

STB2N62K3, STD2N62K3, STF2N62K3, STP2N62K3, STU2N62K3

N-channel 620 V, 3 Ω, 2.2 A SuperMESH3[™] Power MOSFET in D²PAK, DPAK, TO-220FP, TO-220 and IPAK packages

Datasheet — production data

Features

Order codes	V _{DSS}	R _{DS(on)} max	I _D	P _{TOT}
STB2N62K3 STD2N62K3				45 W
STF2N62K3	620 V	< 3.6 Ω	2.2 A	20 W
STP2N62K3 STU2N62K3				45 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Applications

Switching applications

Description

These SuperMESH3™ Power MOSFETs are the result of improvements applied to STMicroelectronics' SuperMESH™ technology, combined with a new optimized vertical structure. These devices boast an extremely low onresistance, superior dynamic performance and high avalanche capability, rendering them suitable for the most demanding applications.

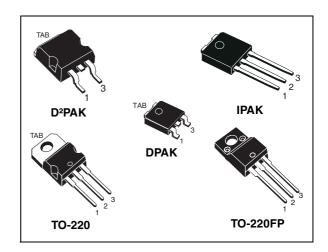


Figure 1. Internal schematic diagram

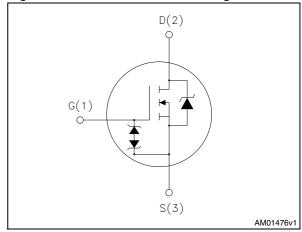


Table 1. Device summary

Order codes	Marking	Package	Packaging
STB2N62K3	2N62K3	D ² PAK	Tone and real
STD2N62K3	ZINOZNO	DPAK	Tape and reel
STF2N62K3		TO-220FP	
STP2N62K3	2N62K3	T0-220	Tube
STU2N62K3		IPAK	

March 2012 Doc ID 018898 Rev 2 1/25

This is information on a product in full production.

Contents STB/D/F/P/U2N62K3

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	20
6	Revision history	23

STB/D/F/P/U2N62K3 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value		
Symbol	Parameter	D²PAK, DPAK, TO-220, IPAK	TO-220FP	Unit
V _{DS}	Drain-source voltage	620		V
V _{GS}	Gate- source voltage	± 30		V
I _D	Drain current (continuous) at T _C = 25 °C	2.2	2.2 (1)	Α
I _D	Drain current (continuous) at T _C = 100 °C	1	1 (1)	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	8.8 8.8 ⁽¹⁾		Α
P _{TOT}	Total dissipation at T _C = 25 °C	45	20	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	2.2		Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	85		mJ
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;Tc=25 °C)	2500		٧
dv/dt (3)	Peak diode recovery voltage slope	12		V/ns
T _{stg}	Storage temperature	-55 to 150		°C
Tj	Max. operating junction temperature	150		°C

^{1.} Limited by maximum junction temperature

Table 3. Thermal data

Cymbol	Parameter	Value					
Symbol	oi rai dilletei		DPAK	IPAK	TO-220	TO-220FP	Unit
R _{thj-case}	Thermal resistance junction-case max	2.78			6.25	°C/W	
R _{thj-pcb}	Thermal resistance junction-pcb max	30 50			°C/W		
R _{thj-amb}	Thermal resistance junction- ambient max	100 62.5		62.5	°C/W		

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq$ 2.2 A, di/dt \leq 400 A/ μ s, V_{DS} peak \leq $V_{(BR)DSS}$, V_{DD} = 80% $V_{(BR)DSS}$

Electrical characteristics STB/D/F/P/U2N62K3

2 Electrical characteristics

 $(T_C = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	620			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 620 V V _{DS} = 620 V, T _C =125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 1.1 A		3	3.6	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0$	-	340 26 4	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 496 V, V _{GS} = 0	-	17	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 496 \text{ V}, I_{D} = 1.1 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see <i>Figure 20</i>)	-	15 3 9	-	nC nC nC

^{1.} Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \end{array}$	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 310 \text{ V}, I_{D} = 1.1 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 19</i>)	-	8 4.4 21 22	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		2.2 8.8	A A
V _{SD} (2)	Forward on voltage	$I_{SD} = 2.2 \text{ A}, V_{GS} = 0$	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 2.2 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 24</i>)	-	200 900 9		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 2.2 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 24</i>)	1	240 1150 10		ns nC A

