


# DC Film Capacitors MKT Radial Potted Type

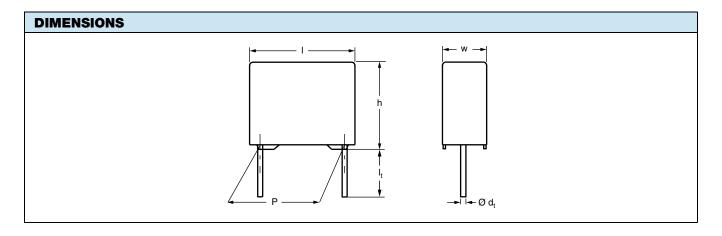


#### **FEATURES**

15 mm to 27.5 mm lead pitch.
 Supplied loose in box and taped on reel



 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


#### **APPLICATIONS**

Blocking and coupling, bypass and energy reservoir

| QUICK REFERENCE DATA                              |                                                                                                              |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|
| Capacitance tolerance                             | ± 10 %, ± 5 %                                                                                                |  |  |  |
| Capacitance range (E12 series)                    | 0.047 μF to 15 μF                                                                                            |  |  |  |
| Rated DC voltage                                  | 100 V, 250 V, 400 V, 630 V                                                                                   |  |  |  |
| Rated AC voltage                                  | 63 V, 160 V, 220 V, 250 V                                                                                    |  |  |  |
| Climatic testing class (according to IEC 60068-1) | 55/105/56                                                                                                    |  |  |  |
| Rated temperature                                 | 85 °C                                                                                                        |  |  |  |
| Maximum application temperature                   | 105 °C                                                                                                       |  |  |  |
| Performance grade                                 | Grade 1 (long life)                                                                                          |  |  |  |
| Leads                                             | Tinned wire                                                                                                  |  |  |  |
| Reference standards                               | IEC 60384-2                                                                                                  |  |  |  |
| Dielectric                                        | Polyester film                                                                                               |  |  |  |
| Electrodes                                        | Metallized                                                                                                   |  |  |  |
| Construction                                      | Mono construction                                                                                            |  |  |  |
| Encapsulation                                     | Flame retardant plastic case and epoxy resin (UL-class 94 V-0)                                               |  |  |  |
| Marking                                           | C-value; tolerance; rated voltage; manufacturer's symbol; year and week of manufacturer; manufacturer's type |  |  |  |

#### Note

For more detailed data and test requirements, contact <u>dc-film@vishay.com</u>



Revision: 20-Oct-2022 1 Document Number: 28193



#### **COMPOSITION OF CATALOG NUMBER**

| ٦        | YPE AND | PIT   | CHES                  |          |        |                    |             | ACITANO   | _   |                          |            | MULTI |       |
|----------|---------|-------|-----------------------|----------|--------|--------------------|-------------|-----------|-----|--------------------------|------------|-------|-------|
|          |         |       | 15.0 mn               | n        |        |                    | (nu         | merically | )   |                          |            | (n    | F)    |
| 373      |         |       | 22.5 mr               | n        |        |                    |             |           |     |                          |            | 0.1   | 2     |
|          |         |       | 27.5 mn               | n        |        |                    |             |           |     |                          |            | 1     | 3     |
|          |         | 1     |                       |          |        |                    |             |           |     |                          |            | 10    | 4     |
|          |         |       |                       |          |        |                    |             |           | lг. |                          |            | 100   | 5     |
|          |         |       |                       |          |        |                    |             |           |     | Example:<br>104 = 10 x 1 | 0 = 100 nF |       |       |
|          |         | ĺ     |                       |          |        |                    | ı           |           |     |                          |            |       |       |
|          |         |       | BFC                   | 2        | 37     | '3                 | <b>&gt;</b> | (X        |     | ΥΥ                       | Υ          |       |       |
|          |         |       | 2222                  | (*)      | 37     | '3                 | >           | ίX        |     | ΥΥ                       | Υ          |       |       |
|          |         | '     | (*) Old orde          | ering nu | ımber  |                    |             |           |     |                          |            | _     |       |
| TYPE     | D/      | CK    | AGING                 | LEAL     | CONE   | IGURA              | TION        |           |     | Р                        | REFERRED 1 | YPES  |       |
| ITPE     | F#      | 4CK/  | AGING                 | LEAI     |        |                    | HON         | C-TOL     |     | 100 V                    | 250 V      | 400 V | 630 V |
|          | Lo      | ose   | in box                | _        | Lead   | length<br>± 1.0 mr |             | ± 10 %    |     | 23                       | 43         | 53    | 63    |
| 373      |         |       |                       |          |        |                    |             | ± 5 %     |     | 24                       | 44         | 54    | 64    |
| compact  | Tan     | ചെ വ  | n reel (1)            |          |        | 8.5 mm<br>2.7 mm   | 1           | ± 10 %    | 6   | 27                       | 47         | 57    | 67    |
|          | Ιαρ     | eu oi | ii ieei 🦙             | Reel     |        | er = 356           | mm          | ± 5 %     | ,   | 28                       | 48         | 58    | 68    |
|          | 1.      |       | in how                |          | Lead   | length             |             | ± 10 %    | 6   | 21                       | 41         | 51    |       |
| 373      | LC      | ose   | in box                | 5        |        | ± 1.0 mr           | m           | ± 5 %     | )   | 22                       | 42         | 52    |       |
| standard | Tan     | od o  | n reel <sup>(1)</sup> | •        |        | 8.5 mm<br>2.7 mm   | 1           | ± 10 %    | 6   | 25                       | 45         | 55    | -     |
|          | ιαρ     | eu oi | 111661 17             | Reel     | diamet | er = 356           | mm 3        | ± 5 %     | ,   | 26                       | 46         | 56    |       |

