

www.vishay.com

Vishay Semiconductors

ADD-A-PAK Generation VII Power Modules Standard Diodes, 60 A

PRODUCT SUMMARY					
I _{F(AV)}	60 A				
Туре	Modules - Diode, High Voltage				
Package	ADD-A-PAK				
Circuit	Two diodes doubler circuit, Two diodes common cathode, Two diodes common anode, Single diode				

MECHANICAL DESCRIPTION

The ADD-A-PAK generation VII, new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- Industrial standard package
- · Low thermal resistance
- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES				
I _{F(AV)}	114 °C	60				
I _{F(RMS)}	94		А			
I	50 Hz	1300	A			
I _{FSM}	60 Hz	1360				
l ² t	50 Hz	8.44	kA ² s			
141	60 Hz	7.68	KA-S			
l²√t		84.5	kA²√s			
V _{RRM}	Range	400 to 1600	V			
TJ		-40 to 150	°C			
T _{Stg}		-40 10 150	U			

Revision: 21-Mar-14

1

Document Number: 94625

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA			
	04	400	500				
	06	600	700				
	08	800	900				
VS-VSK.56	10	1000	1100	10			
	12	1200	1300				
	14	1400	1500				
	16	1600	1700				

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current at case temperature	I _{F(AV)}	180° condu	iction, half sine	wave	60 114	A °C
Maximum RMS forward current	I _{F(RMS)}	DC at 90 °C	case temperat	ure	94	0
	(-)	t = 10 ms	No voltage		1300	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied	-	1360	A
non-repetitive surge current	IFSM	t = 10 ms	100 % V _{RRM}		1090	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1140	
	Maximum I ² t for fusing $I^{2}t$ $I^{$	intitial $T_J = T_J$ maximum	8.44			
N		t = 8.3 ms	reapplied	-	7.68	kA ² s
Maximum -t for fushing		t = 10 ms	100 % V _{RRM}		5.97	
		t = 8.3 ms	reapplied		5.43	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms t	o 10 ms, no vol	tage reapplied	84.5	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π	$x I_{F(AV)} < I < \pi x$	(I _{F(AV)}), T _J = T _J maximum	0.74	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$	$(I > \pi x I_{F(AV)}), T_J = T_J maximum$			v
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum		(I _{F(AV)}), T _J = T _J maximum	3.94	mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J maximum$		3.43	11122	
Maximum forward voltage drop	V _{FM}	$I_{FM} = \pi \times I_{F(x)}$	_{AV)} , T _J = 25 °C,	t _p = 400 μs square wave	1.6	V

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	10	mA		
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V		

Revision: 21-Mar-14

2

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

SHAY

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Junction and storage temperature ra	ange T _J , T _{Stg}		-40 to 150	°C	
Maximum internal thermal resistance junction to case per leg	e, R _{thJC}	DC operation	0.33	°C/W	
Typical thermal resistance, case to heatsink per module	R _{thCS}	R _{thCS} Mounting surface flat, smooth and greased		0/10	
to heat	tsink	A mounting compound is recommended and the	4	Nirro	
Mounting torque ± 10 % — bu	sbar	torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm	
Approximate weight			75	g	
			2.7	oz.	
Case style		JEDEC [®]	ADD-A-PAK Ger	n. VII (TO-240AA)	

DEVICES	SINE HALF WAVE CONDUCTION					RE	CTANGUL	AR WAVE C	CONDUCTIO	Л	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30 °	
VSK.56	0.115	0.136	0.173	0.236	0.346	0.09	0.145	0.185	0.243	0.349	°C/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

