

May 2013

FSA2257 Low R_{ON}, Low-Voltage Dual SPDT Bi-Directional Analog Switch

Description

Features

- Maximum 1.15 Ω On Resistance (R_{ON}) at 4.5 V V_{CC}
- 0.3 Ω Maximum R_{ON} Flatness at +5 V V_{CC}
- Space-Saving MicroPak[™]
- Broad V_{cc} Operating Range: 1.65 V to 5.50 V
- Fast Turn-On and Turn-Off Time
- Break-Before-Make Enable Circuitry
- Over-Voltage Tolerant TTL-Compatible Control Input

Applications

- Cell Phone
- PDA
- Mobile Devices

Ordering Information

Package Top Part Number Packing Method Package Description Number Mark FSA2257L10X MAC10A EΡ 10-Lead MicroPak[™], 1.6 x 2.1 mm 5000 Units Tape and Reel 14-Lead Thin Shrink Small Outline Package FSA2257MTCX MCT14 FSA2257 2500 Units Tape and Reel (TSSOP), JEDEC MO-153, 4.4 mm Wide FSA 10-Lead Molded Small Outline Package FSA2257MUX MUA10A 4000 Units Tape and Reel 2257 (MSOP), JEDEC MO-187, 3.0 mm 32Ω Earpiece Base Band Voice/Bell Ring Base Band Processors with Melody Ring Generation Amp 8Ω Loud Speaker Select Pin FSA2257 Figure 1. Block Diagram

The FSA2257 is a high-performance bi-directional dual Single-Pole/Double-Throw (SPDT) analog switch. This switch can be configured as either a multiplexer or a demultiplexer by select pins. The device features ultra-low R_{ON} of 1.3 Ω maximum at 4.5 V V_{CC} and operates over the wide V_{CC} range of 1.65 V to 5.50 V. The device is fabricated with submicron CMOS technology to achieve fast switching speeds and is designed for break-beforemake operation. The select input is TTL-level compatible.

www.fairchildsemi.com

GND 2S 6 9 2B1 $2B_0$ 7 8 NC NC Figure 2. Pin Assignments for TSSOP (Top View) 2B0 2B1 10 2S 9 2A Vcc 3 8 GND

14_____V_{CC}

13

12

11

10

1S

1B1

Vcc

1A - 4 - 7 - 1S $1B_0 - 5 - 6 - 1B_1$

Figure 4. Pin Assignments for MSOP (Top View)

Pin Definitions

Pin Configurations

1A

GND

 $1B_0$

2A

2

3

5

Pin# TSSOP	Pin# MicroPak™	Pin # MSOP	Name	Description
1	7	4	1A	Data Ports
2,5	10	8	GND	Ground
3	9	5	1B ₀	Data Ports
4	3	9	2A	Data Ports
6	1	10	2B ₀	Data Ports
7,8			NC	No Connect
9	4	1	2B1	Data Ports
10	2	2	2S	Control Inputs
11,14	5	3	Vcc	Power Supply
12	6	6	1B ₁	Data Ports
13	8	7	1S	Control Inputs

Truth Table

Control Input (S)	Function
Low Logic Level	B ₀ connected to A
High Logic Level	B ₁ connected to A

 $1B_0$

9

10

1

 $2B_0$

3

GND

1S

8

2

2S

1A

7

3

2A

 $1B_1$

6

5

4

 $2B_1$

Vcc

Figure 5. Analog Symbols (Top Through View)

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	er	Min.	Max.	Unit		
V _{CC}	Supply Voltage		-0.5	6.0	V		
V _{SW}	DC Switch Voltage ⁽¹⁾		-0.5	V _{CC} + 0.5	V		
V _{IN}	DC Input Voltage ⁽¹⁾		-0.5	6.0	V		
	Input Diode Current		-50				
I _{IK}	Switch Current			200	mA		
	Peak Switch Current (Pulsed at 1 ms		400				
T _{STG}	Storage Temperature Range	-65	+150	°C			
TJ	Maximum Junction Temperature			+150	°C		
TL	Lead Temperature (Soldering, 10 sec	onds)		+260	°C		
ESD	Electrostatio Discharge Capability	Human Body Model, JESD22-A114		8000	V		
ESD		Charged Device Model, JESD22-C101		2000	v		