#### Note

<sup>(1)</sup> For detailed tape specifications refer to packaging information: <a href="https://www.vishay.com/doc?28139">www.vishay.com/doc?28139</a>

| SPECIFIC REFERENCE DATA                                                                 |                         |     |                          |                     |                               |  |  |
|-----------------------------------------------------------------------------------------|-------------------------|-----|--------------------------|---------------------|-------------------------------|--|--|
| DESCRIPTION                                                                             | VALUE                   |     |                          |                     |                               |  |  |
| Tangent of loss angle:                                                                  | at 1 kHz                |     | at 10 kHz                |                     | at 100 kHz                    |  |  |
| C ≤ 0.1 µF                                                                              | ≤ 75 x 10 <sup>-4</sup> |     | ≤ 130                    | x 10 <sup>-4</sup>  | ≤ 250 x 10 <sup>-4</sup>      |  |  |
| 0.1 μF < C ≤ 0.47 μF                                                                    | ≤ 75 x 10 <sup>-4</sup> |     | ≤ 130                    | x 10 <sup>-4</sup>  | $\leq$ 300 x 10 <sup>-4</sup> |  |  |
| 0.47 μF < C ≤ 1.0 μF                                                                    | ≤ 75 x 10 <sup>-4</sup> |     | ≤ 130                    | x 10 <sup>-4</sup>  | -                             |  |  |
| 1.0 μF < C ≤ 10 μF                                                                      | ≤ 75 x 10 <sup>-4</sup> |     | ≤ 150                    | x 10 <sup>-4</sup>  | =                             |  |  |
| C > 10 µF                                                                               | ≤ 75 x 10 <sup>-4</sup> |     |                          | -                   |                               |  |  |
| Rated voltage pulse slope (dU/dt) <sub>R</sub> at                                       | 100 V <sub>DC</sub>     | 2   | 250 V <sub>DC</sub>      | 400 V <sub>DC</sub> | 630 V <sub>DC</sub>           |  |  |
| P = 15 mm                                                                               | 14 V/μs                 |     | 16 V/µs                  | 34 V/µs             | 90 V/μs                       |  |  |
| P = 22.5 mm                                                                             | 5 V/μs                  |     | 7 V/µs                   | 14 V/µs             | 35 V/µs                       |  |  |
| P = 27.5 mm                                                                             | 4 V/μs                  |     | 6 V/µs                   | 12 V/µs             | 30 V/µs                       |  |  |
| R between leads, for C ≤ 0.33 µF                                                        |                         |     |                          |                     |                               |  |  |
| at 100 V; 1 min                                                                         | $>$ 15 000 M $\Omega$   | > 1 | $5~000~\mathrm{M}\Omega$ | > 30 000 Mg         | 2                             |  |  |
| at 500 V; 1 min                                                                         |                         |     |                          |                     | $>$ 30 000 M $\Omega$         |  |  |
| RC between leads, for C > 0.33 μF                                                       |                         |     |                          |                     |                               |  |  |
| at 100 V; 1 min                                                                         | > 5000 s                | >   | 10 000 s                 | > 10 000 s          |                               |  |  |
| at 500 V; 1 min                                                                         |                         |     |                          |                     | > 10 000 s                    |  |  |
| R between interconnecting leads and case (foil method)                                  |                         |     | $>$ 30 000 M $\Omega$    |                     |                               |  |  |
| Withstanding (DC) voltage (cut off current 10 mA) <sup>(1)</sup> ; rise time ≤ 1000 V/s | 160 V; 1 min            | 400 | 0 V; 1 min               | 640 V; 1 mir        | 1008 V; 1 min                 |  |  |
| Withstanding (DC) voltage between leads and case                                        | 200 V; 1 min            | 500 | 0 V; 1 min               | 800 V; 1 mir        | 1260 V; 1 min                 |  |  |
| Maximum application temperature                                                         |                         |     | 10                       | 5 °C                |                               |  |  |

<sup>(1)</sup> See "Voltage Proof Test for Metallized Film Capacitors": <a href="https://www.vishay.com/doc?28169">www.vishay.com/doc?28169</a>



