

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

March 2015

FDD8424H Dual N & P-Channel PowerTrench[®] MOSFET

Dual N & P-Channel PowerTrench[®] MOSFET N-Channel: 40V, 20A, 24m Ω P-Channel: -40V, -20A, 54m Ω

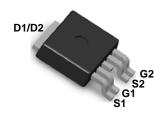
Features

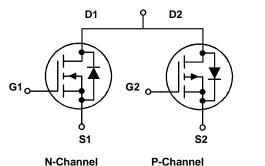
Q1: N-Channel

- Max $r_{DS(on)} = 24m\Omega$ at $V_{GS} = 10V$, $I_D = 9.0A$
- Max $r_{DS(on)} = 30m\Omega$ at $V_{GS} = 4.5V$, $I_D = 7.0A$

Q2: P-Channel

- Max $r_{DS(on)} = 54m\Omega$ at $V_{GS} = -10V$, $I_D = -6.5A$
- Max $r_{DS(on)} = 70m\Omega$ at $V_{GS} = -4.5V$, $I_D = -5.6A$
- Fast switching speed
- RoHS Compliant




General Description

These dual N and P-Channel enhancement mode Power MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench- process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

Application

- Inverter
- H-Bridge

Dual DPAK 4L

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage	40	-40	V		
V _{GS}	Gate to Source Voltage		±20	±20	V	
	Drain Current - Continuous (Package Limited)		20	-20		
	- Continuous (Silicon Limited)	$T_C = 25^{\circ}C$	26	-20	^	
I _D	- Continuous	$T_A = 25^{\circ}C$	9.0	-6.5	— A	
	- Pulsed		55	-40		
	Power Dissipation for Single Operation	$T_C = 25^{\circ}C$ (Note 1)) 30	35		
P _D		$T_A = 25^{\circ}C$ (Note 1a)) 3	.1	W	
		$T_A = 25^{\circ}C$ (Note 1b)) 1	1.3		
E _{AS}	Single Pulse Avalanche Energy	(Note 3)) 29	33	mJ	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C	

Thermal Characteristics

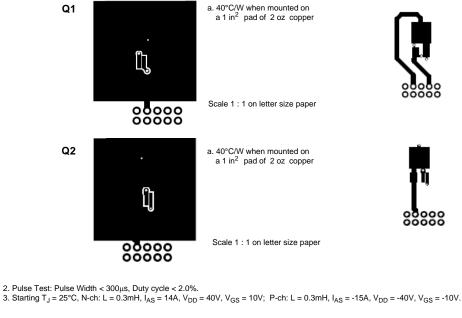
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Single Operation for Q1	(Note 1)	4.1	°C/W	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Single Operation for Q2	(Note 1)	3.5	C/VV	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8424H	FDD8424H	TO-252-4L	13"	16mm	2500 units

©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$ $I_D = -250 \mu A, V_{GS} = 0 V$	Q1 Q2	40 -40			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C $I_D = -250\mu$ A, referenced to 25°C	Q1 Q2		34 -32		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V, V_{GS} = 0V$ $V_{DS} = -32V, V_{GS} = 0V$	Q1 Q2			1 -1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	Q1 Q2			±100 ±100	nA nA
On Chara	acteristics				••		•
V _{GS(th)}	Gate to Source Threshold Voltage	$\begin{array}{l} V_{GS}=V_{DS}, \ I_{D}=250 \mu A \\ V_{GS}=V_{DS}, \ I_{D}=-250 \mu A \end{array}$	Q1 Q2	1 -1	1.7 -1.6	3 -3	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C $I_D = -250\mu$ A, referenced to 25°C	Q1 Q2		-5.3 4.8		mV/°C
		$V_{GS} = 10V, I_D = 9.0A$ $V_{GS} = 4.5V, I_D = 7.0A$ $V_{GS} = 10V, I_D = 9.0A, T_J = 125^{\circ}C$	Q1		19 23 29	24 30 37	
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = -10V, I_D = -6.5A$ $V_{GS} = -4.5V, I_D = -5.6A$ $V_{GS} = -10V, I_D = -6.5A, T_J = 125^{\circ}C$	Q2		42 58 62	54 70 80	— mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_D = 9.0A$ $V_{DS} = -5V, I_D = -6.5A$	Q1 Q2		29 13		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = 20V, V _{GS} = 0V, f = 1MHZ	Q1 Q2		750 1000	1000 1330	pF
C _{oss}	Output Capacitance	Q2	Q1 Q2		115 140	155 185	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = -20V, V _{GS} = 0V, f = 1MHZ	Q1 Q2		75 75	115 115	pF
Rg	Gate Resistance	f = 1MHz	Q1 Q2	0.1 0.1	1.1 3.3	3.3 9.9	Ω
Switchin	g Characteristics						
t _{d(on)}	Turn-On Delay Time	Q1	Q1 Q2		7 7	14 14	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 9.0A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	Q1 Q2		13 3	24 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2 V _{DD} = -20V, I _D = -6.5A,	Q1 Q2		17 20	31 36	ns
t _f	Fall Time	$V_{\text{GS}} = -20V, \ \text{R}_{\text{D}} = -0.5\text{A}, \ V_{\text{GS}} = -10V, \ \text{R}_{\text{GEN}} = 6\Omega$	Q1 Q2		6 3	12 10	ns
Q _{g(TOT)}	Total Gate Charge	Q1	Q1 Q2		14 17	20 24	nC
Q _{gs}	Gate to Source Charge	$V_{GS} = 10V, V_{DD} = 20V, I_D = 9.0A$	Q1 Q2		2.3 3.0		nC
Q _{gd}	Gate to Drain "Miller" Charge	– Q2 V _{GS} = -10V, V _{DD} = -20V, I _D = -6.5A	Q1 Q2		3.2 3.6		nC