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage	1.65	5.50	V
V _{CNTRL}	Control Input Voltage ⁽²⁾	0	V _{cc}	V
V _{SW}	Switch Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. Unused control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	т	T _A =+25°C			T _A =-40°C to +85°C	
				Min.	Тур.	Max.	Min.	Max.	
			1.8 to 2.7				1.0		
VIH	Input Voltage High		2.7 to 3.6				2.0		V
			4.5 to 5.5				2.4		
			1.8 to 2.7					0.4	
VIL	Input Voltage Low		2.7 to 3.6					0.6	V
			4.5 to 5.5					0.8	
L	Control Input	$\lambda = 0 \lambda + 0 \lambda$	2.7 to 3.6				-1.0	1.0	
IIN	Leakage		4.5 to 5.5				-1.0	1.0	μΑ
I _{NO(OFF)} , I _{NC(OFF)}	Off Leakage Current of Port B_0 and B_1	A=1 V, 4.5 V, B ₀ or B ₁ =1 V, 4.5 V	5.5	-2		2	-20	20	nA
I _{A(ON)}	On Leakage Current of Port A	A=1 V, 4.5V, B_0 or B ₁ =1 V,4.5 V or Floating	5.5	-4		2	-40	40	nA
	Switch On Resistance MicroPak ⁽³⁾	I _{OUT} =100 mA, B ₀ or B ₁ =1.5 V	1.8		4.6				Ω
			2.7		2.6	4.0		4.3	
Rou		I _{OUT} =100 mA, B ₀ or B ₁ =3.5 V	4.5		0.95	1.15		1.30	
NON	Switch On Resistance MSOP/TSSOP ⁽³⁾	I _{OUT} =100 mA, B ₀ or B ₁ =1.5 V	2.7		2.8			4.5	
		I _{OUT} =100 mA, B ₀ or B ₁ =3.5 V	4.5		1.5			2.3	
APou	On Resistance Matching Between Channels MicroPak ⁽⁴⁾	I _{оит} =100 mA,	4.5		0.06	0.12		0.15	0
	On Resistance Matching Between Channels MSOP / TSSOP ⁽⁴⁾	B ₀ or B ₁ =3.5 V	4.5		0.7			0.3	
		I_{OUT} =100 mA, B ₀ or	1.8		3.0				-
$R_{FLAT(ON)}$	On Resistance	B _I =0 V, 0.75 V,1.5 V	2.7		1.4				
	Flatness ⁽⁵⁾	I _{OUT} =100 mA, B ₀ or B _I =0 V, 1 V, 2 V	4.5		0.2	0.3		0.4	Ω
	Quiescent Supply	V _{IN} =0 V or V _{CC} ,	3.6		0.1	0.5		1.0	
I _{CC}	Current	I _{OUT} =0 V	5.5		0.1	0.5		1.0	μA

On resistance is determined by the voltage drop between A and B pins at the indicated current through the 3. switch.

4.

 $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage. Flatness is defined as the difference between the maximum and minimum value of on resistance over the 5. specified range of conditions.

FSA2257— Low Ron, Low-Voltage Dual SPDT Bi-Directional Analog Switch

AC Electrical Characteristics

Typical values are at 25°C unless otherwise specified.

Symbol Parameter		Conditions	V _{cc} (V)	Т	T _A =+25°C			T _A =-40°C to +85°C		Figure
_				Min.	Тур.	Max.	Min.	Max.		•
		B ₀ or B ₁ =1.5 V,	1.8 to 2.7		75					
ton	Turn-On	R _L =50 Ω, C _L =35 pF	2.7 to 3.6			50		60	ns	Figure 6
CIN	Time	B ₀ or B ₁ =3.0 V, R _L =50 Ω, C _L =35 pF	4.5 to 5.5			35		40	no	i igulo o
		B ₀ or B ₁ =1.5 V,	1.8 to 2.7		20					
tore	Turn-Off	$R_L=50 \Omega$, $C_L=35 pF$	2.7 to 3.6			20		30	ns	Figure 6
^{IOFF} Time	Time	B ₀ or B ₁ =3.0 V, R _L =50 Ω, C _L =35 pF	4.5 to 5.5			15		20	113	
Break-	B ₀ or B ₁ =1.5 V, R _L =50 Ω, C _L =35 pF	2.7 to 3.6				1		20	Figuro 7	
^L BBM	Time	B ₀ or B ₁ =3.0 V, R _L =50 Ω, C _L =35 pF	4.5 to 5.5		20		1		ns	riguie /
0	Charge	$\begin{array}{l} C_{L} = 1.0 \; nF, \; V_{GEN} = 0 \; V, \\ R_{GEN} = 0 \; \Omega \end{array}$	2.7 to 3.6		20				рС	Figure 9
Q	Injection		4.5 to 5.5		10					
	Off Inclation		2.7 to 3.6		-70					Liguro 0
UIKK	On Isolation	1=1 MHZ, RL=50 32	4.5 to 5.5		-70				uБ	Figure o
			2.7 to 3.6		-75				-	Figure 8
Xtalk Crosstalk	Crosstalk	f=1 MHz, R_L =50 Ω	4.5 to 5.5		-75				dB	
DW/	-3 db	D 50.0	2.7 to 3.6		200					Figure 11
DVV	Bandwidth	RL=50 12	4.5 to 5.5		200				IVIEZ	
тнр	Total THD Harmon Distortion	Total R _L =600 Ω , V _{IN} =0.5 V _{PP} f=20 Hz to 20 kHz	2.7 to 3.6		0.002				%	Figure
ו עחו			4.5 to 5.5		0.002					12

Capacitance

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C			Unit	Figure
				Min.	Тур.	Max.		R)
C _{IN}	Control Pin Input Capacitance	f=1 MHz	0		3.5		pF	Figure 10
C_{OFF}	B Port Off Capacitance	f=1 MHz	4.5		12.0		pF	Figure 10
C _{ON}	A Port On Capacitance	f=1 MHz	4.5		40.0		pF	Figure 10

FSA2257— Low Ron, Low-Voltage Dual SPDT Bi-Directional Analog Switch

7

RECOMMENDED LAND PATTERN

DETAIL A 2X SCALE

NOTES:

- A. PACKAGE CONFORMS TO JEDEC REGISTRATION MO-255, VARIATION UABD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER
 ASME Y14.5M, 2009.
- D. PRESENCE OF CENTER PAD IS PACKAGE SUPPLIER DEPENDENT. IF PRESENT IT IS NOT INTENDED TO BE SOLDERED AND HAS A BLACK OXIDE FINISH.
- E. DRAWING FILENAME: MKT-MAC10Arev6.
- F. DIMENSIONS WITHIN () ARE UNCONTROLLED

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 173