|                  |               |                     |                            | CA.                     | TALOG NUMBER B                | FC2 373 XXYYY ANI   | D PACKAGING         |     |
|------------------|---------------|---------------------|----------------------------|-------------------------|-------------------------------|---------------------|---------------------|-----|
|                  |               |                     |                            | LOOSE                   | IN BOX                        | REEL                | (1)(2)              |     |
| U <sub>RDC</sub> | CAP.          | DIMENSIONS          | MASS<br>(g) <sup>(3)</sup> | I <sub>t</sub> = 5.0 mm | n ± 1.0 mm                    | H = 18.5 mm;        | C-VALUE             |     |
| (V)              | (μ <b>F</b> ) | w x h x l<br>(mm)   |                            | C-TOL. = ± 10 %         | C-TOL. = ± 5 %                | C-TOL. = ± 10 %     | C-TOL. = ± 5 %      | Ī   |
|                  |               | (,                  |                            | XX<br>(SPQ)             | XX<br>(SPQ)                   | XX<br>(SPQ)         | XX<br>(SPQ)         | YYY |
|                  |               |                     | U <sub>RAC</sub> =         | 63 V; PITCH = 15.0      | mm ± 0.4 mm; d <sub>t</sub> = | 0.60 mm ± 0.06 mm   | 1                   |     |
|                  | 0.33          |                     |                            |                         |                               |                     |                     | 334 |
|                  | 0.39          |                     |                            |                         |                               |                     |                     | 394 |
|                  | 0.47          |                     |                            |                         |                               |                     |                     | 474 |
|                  | 0.56          |                     |                            |                         |                               |                     |                     | 564 |
|                  | 0.68          | I 5.0 x 11.0 x 17.5 | 4.4                        | 23                      | 24                            | 27                  | 28                  | 684 |
|                  | 0.82          |                     | 1.1                        | (1000)                  | (1000)                        | (1100)              | (1100)              | 824 |
|                  | 1.0           |                     |                            |                         |                               |                     |                     | 105 |
| 100              | 1.2           |                     |                            |                         |                               |                     |                     | 125 |
| 100              | 1.5           |                     |                            |                         |                               |                     |                     | 155 |
|                  | 1.8           |                     |                            |                         |                               |                     |                     | 185 |
|                  | 2.2           | 6.0 x 12.0 x 17.5   | 1.5                        | <b>23</b> (1000)        | <b>24</b> (1000)              | <b>27</b> (900)     | <b>28</b> (900)     | 225 |
|                  |               |                     | U <sub>RAC</sub> =         | 63 V; PITCH = 15.0      | mm ± 0.4 mm; d <sub>t</sub> = | 0.80 mm ± 0.08 mm   | 1                   |     |
|                  | 2.7           | 70105175            | 0.0                        | 23                      | 24                            | 27                  | 28                  | 275 |
|                  | 3.3           | 7.0 x 13.5 x 17.5   | 2.0                        | (1000)                  | (1000)                        | (800)               | (800)               | 335 |
|                  | 3.9           | 05 450 475          | 0.7                        | 23                      | 24                            | 27                  | 28                  | 395 |
|                  | 4.7           | 8.5 x 15.0 x 17.5   | 2.7                        | (1000)                  | (1000)                        | (650)               | (650)               | 475 |
|                  |               |                     | U <sub>RAC</sub> =         | 160 V; PITCH = 15.0     | mm ± 0.40 mm; d <sub>t</sub>  | = 0.60 mm ± 0.06 m  | m                   |     |
|                  | 0.15          |                     |                            |                         |                               |                     |                     | 154 |
|                  | 0.18          |                     |                            | 40                      |                               |                     | 40                  | 184 |
|                  | 0.22          | 5.0 x 11.0 x 17.5   | 1.1                        | <b>43</b><br>(1000)     | <b>44</b> (1000)              | <b>47</b> (1100)    | <b>48</b><br>(1100) | 224 |
|                  | 0.27          |                     |                            | (1000)                  | (1000)                        | (1100)              | (1.100)             | 274 |
|                  | 0.32          |                     |                            |                         |                               |                     |                     | 334 |
|                  | 0.39          | 6 0 v 10 0 v 17 5   | 1 5                        | 43                      | 44                            | 47                  | 48                  | 394 |
|                  | 0.47          | 6.0 x 12.0 x 17.5   | 1.5                        | (1000)                  | (1000)                        | (900)               | (900)               | 474 |
|                  |               |                     | U <sub>RAC</sub> =         | 160 V; PITCH = 15.0     | mm ± 0.40 mm; d <sub>t</sub>  | = 0.80 mm ± 0.08 m  | m                   |     |
|                  | 0.56          | 7.0 x 13.5 x 17.5   | 2.0                        | 43                      | 44                            | 47                  | 48                  | 564 |
|                  | 0.68          | 7.0 × 10.5 × 17.5   | 2.0                        | (1000)                  | (1000)                        | (800)               | (800)               | 684 |
|                  | 0.82          | 8.5 x 15.0 x 17.5   | 2.7                        | 43                      | 44                            | 47                  | 48                  | 824 |
| 250              | 1.0           | 0.0 x 10.0 x 17.5   | ۷.1                        | (1000)                  | (1000)                        | (650)               | (650)               | 105 |
|                  | 1.2           | 10.0 x 16.5 x 17.5  | 3.5                        | 43                      | 44                            | 47                  | 48                  | 125 |
|                  |               |                     |                            | (500)                   | (500)                         | (600)               | (600)               |     |
|                  | 1 5           | 1                   | URAC =                     |                         |                               | = 0.80 mm ± 0.08 mr |                     | 155 |
|                  | 1.5           | 8.5 x 18.0 x 26.0   | 4.5                        | <b>43</b> (200)         | <b>44</b> (200)               | <b>47</b> (450)     | <b>48</b><br>(450)  | 155 |
|                  | 1.8           |                     |                            | · , ,                   | ` ,                           | ` ,                 | . ,                 | 185 |
|                  | 2.2           | 10.0 x 19.5 x 26.0  | 5.7                        | <b>43</b> (200)         | <b>44</b> (200)               | <b>47</b> (350)     | <b>48</b><br>(350)  | 225 |
|                  | 2.7           |                     | Unia -                     | ` ,                     | ` '                           | = 0.80 mm ± 0.08 mr | . ,                 | 275 |
|                  |               |                     |                            | 43                      | 44                            | - 5.55 mm ± 6.66 mm | ••                  |     |
|                  | 3.3           | 11.0 x 21.0 x 31.0  | 8.2                        | (100)                   | (100)                         | -                   | <u>-</u>            | 335 |
|                  | 3.9           | 13.0 x 23.0 x 31.0  | 10.2                       | 43                      | 44                            |                     |                     | 395 |
|                  | 4.7           | 10.0 A 20.0 A 01.0  | 10.2                       | (100)                   | (100)                         | ] -                 | -                   | 475 |