DC

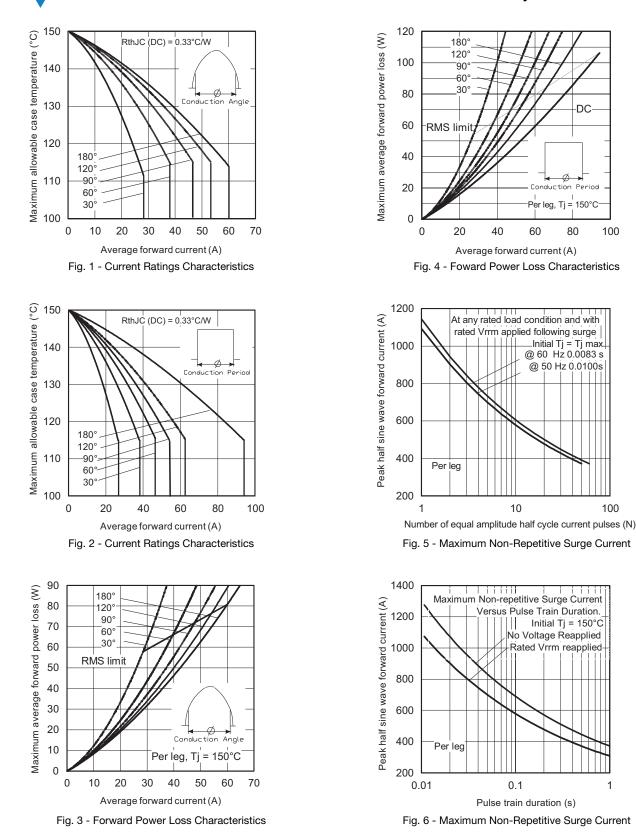
Period

100

100

Conduction

60


Per leg, Tj = 150°C

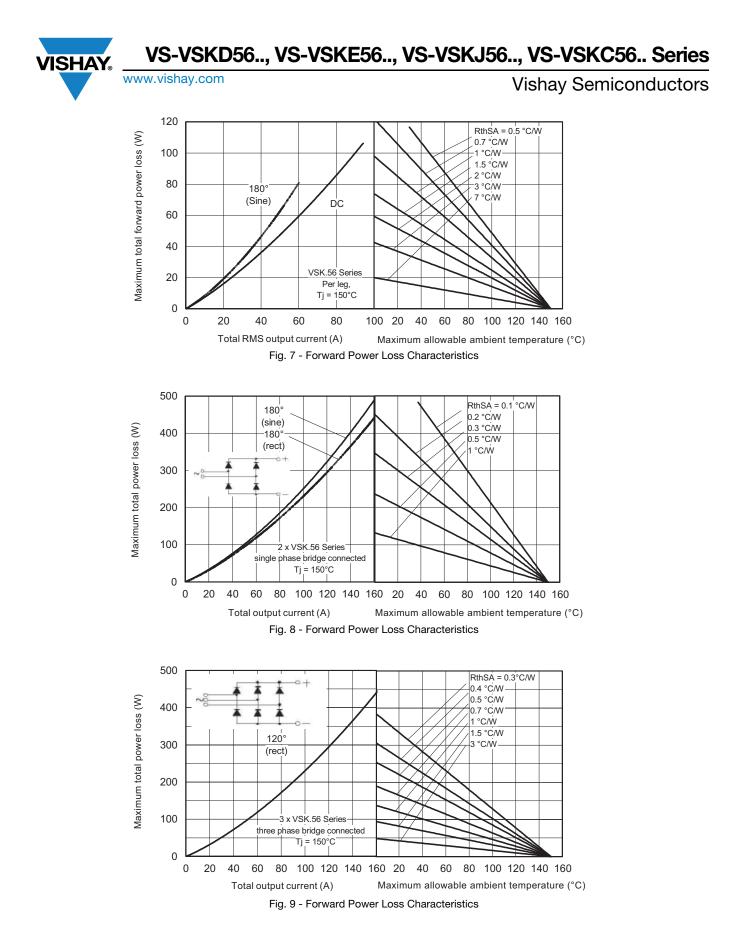
80

Initial Tj = Tj max

@ 60 Hz 0.0083 s @ 50 Hz 0.0100s

Initial Tj = 150°C

SHAY


www.vishay.com

4

Document Number: 94625

1

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Revision: 21-Mar-14

Document Number: 94625

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

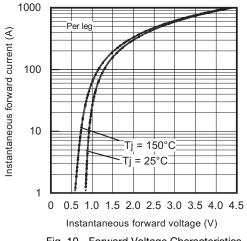


Fig. 10 - Forward Voltage Characteristics

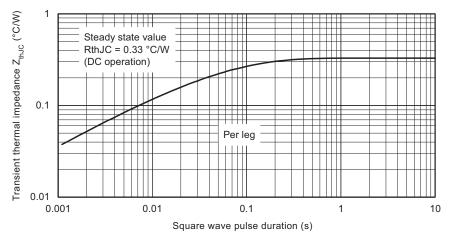
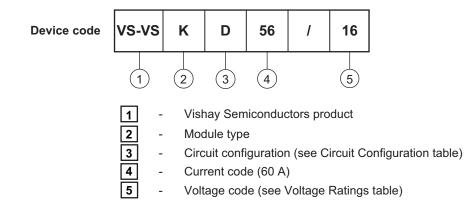



Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Note

To order the optional hardware go to <u>www.vishay.com/doc?95172</u>

Revision: 21-Mar-14

6

Document Number: 94625

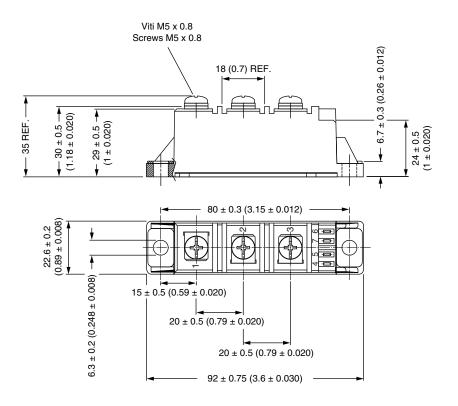
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

SHAY

Vishay Semiconductors

CIRCUIT CONFIGURATION	CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Two diodes doubler circuit	D					
Two diodes common cathodes	С					
Two diodes common anodes	J					
Single diode	E	VSKE (2) 0 (3)				


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95369		

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.