	Power Supply Current	Drivers Enabled, Any Valid Input Condition	_	9.3	13.5	mA
I _{OZ}	Disabled Output Leakage Current	Driver Disabled, $D_{OUT+} = 0 V$ to 3.6 V or $D_{OUT-} = 0 V$ to 3.6 V	-	-	±20	μΑ
V _{IC}	Common Mode Voltage Range	$ V_{ID} = 100 \text{ mV to } V_{CC}$	0 V + V _{ID} / 2	-	V _{CC} – (V _{ID} / 2)	V
C _{IN}	Input Capacitance	EN Input	_	2.2	_	pF
		Data Input	_	2.0	_	pF
C _{OUT}	Output Capacitance		_	2.6	_	pF

1. All typical values are at T_A = 25°C and with V_{CC} = 3.3 V.

FIN1101


Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Unit
t _{PLHD}	Differential Propagation Delay LOW-to-HIGH	$R_{L} = 100 \Omega, C_{L} = 5 pF,$	0.75	1.1	1.75	ns
t _{PHLD}	Differential Propagation Delay HIGH-to-LOW	$V_{ID} = 200 \text{ mV to } 450 \text{ mV},$ $V_{IC} = V_{ID} / 2 \text{ to } (V_{CC} - (V_{ID} / 2),$	0.75	1.1	1.75	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	Duty Cycle = 50%, See Figure 3 and Figure 4	0.29	0.40	0.58	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)		0.29	0.40	0.58	ns
t _{SK(P)}	Pulse Skew t _{PLH} – t _{PHL}		-	0.01	0.2	ns
t _{SK(PP)}	Part-to-Part Skew (Note 3)		-	-	0.5	ns
f _{MAX}	Maximum Frequency (Note 4) (Note 5)		400	800	-	MHz
t _{PZHD}	Differential Output Enable Time from Z to HIGH	$R_L = 100 \Omega$, $C_L = 5 pF$, See Figure 2	-	2.1	5	ns
t _{PZLD}	Differential Output Enable Time from Z to LOW	and Figure 3	-	2.3	5	ns
t _{PHZD}	Differential Output Disable Time from HIGH to Z		-	1.5	5	ns
t _{PLZD}	Differential Output Disable Time from LOW to Z		-	1.8	5	ns
t _{DJ}	LVDS Data Jitter, Deterministic	$V_{ID} = 300 \text{ mV}, \text{ PRBS} = 2^{23} - 1, V_{IC} = 1.2 \text{ V} \text{ at } 800 \text{ Mbps}$	_	85	135	ps
t _{RJ}	LVDS Clock Jitter, Random (RMS)	V _{ID} = 300 mV V _{IC} = 1.2 V at 400 MHz	-	2.1	3.5	ps

AC ELECTRICAL CHARACTERISTICS (Over supply voltage and operating temperature ranges, unless otherwise specified)

2. All typical values are at T_A = 25°C and with V_{CC} = 3.3 V, V_{ID} = 300 mV, V_{IC} = 1.2 V unless otherwise specified.

3. t_{SK(PP)} is the magnitude of the difference in differential propagation delay times between identical channels of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

4. Passing criteria for maximum frequency is the output V_{OD} > 200 mV and the duty cycle is 45% to 55% with all channels switching. 5. Output loading is transmission line environment only; C_L is < 1 pF of stray test fixture capacitance.

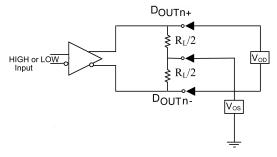
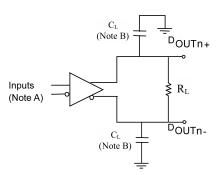
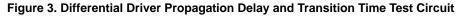




Figure 1. Differential Receiver Voltage Definitions and Propagation I and Transition Time Test Circuit

Figure 2. Differential Driver DC Test Circuit

Note A: All LVDS input pulses have frequency = 10 MHz, t_R or $t_F \le 0.5$ ns Note B: C₁ includes all probe and test fixture capacitances