| ELEC             | TRICA                                                    | L DATA - CON       | IPACT              | SIZE                    |                                 |                     |                          |                                               |
|------------------|----------------------------------------------------------|--------------------|--------------------|-------------------------|---------------------------------|---------------------|--------------------------|-----------------------------------------------|
|                  |                                                          |                    |                    | CA                      | TALOG NUMBER B                  | FC2 373 XXYYY AN    | D PACKAGING              |                                               |
|                  |                                                          |                    |                    | LOOSE                   | IN BOX                          | REEL                | _ (1)(2)                 |                                               |
| U <sub>RDC</sub> | CAP.                                                     | DIMENSIONS         | MASS               | I <sub>t</sub> = 5.0 mn | n ± 1.0 mm                      | H = 18.5 mm;        | P <sub>0</sub> = 12.7 mm | C-VALUE                                       |
| (V)              | (μ <b>F</b> )                                            | w x h x l<br>(mm)  | (g) <sup>(3)</sup> | C-TOL. = ± 10 %         | C-TOL. = ± 5 %                  | C-TOL. = ± 10 %     | C-TOL. = ± 5 %           | -                                             |
|                  |                                                          |                    |                    | XX<br>(SPQ)             | XX<br>(SPQ)                     | XX<br>(SPQ)         | XX<br>(SPQ)              | YYY                                           |
|                  |                                                          |                    | U <sub>RAC</sub> = | 220 V; PITCH = 15.      | 0 mm ± 0.4 mm; d <sub>t</sub>   | = 0.60 mm ± 0.06 mi | m                        |                                               |
|                  | 0.047<br>0.056<br>0.068<br>0.082<br>0.10<br>0.12<br>0.15 | 5.0 x 11.0 x 17.5  | 1.1                | <b>53</b><br>(1000)     | <b>54</b><br>(1000)             | <b>57</b> (1100)    | <b>58</b><br>(1100)      | 473<br>563<br>683<br>823<br>104<br>124<br>154 |
|                  | 0.18                                                     | 6.0 x 12.0 x 17.5  | 1.5                | 53                      | 54                              | 57                  | 58                       | 184                                           |
|                  | 0.22                                                     | 0.0 X 12.0 X 17.0  |                    | (1000)                  | (1000)                          | (900)               | (900)                    | 224                                           |
|                  | 0.07                                                     |                    | U <sub>RAC</sub> = |                         |                                 | = 0.80 mm ± 0.08 mi |                          | 074                                           |
| 400              | 0.27                                                     | 7.0 x 13.5 x 17.5  | 2.0                | <b>53</b> (1000)        | <b>54</b> (1000)                | <b>57</b> (800)     | <b>58</b> (800)          | 274<br>334                                    |
| 400              | 0.39<br>0.47                                             | 8.5 x 15.0 x 17.5  | 2.7                | <b>53</b> (1000)        | <b>54</b> (1000)                | <b>57</b> (650)     | <b>58</b> (650)          | 394<br>474                                    |
|                  | 0.56                                                     | 10.0 x 16.5 x 17.5 | 3.5                | <b>53</b> (500)         | <b>54</b> (500)                 | <b>57</b> (600)     | <b>58</b> (600)          | 564                                           |
|                  |                                                          |                    | U <sub>RAC</sub> = | 220 V; PITCH = 22.      | 5 mm ± 0.4 mm; d <sub>t</sub>   | = 0.80 mm ± 0.08 mi | m                        |                                               |
|                  | 0.68                                                     | 8.5 x 18.0 x 26.0  | 4.5                | 53                      | 54                              | 57                  | 58                       | 684                                           |
|                  | 1.0                                                      |                    |                    | (200)                   | (200)                           | (450)               | (450)                    | 824<br>105                                    |
|                  | 1.0                                                      | 10.0 x 19.5 x 26.0 | 5.7                | <b>53</b> (200)         | <b>54</b> (200)                 | <b>57</b> (350)     | <b>58</b> (350)          | 125                                           |
|                  |                                                          |                    | U <sub>RAC</sub> = | 53                      | 5 mm ± 0.4 mm; d <sub>t</sub> : | = 0.80 mm ± 0.08 mi | m<br>                    | 1                                             |
|                  | 1.5                                                      | 11.0 x 21.0 x 31.0 | 8.2                | (100)                   | (100)                           | -                   | -                        | 155                                           |
|                  | 1.8<br>2.2                                               | 13.0 x 23.0 x 31.0 | 10.2               | <b>53</b> (100)         | <b>54</b> (100)                 | -                   | -                        | 185<br>225                                    |
|                  |                                                          |                    | U <sub>RAC</sub> = |                         |                                 | = 0.60 mm ± 0.06 mi |                          | 1                                             |
|                  | 0.047                                                    | 5.0 x 11.0 x 17.5  | 1.1                | <b>63</b> (1000)        | 64                              | <b>67</b> (1100)    | <b>68</b>                | 473                                           |
|                  | 0.056                                                    | 0.0 10.0 17.5      | 4.5                | <b>63</b>               | (1000)<br><b>64</b>             | 67                  | (1100)<br><b>68</b>      | 563<br>683                                    |
|                  | 0.082                                                    | 6.0 x 12.0 x 17.5  | 1.5                | (1000)                  | (1000)                          | (900)               | (900)                    | 823                                           |
|                  |                                                          | _                  | U <sub>RAC</sub> = |                         |                                 | = 0.80 mm ± 0.08 mi |                          | 1                                             |
|                  | 0.10                                                     | 7.0 x 13.5 x 17.5  | 2.0                | 63                      | 64                              | 67                  | 68                       | 104                                           |
|                  | 0.12<br>0.15                                             |                    |                    | (1000)<br><b>63</b>     | (1000)<br><b>64</b>             | (800)<br><b>67</b>  | (800)<br><b>68</b>       | 124<br>154                                    |
|                  | 0.18                                                     | 8.5 x 15.0 x 17.5  | 2.7                | (1000)                  | (1000)                          | (650)               | (650)                    | 184                                           |
| 600              | 0.22                                                     | 10.0 x 16.5 x 17.5 | 3.5                | <b>63</b> (500)         | <b>64</b> (500)                 | <b>67</b> (600)     | <b>68</b> (600)          | 224                                           |
| 630              |                                                          |                    | U <sub>RAC</sub> = | 250 V; PITCH = 22.      | 5 mm ± 0.4 mm; d <sub>t</sub>   | = 0.80 mm ± 0.08 mi |                          |                                               |
|                  | 0.27<br>0.33                                             | 8.5 x 18.0 x 26.0  | 4.5                | <b>63</b> (200)         | <b>64</b> (200)                 | <b>67</b> (450)     | <b>68</b> (450)          | 274<br>334                                    |
|                  | 0.39                                                     | 10.0 x 19.5 x 26.0 | 5.7                | 63                      | 64                              | 67                  | 68                       | 394                                           |
|                  | 0.47                                                     | 13.5 % 13.5 % 20.0 |                    | (200)                   | (200)                           | (350)               | (350)                    | 474                                           |
|                  |                                                          |                    | U <sub>RAC</sub> = |                         |                                 | = 0.80 mm ± 0.08 mi | <b>m</b>                 | I                                             |
|                  | 0.56                                                     | 11.0 x 21.0 x 31.0 | 8.2                | <b>63</b> (100)         | <b>64</b> (100)                 | -                   | -                        | 564                                           |
|                  | 0.68<br>0.82                                             | 13.0 x 23.0 x 31.0 | 10.2               | <b>63</b> (100)         | <b>64</b> (100)                 | -                   | -                        | 684<br>824                                    |
|                  | 1.00                                                     | 15.0 x 25.0 x 31.5 | 13.4               | <b>63</b> (100)         | <b>64</b> (100)                 |                     |                          | 105                                           |
|                  |                                                          |                    |                    |                         |                                 |                     |                          |                                               |

#### Note

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- (2) H = in-tape height; P<sub>0</sub> = sprocket hole distance; for detailed specifications refer to packaging information: www.vishay.com/doc?28139