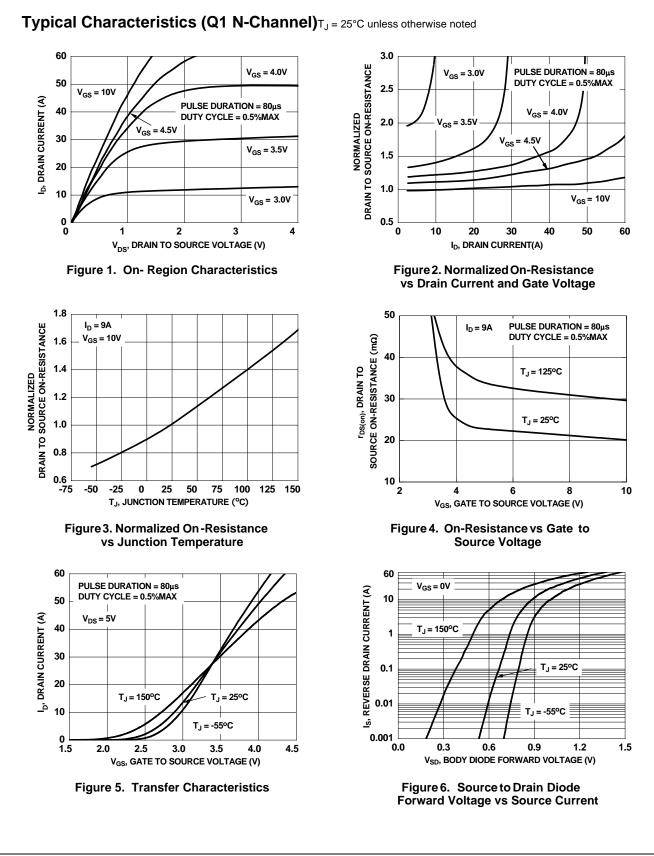

Electrical Characteristics T_J = 25°C unless otherwise noted

©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5

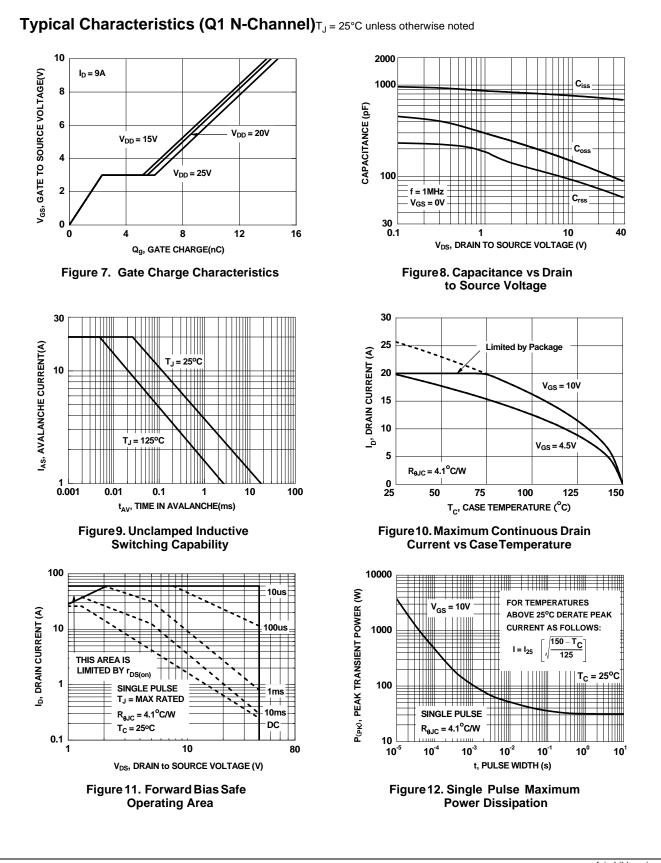
Symbol	Parameter	Test Conditions		Туре	Min	Тур	Max	Units
Drain-Soເ	urce Diode Characteristics							
I _S	Maximum Continuous Drain to Source Diode Forward Current		Q1 Q2			20 -20	А	
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current (Note 2)		Q1 Q2			55 -40	А	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 9.0A$ $V_{GS} = 0V, I_{S} = -6.5A$	(Note 2) (Note 2)	Q1 Q2		0.87 0.88	1.2 -1.2	V
t _{rr}	Reverse Recovery Time	Q1 I _F = 9.0A, di/dt = 100A/s		Q1 Q2		25 29	38 44	ns
Q _{rr}	Reverse Recovery Charge	Q2 I _F = -6.5A, di/dt = 100A/s		Q1 Q2		19 29	29 44	nC

Notes:

1. $R_{\theta,JA}$ is determined with the device mounted on a 1in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