^{1.} Pulse width limited by safe operating area

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30			٧

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{2.} Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5%

Electrical characteristics STB/D/F/P/U2N62K3

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for DPAK and Figure 3. Thermal impedance for DPAK and IPAK

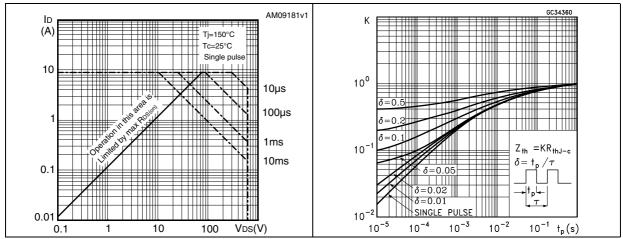


Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

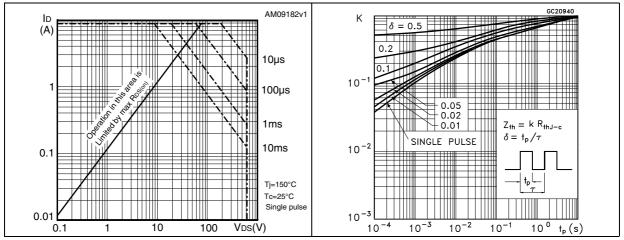


Figure 6. Safe operating area for TO-220 and Figure 7. Thermal impedance for TO-220 and D2PAK D2PAK

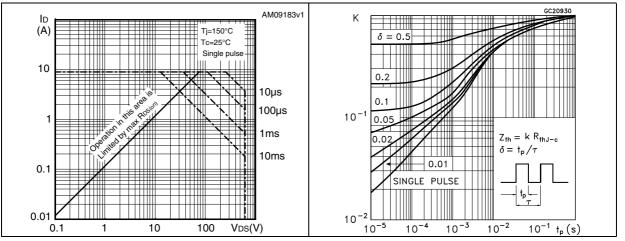
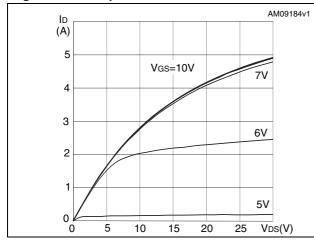



Figure 8. Output characteristics

Figure 9. Transfer characteristics

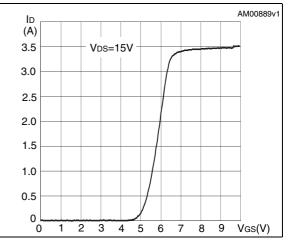
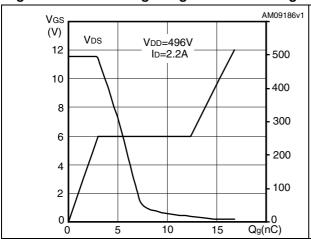



Figure 10. Gate charge vs gate-source voltage Figure 11. Static drain-source on-resistance

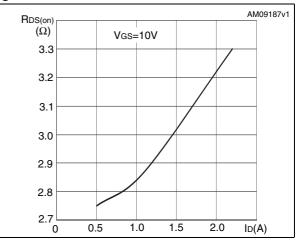
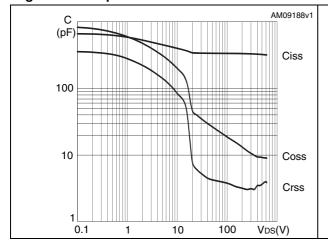



Figure 12. Capacitance variations

Figure 13. Output capacitance stored energy

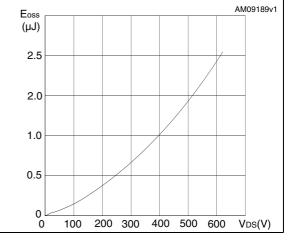
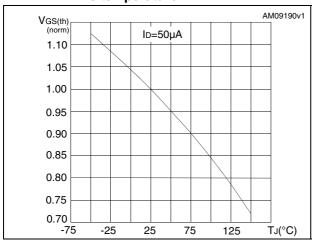