(3) Weight for short lead product only



|                  |             | AL DATA - STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                       | TALOG NUMBER R                  | FC2 373 XXYYY AN    | D BVCKVGING              |            |  |  |  |
|------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|---------------------------------|---------------------|--------------------------|------------|--|--|--|
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | LOOSE                                 |                                 | REEL                |                          | <u> </u>   |  |  |  |
| U <sub>RDC</sub> | С           | DIMENSIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MASS               | I <sub>t</sub> = 5.0 mm               |                                 |                     | P <sub>0</sub> = 12.7 mm | C-VALUE    |  |  |  |
| (V)              | (μF)        | w x h x l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (g) <sup>(3)</sup> | C-TOL. = ± 10 %                       | C-TOL. = ± 5 %                  | C-TOL. = ± 10 %     | C-TOL. = ± 5 %           | C-VALUE    |  |  |  |
|                  |             | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | XX                                    | XX                              | XX                  | XX XX                    |            |  |  |  |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | (SPQ)                                 | (SPQ)                           | (SPQ)               | (SPQ)                    | YYY        |  |  |  |
|                  |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U <sub>RAC</sub> = | 63 V; PITCH = 15.0                    | mm ± 0.4 mm; d <sub>t</sub> =   | 0.60 mm ± 0.06 mm   | n                        | 1          |  |  |  |
|                  | 0.33        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                       |                                 |                     |                          | 334        |  |  |  |
|                  | 0.39        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 21                                    | 00                              | 25                  | 26                       | 394        |  |  |  |
|                  | 0.47        | 5.0 x 11.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                | (1000)                                | <b>22</b><br>(1000)             | (1100)              | (1100)                   | 474        |  |  |  |
|                  | 0.56        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | , ,                                   | , ,                             | ,                   | ,                        | 564        |  |  |  |
|                  | 0.68        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                       |                                 |                     |                          | 684        |  |  |  |
|                  | 0.82        | 6.0 x 12.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                | <b>21</b> (1000)                      | <b>22</b><br>(1000)             | <b>25</b><br>(900)  | <b>26</b><br>(900)       | 824        |  |  |  |
|                  | 1.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | (1000)<br>: <b>63 V; PITCH = 15.0</b> | . ,                             | ` ,                 | ` '                      | 105        |  |  |  |
|                  | 1.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | URAC =             | 21                                    | 22                              | 25                  | 26                       | 125        |  |  |  |
|                  | 1.5         | 7.0 x 13.5 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                | (1000)                                | (1000)                          | (800)               | (800)                    | 155        |  |  |  |
|                  | 1.8         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 21                                    | 22                              | 25                  | 26                       | 185        |  |  |  |
| 100              | 2.2         | 8.5 x 15.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                | (1000)                                | (1000)                          | (650)               | (650)                    | 225        |  |  |  |
|                  |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U <sub>RAC</sub> = | 63 V; PITCH = 22.5                    | mm ± 0.4 mm; d <sub>t</sub> =   | 0.80 mm ± 0.08 mm   | n                        | 1          |  |  |  |
|                  | 2.7         | 8.5 x 18.0 x 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                | 21                                    | 22                              | 25                  | 26                       | 275        |  |  |  |
|                  | 3.3         | 6.5 X 16.0 X 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                | (200)                                 | (200)                           | (450)               | (450)                    | 335        |  |  |  |
|                  | 3.9         | 10.0 x 19.5 x 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                | 21                                    | 22                              | 25                  | 26                       | 395        |  |  |  |
|                  | 4.7         | 4.7   $0.0 \times 19.3 \times 20.0$   $0.0 \times 19.0$   $0$ |                    |                                       |                                 |                     |                          |            |  |  |  |
|                  |             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U <sub>RAC</sub> = | : 63 V; PITCH = 27.5                  | mm ± 0.4 mm; d <sub>t</sub> =   | : 0.80 mm ± 0.08 mn | n                        | _          |  |  |  |
|                  | 5.6         | 11.0 x 21.0 x 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.2                | 21                                    | 22                              | -                   | -                        | 565        |  |  |  |
|                  | 6.8         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | (100)                                 | (100)                           |                     |                          | 685        |  |  |  |
|                  | 8.2         | 13.0 x 23.0 x 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2               | <b>21</b><br>(100)                    | <b>22</b><br>(100)              |                     | -                        | 825        |  |  |  |
|                  | 10<br>12    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | ` ′                                   |                                 |                     |                          | 106<br>126 |  |  |  |
|                  | 15          | 18.0 x 28.0 x 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.4               | <b>21</b><br>(100)                    | <b>22</b><br>(100)              | -                   | -                        | 156        |  |  |  |
|                  | 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upac =             | 160 V; PITCH = 15.0                   | , ,                             | = 0.60 mm ± 0.06 m  | m                        | 100        |  |  |  |
|                  | 0.15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - NAC              |                                       |                                 |                     |                          | 154        |  |  |  |
|                  | 0.18        | 5.0 x 11.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                | 41                                    | 42                              | 45                  | 46                       | 184        |  |  |  |
|                  | 0.22        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | (1000)                                | (1000)                          | (1100)              | (1100)                   | 224        |  |  |  |
|                  | 0.27        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                       |                                 |                     |                          | 274        |  |  |  |
|                  | 0.33        | 6.0 x 12.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                | 41                                    | 42                              | 45                  | 46                       | 334        |  |  |  |
|                  | 0.39        | 0.0 x 12.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                | (1000)                                | (1000)                          | (900)               | (900)                    | 394        |  |  |  |
|                  | 0.47        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                       |                                 |                     |                          | 474        |  |  |  |
|                  | 0.50        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U <sub>RAC</sub> = | 160 V; PITCH = 15.0                   |                                 |                     |                          | F0.4       |  |  |  |
|                  | 0.56        | 7.0 x 13.5 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                | <b>41</b> (1000)                      | <b>42</b> (1000)                | <b>45</b><br>(800)  | <b>46</b>                | 564        |  |  |  |
| 250              | 0.68        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | (1000)                                | (1000)                          | ` ,                 | (800)                    | 684        |  |  |  |
| 250              | 0.82<br>1.0 | 8.5 x 15.0 x 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                | <b>41</b><br>(1000)                   | <b>42</b><br>(1000)             | <b>45</b> (650)     | <b>46</b><br>(650)       | 824<br>105 |  |  |  |
|                  | 1.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Upac =             | 160 V; PITCH = 22.5                   | , ,                             | ` ,                 | , ,                      | 100        |  |  |  |
|                  | 1.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 41                                    | 42                              | 45                  | 46                       | 125        |  |  |  |
|                  | 1.5         | 8.5 x 18.0 x 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5                | (200)                                 | (200)                           | (450)               | (450)                    | 155        |  |  |  |
|                  | 1.8         | 100 105 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | 41                                    | 42                              | 45                  | 46                       | 185        |  |  |  |
|                  | 2.2         | 10.0 x 19.5 x 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.7                | (200)                                 | (200)                           | (350)               | (350)                    | 225        |  |  |  |
|                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U <sub>RAC</sub> = | 160 V; PITCH = 27.5                   | 5 mm ± 0.4 mm; d <sub>t</sub> : | = 0.80 mm ± 0.08 m  | m                        | •          |  |  |  |
|                  | 2.7         | 13.0 x 23.0 x 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2               | 41                                    | 42                              | -                   | _                        | 275        |  |  |  |
|                  | 3.3         | 10.0 A 20.0 X 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2               | (100)                                 | (100)                           | -                   | -                        | 335        |  |  |  |
|                  | 3.9         | 15.0 x 28.0 x 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.4               | 41                                    | 42                              |                     |                          | 395        |  |  |  |
|                  | 4.7         | 10.0 1 20.0 101.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.4               | (100)                                 | (100)                           |                     |                          | 475        |  |  |  |