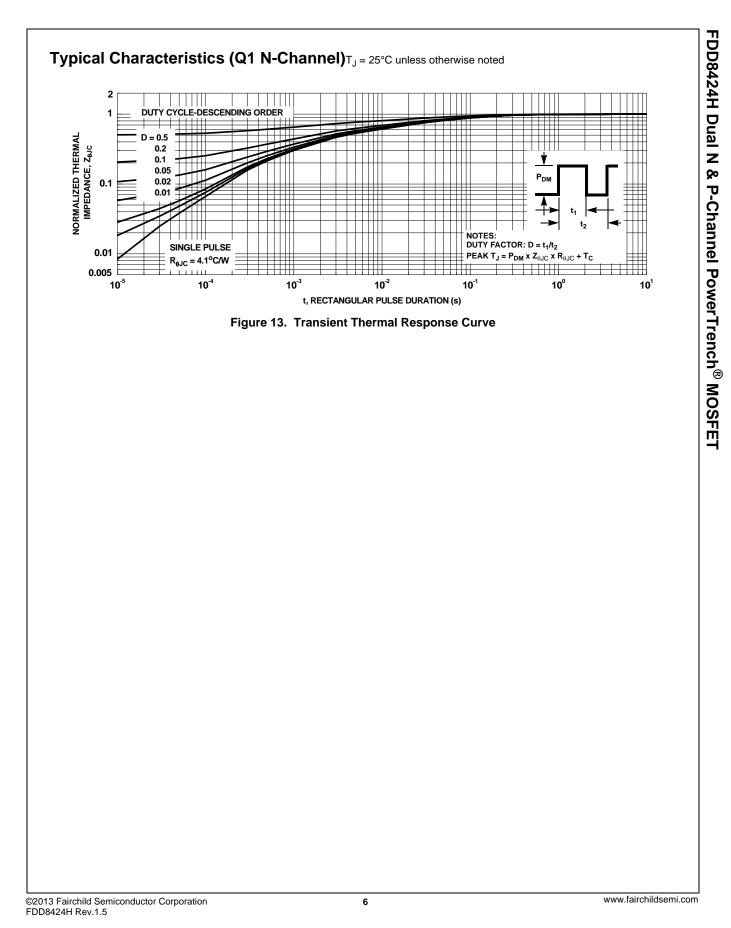


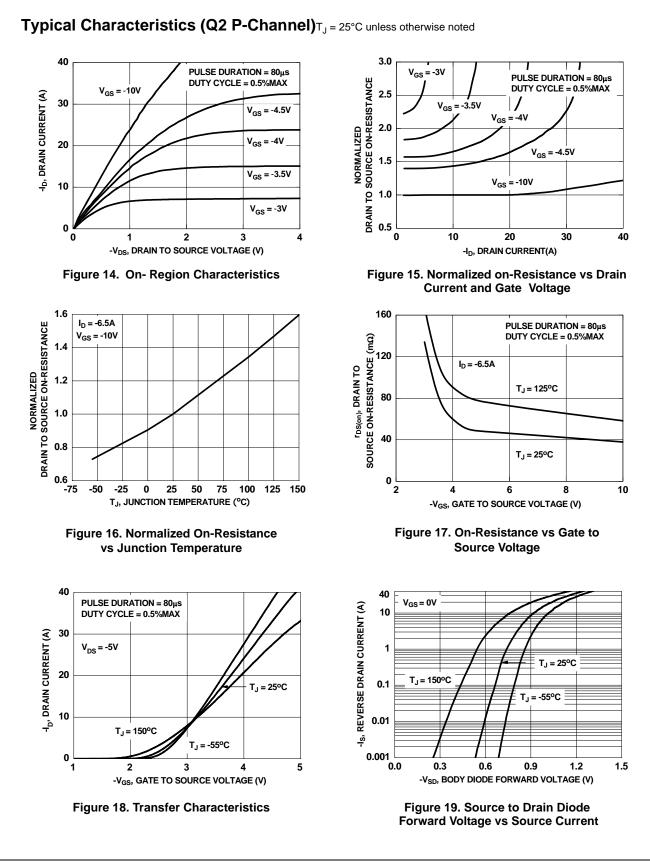
a. 40°C/W when mounted on a 1 in² pad