Figure 14. Normalized gate threshold voltage Figure 15. Normalized on-resistance vs vs temperature

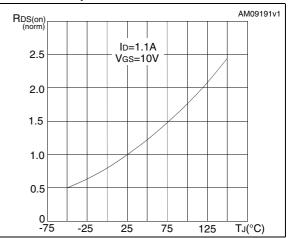


Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized B_{VDSS} vs temperature

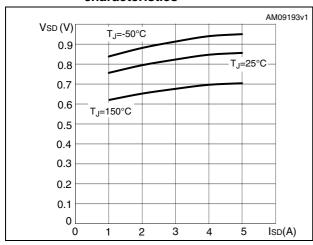
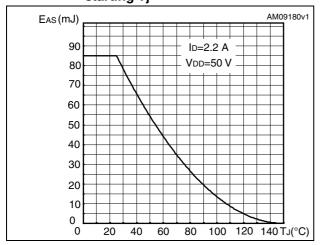



Figure 18. Maximum avalanche energy vs starting Tj

STB/D/F/P/U2N62K3 Test circuits

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

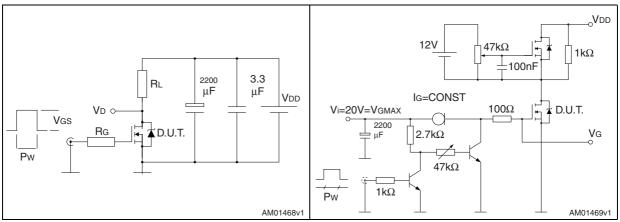


Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped inductive load test circuit

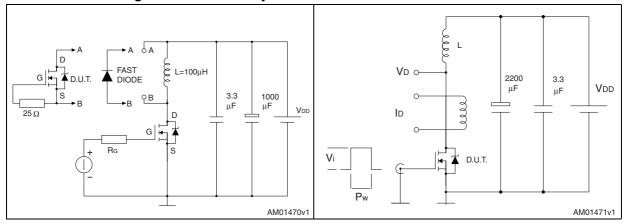
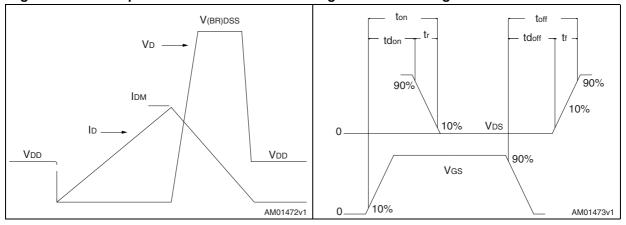



Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

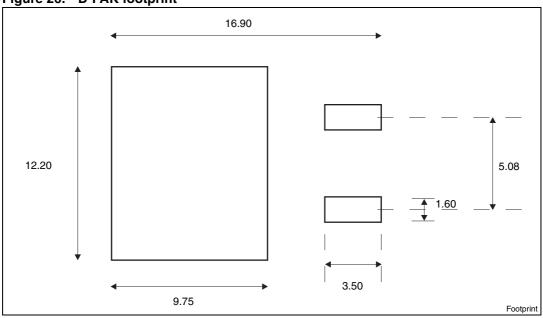
4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

E E/2


B D D THERMAL PAD

SEATING PLANE

COPLANARITY A1

Figure 25. D²PAK (TO-263) drawing

0.25

GAUGE PLANE

a. All dimensions are in millimeters

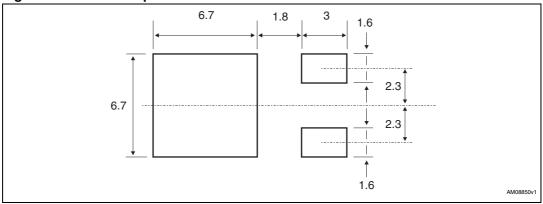
5/

0079457_T

Table 10. DPAK (TO-252) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
Е	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1		1.50
L1		2.80	
L2		0.80	
L4	0.60		1
R		0.20	
V2	0°		8°