Revision: 20-Oct-2022 5 Document Number: 28193



## Vishay BCcomponents

|                         | <br>  | L DATA - STA       | <br>               | ı                                                                    | TALOC NUMBER R                | FCO 272 VVVVV AN        | D DACKACING                   |     |  |
|-------------------------|-------|--------------------|--------------------|----------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------------|-----|--|
|                         |       |                    |                    | CATALOG NUMBER BFC2 373 XXYYY AND PACKAGING LOOSE IN BOX REEL (1)(2) |                               |                         |                               |     |  |
| 11                      | С     | DIMENSIONS         | MASS               |                                                                      | 1 ± 1.0 mm                    | H = 18.5 mm;            | C-VALUE                       |     |  |
| U <sub>RDC</sub><br>(V) | (µF)  | w x h x l          | (g) <sup>(3)</sup> | C-TOL. = ± 10 %                                                      | C-TOL. = ± 5 %                | C-TOL. = ± 10 %         |                               |     |  |
| .,                      | ()    | (mm)               |                    | XX<br>(SPQ)                                                          | XX<br>(SPQ)                   | XX<br>(SPQ)             | C-TOL. = ± 5 %<br>XX<br>(SPQ) | YYY |  |
|                         |       |                    | Have =             |                                                                      |                               | = 0.60 mm ± 0.06 m      | -                             |     |  |
|                         | 0.047 |                    | ORAC -             |                                                                      | 5 mm ± 0.4 mm, a <sub>t</sub> | - 0.00 11111 2 0.00 111 |                               | 473 |  |
|                         |       |                    |                    |                                                                      |                               |                         |                               |     |  |
|                         | 0.056 | 50 440 475         |                    | 51                                                                   | 52                            | 55 56                   | 56                            | 563 |  |
|                         | 0.068 | 5.0 x 11.0 x 17.5  | 1.1                | (1000)                                                               | (1000)                        | (1100)                  | (1100)                        | 683 |  |
|                         | 0.082 |                    |                    |                                                                      |                               |                         |                               | 823 |  |
|                         | 0.10  |                    |                    |                                                                      |                               |                         |                               | 104 |  |
|                         | 0.12  | 6.0 x 12.0 x 17.5  | 1.5                | <b>51</b>                                                            | <b>52</b> (1000)              | <b>55</b>               | <b>56</b>                     | 124 |  |
|                         | 0.15  |                    |                    | (1000)                                                               | (1000)                        | (900)                   | (900)                         | 154 |  |
|                         |       |                    | U <sub>RAC</sub> = | 220 V; PITCH = 15.                                                   | 0 mm ± 0.4 mm; d <sub>t</sub> | = 0.80 mm ± 0.08 m      | m                             |     |  |
|                         | 0.18  | 7.0 x 13.5 x 17.5  | 2.0                | 51                                                                   | 52                            |                         | 56                            | 184 |  |
|                         | 0.22  | 7.0 x 15.5 x 17.5  | 2.0                | (1000)                                                               | (1000) (800)                  | (800)                   | 224                           |     |  |
| 400                     | 0.27  | 0.515.017.5        | 0.7                | 51                                                                   | 52                            | 55                      | 56                            | 274 |  |
|                         | 0.33  | 8.5 x 15.0 x 17.5  | 2.7                | (1000)                                                               | (1000)                        | (650)                   | (650)                         | 334 |  |
|                         |       |                    | U <sub>RAC</sub> = | 220 V; PITCH = 22.                                                   | 5 mm ± 0.4 mm; d <sub>t</sub> | = 0.80 mm ± 0.08 m      | m                             | •   |  |
|                         | 0.39  | 0.5 10.0 00.0      | 4.5                | 51                                                                   | 52                            | 55                      | 56                            | 394 |  |
|                         | 0.47  | 8.5 x 18.0 x 26.0  | 4.5                | (200)                                                                | (200)                         | (450)                   | (450)                         | 474 |  |
|                         | 0.56  |                    |                    | 51                                                                   | 52                            | 55                      | 56                            | 564 |  |
|                         | 0.68  | 10.0 x 19.5 x 26.0 | 5.7                | (200)                                                                | (200)                         | (350)                   | (350)                         | 684 |  |
|                         |       |                    | U <sub>RAC</sub> = | 220 V; PITCH = 27.                                                   | 5 mm ± 0.4 mm; d <sub>t</sub> | = 0.80 mm ± 0.08 m      | m                             |     |  |
|                         | 0.82  |                    |                    | 51                                                                   | 52                            |                         |                               | 824 |  |
|                         | 1.0   | 13.0 x 23.0 x 31.0 | 10.2               | (100)                                                                | (100)                         | -                       | -                             | 105 |  |
|                         | 1.2   | 15.0.05.0.0:-      | 40.4               | 51                                                                   | 52                            |                         |                               | 125 |  |
|                         | 1.5   | 15.0 x 25.0 x 31.5 | 13.4               | (100)                                                                | (100)                         | -                       | -                             | 125 |  |
|                         | 1     |                    |                    |                                                                      |                               | 1                       |                               | 1   |  |

#### Notes

SPQ = Standard Packing Quantity

<sup>(1)</sup> Reel diameter = 356 mm is available on request

<sup>(2)</sup> H = in-tape height; P<sub>0</sub> = sprocket hole distance; for detailed specifications refer to packaging information: <u>www.vishay.com/doc?28139</u>