of 2 oz copper



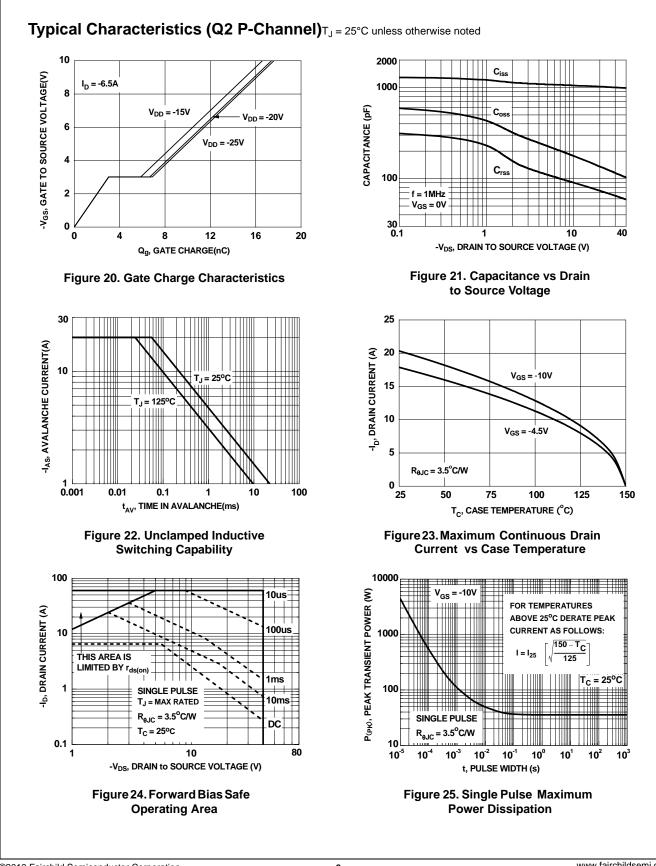
b. 96°C/W when mounted on a minimum pad of 2 oz copper