THERMAL PAD


CAUGE PLANE

CAUGE PLANE

OOG8772_H

Figure 27. DPAK (TO-252) drawing

Figure 28. DPAK footprint^(b)

b. All dimensions are in millimeters

Table 11. TO-220FP mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
Е	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

7012510_Rev_K_B

-*B*-Dia L6 L2 *L7* L3 F1 **L4** F2 Ε -G1_

Figure 29. TO-220FP drawing

Table 12. TO-220 type A mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
Е	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

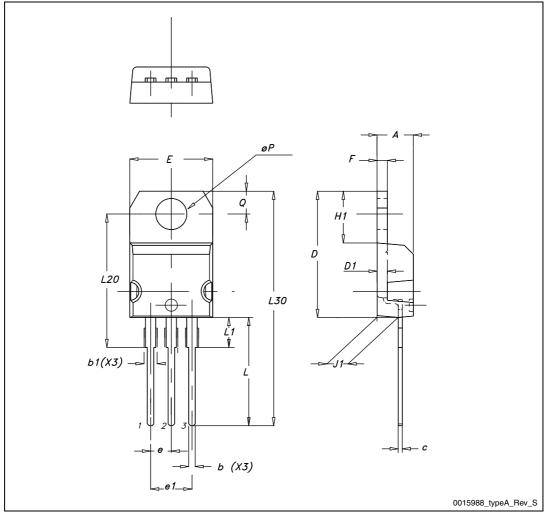


Figure 30. TO-220 type A drawing

Table 13. IPAK (TO-251) mechanical data

DIM	mm.				
DIM.	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
B5		0.3			
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
E	6.40		6.60		
е		2.28			
e1	4.40		4.60		
Н		16.10			
L	9.00		9.40		
L1	0.80		1.20		
L2		0.80	1.00		
V1		10 °			

AM09214V1

Figure 31. IPAK (TO-251) drawing

0068771_H

477

5 Packaging mechanical data

Table 14. DPAK (TO-252) tape and reel mechanical data

	Таре			Reel	
Dim	mm		Dim	mm	
Dim.	Min.	Max.	— Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 15. D²PAK (TO-263) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.		Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

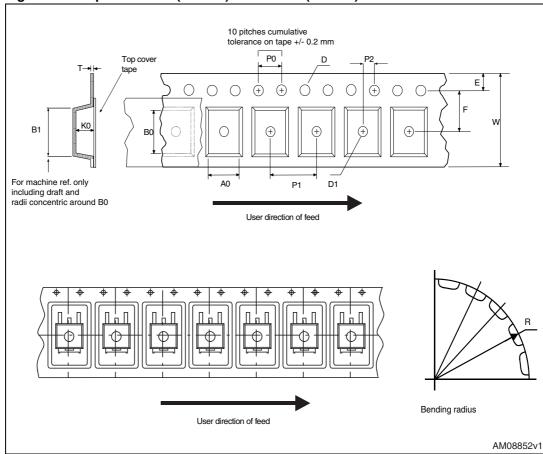
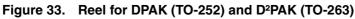
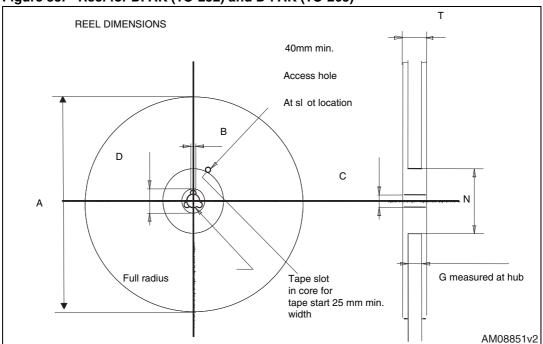




Figure 32. Tape for DPAK (TO-252) and D2PAK (TO-263)

Doc ID 018898 Rev 2

23/25

Revision history STB/D/F/P/U2N62K3

6 Revision history

Table 16. Document revision history

Date	Revision	Changes	
31-May-2011	1	First release	
20-Mar-2012	2	Added new package: D ² PAK – Table 1: Device summary, Section 4: Package mechanical data and Section 5: Packaging mechanical data have been modified. Minor text changes.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 018898 Rev 2

25/25