<sup>(3)</sup> Weight for short lead product only



## Vishay BCcomponents

|                  |      |                                                                                        |                    | C/                   | ATALOG NUMBE     | R BFC2 3              | 373 XXYYY AND PA | ACKAGING       |     |
|------------------|------|----------------------------------------------------------------------------------------|--------------------|----------------------|------------------|-----------------------|------------------|----------------|-----|
| U <sub>RDC</sub> | С    | DIMENSIONS                                                                             | MASS               | LOC                  | OSE IN BOX       |                       | REEL (1)(2)      |                |     |
| (V)              | (μF) | w x h x l<br>(mm)                                                                      | (g) <sup>(3)</sup> | I <sub>t</sub> = 5.0 | mm ± 1.0 mm      |                       | Н                | = 18.5 mm      |     |
|                  |      | , ,                                                                                    |                    | C-TOL. = ± 10 %      | C-TOL. = ± 5 %   | SPQ                   | C-TOL. = ± 10 %  | C-TOL. = ± 5 % | SPQ |
|                  |      |                                                                                        | U <sub>RAC</sub> = | : 63 V; PITCH = 22.  | .5 mm ± 0.4 mm;  | $d_t = 0.80$          | mm ± 0.08 mm     |                |     |
|                  | 1.5  | 6.0 x 15.5 x 26.0                                                                      | 2.7                | 90012                | 90013            | 300                   | 90018            | 90019          | 600 |
| 100              | 1.8  | 7.0 × 16.5 × 26.0                                                                      | 3.3                | 90022                | 90023            | 200                   | 90028            | 90029          | 550 |
| 100              | 2.2  | 7.0 x 16.5 x 26.0                                                                      | 3.3                | 90002                | 90003            | 200                   | 90008            | 90009          | 550 |
|                  |      | U <sub>RAC</sub> = 63 V; PITCH = 27.5 mm ± 0.4 mm; d <sub>t</sub> = 0.80 mm ± 0.08 mm  |                    |                      |                  |                       |                  |                |     |
|                  | 4.7  | 9.0 x 19.0 x 31.0                                                                      | 6.1                | 90032                | 90033            | 100                   |                  | -              |     |
|                  |      | U <sub>RAC</sub> = 160 V; PITCH = 22.5 mm ± 0.4 mm; d <sub>t</sub> = 0.80 mm ± 0.08 mm |                    |                      |                  |                       |                  |                |     |
|                  | 0.47 |                                                                                        |                    | 90042                | 90046            |                       | 90048            | 90049          |     |
|                  | 0.56 | 6.0 x 15.5 x 26.0                                                                      | 2.7                | 90052                | 90053            | 300                   | 90058            | 90059          | 600 |
|                  | 0.68 |                                                                                        |                    | 90062                | 90063            |                       | 90068            | 90069          |     |
|                  | 0.82 | 7.0 x 16.5 x 26.0                                                                      | 3.3                | 90072                | 90073            | 200                   | 90078            | 90079          | 550 |
| 250              | 1.0  | 7.0 X 16.5 X 26.0                                                                      | 3.3                | 90082                | 90083            | 200                   | 90088            | 90089          | 550 |
|                  |      |                                                                                        | U <sub>RAC</sub> = | 160 V; PITCH = 27    | .5 mm ± 0.4 mm;  | $d_t = 0.80$          | mm ± 0.08 mm     |                |     |
|                  | 1.2  | 9.0 x 19.0 x 31.5                                                                      | 6.1                | 90172                | 90173            | 100                   |                  |                |     |
|                  | 1.5  | 9.0 X 19.0 X 31.5                                                                      | 0.1                | 90092                | 90093            | 100                   |                  | -              |     |
|                  | 1.8  | 0.0 01.0 01.0                                                                          | 0.0                | 90102                | 90103            | 400                   |                  |                |     |
|                  | 2.2  | 9.0 x 21.0 x 31.0                                                                      | 8.2                | 90112                | 90113            | 100                   |                  | -              |     |
|                  |      |                                                                                        | U <sub>RAC</sub> = | 220 V; PITCH = 22    | 2.5 mm ± 0.4 mm; | $d_t = 0.80$          | mm ± 0.08 mm     |                |     |
|                  | 0.22 | 6.0 x 15.5 x 26.0                                                                      | 2.7                | 90122                | 90123            | 300                   | 90128            | 90129          | 600 |
| 400              | 0.27 | 7.0 × 16.5 × 00.0                                                                      | 0.0                | 90132                | 90133            | 200                   | 90138            | 90139          | EEC |
| 400              | 0.33 | 7.0 x 16.5 x 26.0                                                                      | 3.3                | 90142                | 90143            | 200                   | 90148            | 90149          | 550 |
|                  |      | •                                                                                      | U <sub>RAC</sub> = | 220 V; PITCH = 27    | .5 mm ± 0.4 mm;  | d <sub>t</sub> = 0.80 | mm ± 0.08 mm     | '              |     |
|                  | 0.68 | 9.0 x 19.0 x 31.5                                                                      | 6.1                | 90152                | 90153            | 100                   |                  | -              |     |

#### Notes

- SPQ = Standard Packing Quantity
- (1) Reel diameter = 356 mm is available on request
- (2) H = in-tape height; P<sub>0</sub> = sprocket hole distance; for detailed specifications refer to packaging information: <u>www.vishay.com/doc?28139</u>
- (3) Weight for short lead product only

# MOUNTING

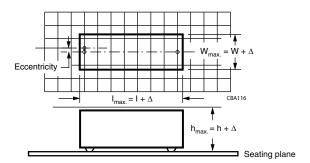
#### **Normal Use**

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information: <a href="https://www.vishay.com/doc?28139">www.vishay.com/doc?28139</a>

#### Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- · For larger pitches the capacitors shall be mounted in the same way and the body clamped

#### **Space Requirements On Printed-Circuit Board**

The maximum space for length ( $I_{max.}$ ), width ( $w_{max.}$ ) and height ( $h_{max.}$ ) of film capacitors to take in account on the printed-circuit board is shown in the drawing:

- For products with pitch  $\leq$  15 mm,  $\Delta w = \Delta l = 0.3$  mm and  $\Delta h = 0.1$  mm
- For products with 15 mm < pitch  $\leq$  27.5 mm,  $\Delta w = \Delta l = 0.5$  mm and  $\Delta h = 0.1$  mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.



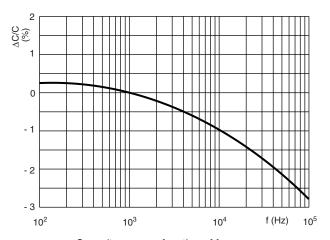
#### **SOLDERING**

For general soldering conditions and wave soldering profile, we refer to the application note:

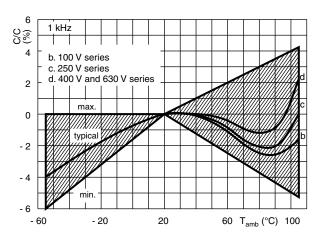
"Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

#### Storage Temperature

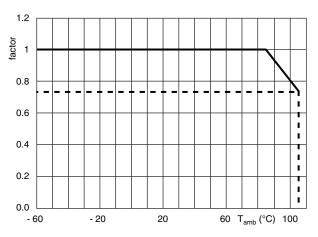
 $T_{stg}$  = -25 °C to +35 °C with RH maximum 75 % without condensation


#### **Ratings and Characteristics Reference Conditions**

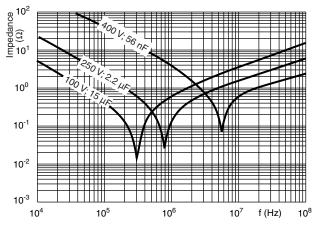
Unless otherwise specified, all electrical values apply to an ambient free air temperature of 23 °C  $\pm$  1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 %  $\pm$  2 %.


For reference testing, a conditioning period shall be applied over 96 h  $\pm$  4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.