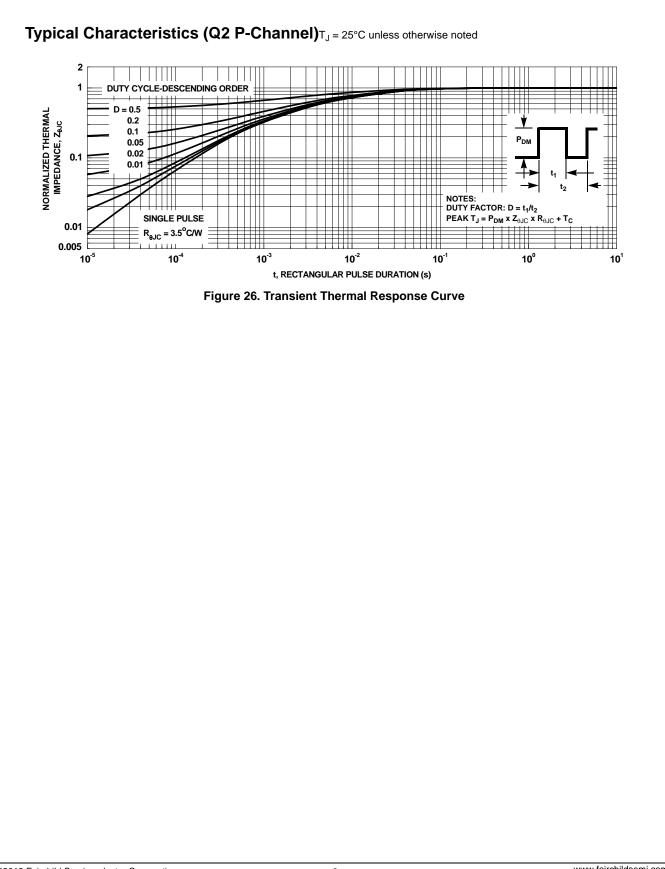
b. 96°C/W when mounted on a minimum pad of 2 oz copper



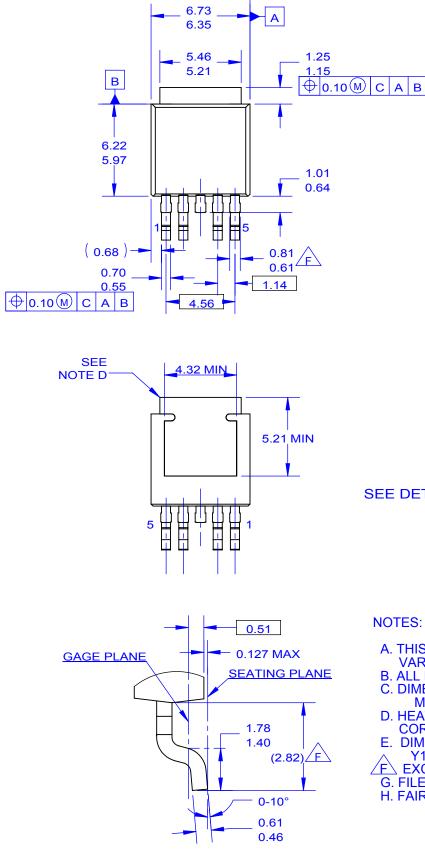

©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5 www.fairchildsemi.com

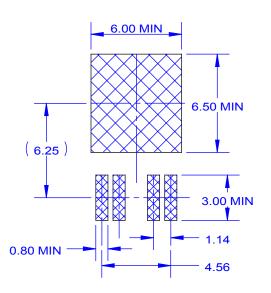
©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5

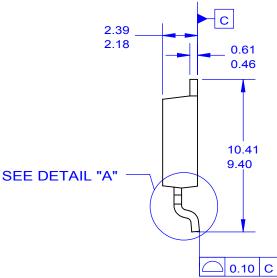

FDD8424H Dual N & P-Channel PowerTrench[®] MOSFET



©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5




©2013 Fairchild Semiconductor Corporation FDD8424H Rev.1.5



FDD8424H Dual N & P-Channel PowerTrench[®] MOSFET

DETAIL A SCALE 2:1

NOTES: UNLESS OTHERWISE SPECIFED

- A. THIS PACKAGE CONFORMS TO JEDEC, TO252 VARIATION AD.
- **B. ALL DIMENSIONS ARE IN MILLIMETERS.** C. DIMENSIONS ARE EXCLUSIVE OF BURRS,
- MOLD FLASH AND TIE BAR PROTRUSIÓNS D. HEATSINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION.
- E. DIMENSIONS AND TOLERANCES AS PER ASME Y14.5-2009
- E EXCEPTION TO TO-252 STANDARD. G. FILE NAME: TO252B05REV3 H. FAIRCHILDSEMICONDUCTOR /F

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.