FIN1101

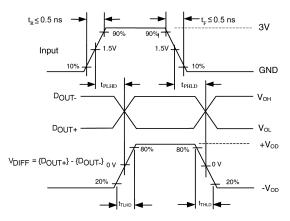
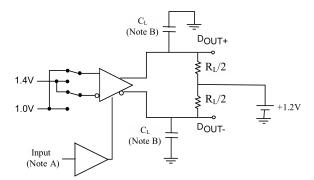
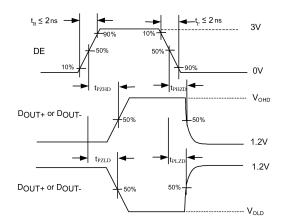
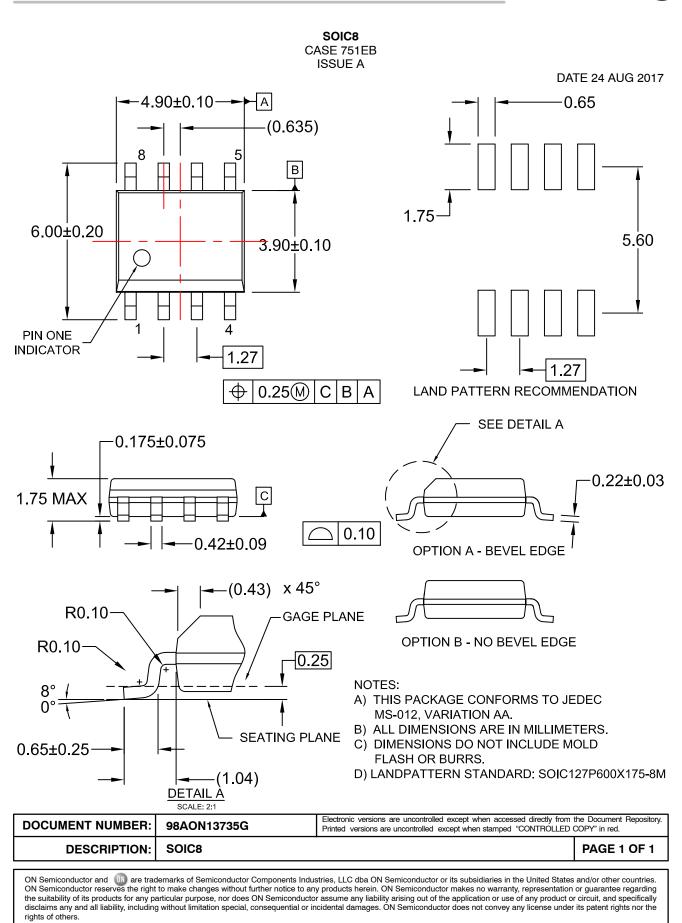



Figure 4. AC Waveforms

Note A: All LVTTL input pulses have frequency = 10 MHz, t_R or $t_F \le 2$ ns Note B: C_L includes all probe and test fixture capacitances

Figure 5. Differential Driver Enable and Disable Test Circuit

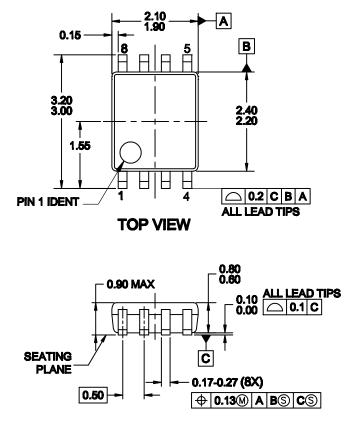



Figure 6. Enable and Disable AC Waveforms

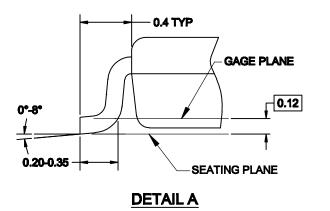
ORDERING INFORMATION

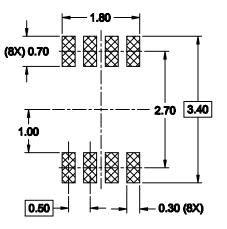
Order Number	Package Number	Package Description	Shipping [†]
FIN1101MX	M08A	8–Lead Small Outline Integrated Circuit (SOIC), JEDEC MS–012, 0.150" Narrow (Pb–Free)	2500 / Tape & Reel
FIN1101K8X	MAB08A	8-Lead US8, JEDEC MO-187, Variation CA 3.1 mm Wide (Pb-Free)	3000 / Tape & Reel

+For Information On Tape And Reel Specifications, Including Part Orientation And Tape Sizes, Please Refer To Our Tape And Reel Packaging Specifications Brochure, Brd8011/D.



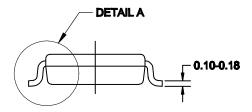
© Semiconductor Components Industries, LLC, 2019




US8 CASE 846AN ISSUE O

DATE 31 DEC 2016

SIDE VIEW



RECOMMENDED LAND PATTERN

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- **B. DIMENSIONS ARE IN MILLIMETERS.**
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994.

DOCUMENT NUMBER:	98AON13778G Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	US8 PAGE 1 O				
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclams any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the					

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>