#### **CHARACTERISTICS**

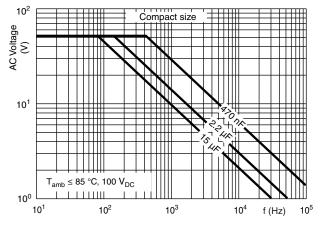



Capacitance as a function of frequency



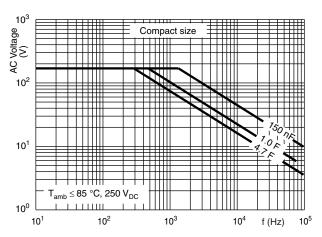
Capacitance as a function of ambient temperature




Max. DC and AC voltage as a function of temperature



Impedance as a function of frequency



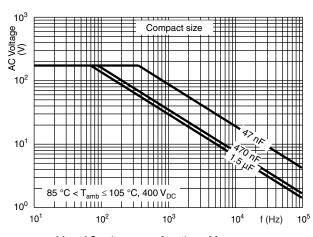

Max. AC voltage as a function of frequency



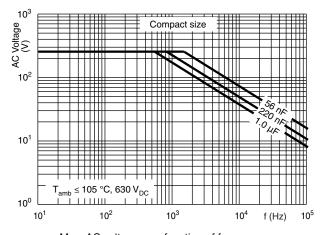
Max. AC voltage as a function of frequency



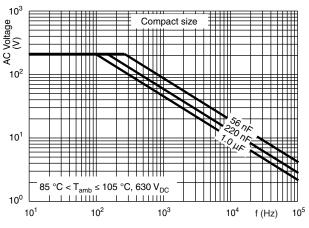



Max. AC voltage as a function of frequency



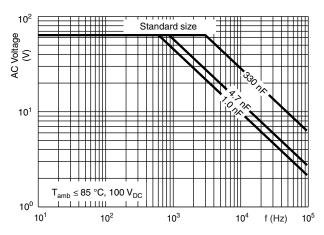

Max. AC voltage as a function of frequency



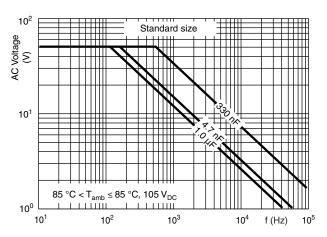

Max. AC voltage as a function of frequency



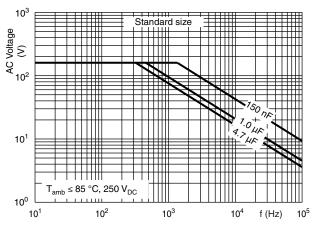
Max. AC voltage as a function of frequency



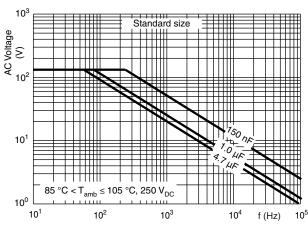

Max. AC voltage as a function of frequency



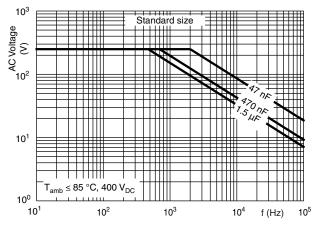

Max. AC voltage as a function of frequency



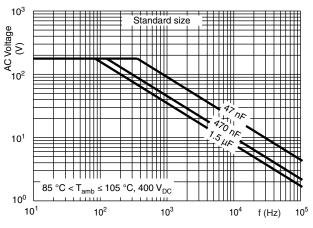




Max. AC voltage as a function of frequency




Max. AC voltage as a function of frequency

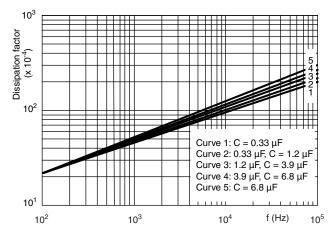



Max. AC voltage as a function of frequency

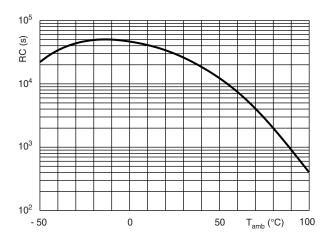


Max. AC voltage as a function of frequency

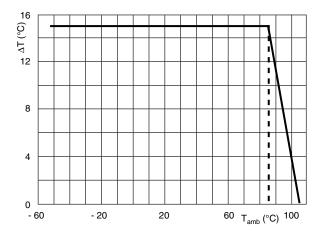



Max. AC voltage as a function of frequency




Max. AC voltage as a function of frequency

#### Maximum RMS current (sinewave) as a function of frequency


 $U_{AC}$  is the maximum AC voltage depending on the ambient temperature in the curves "Max. RMS voltage and AC current as a function of frequency".



Tangent of loss angle as a function of frequency



Insulation resistance as a function of the ambient temperature (typical curve)

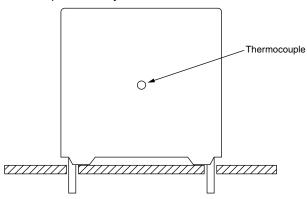


Maximum allowed component temperature rise ( $\Delta T$ ) as a function of the ambient temperature  $T_{amb}$  (°C)

|                   | T CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY CKNESS IN mW/°C |                           |               |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------|---------------------------|---------------|--|--|--|--|--|
| W <sub>MAX.</sub> |                                                                                         | HEAT CONDUCTIVITY (mW/°C) |               |  |  |  |  |  |
| (mm)              | PITCH 15.0 mm                                                                           | PITCH 22.5 mm             | PITCH 27.5 mm |  |  |  |  |  |
| 5.0               | 10                                                                                      | -                         | -             |  |  |  |  |  |
| 6.0               | 11                                                                                      | 19                        | -             |  |  |  |  |  |
| 7.0               | 12                                                                                      | 21                        | -             |  |  |  |  |  |
| 8.5               | 16                                                                                      | 25                        | =             |  |  |  |  |  |
| 10.0              | 18                                                                                      | 28                        | -             |  |  |  |  |  |
| 11.0              | -                                                                                       | -                         | 36            |  |  |  |  |  |
| 13.0              | -                                                                                       | -                         | 42            |  |  |  |  |  |
| 15.0              | -                                                                                       | -                         | 48            |  |  |  |  |  |
| 18.0              | -                                                                                       | -                         | 57            |  |  |  |  |  |

#### POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors", <a href="https://www.vishay.com/doc?28147">www.vishay.com/doc?28147</a>.

The component temperature rise ( $\Delta T$ ) can be measured (see section "Measuring the component temperature" for more details) or calculated by  $\Delta T = P/G$ :

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

#### **MEASURING THE COMPONENT TEMPERATURE**

A thermocouple must be attached to the capacitor body as in:



The temperature is measured in unloaded (T<sub>amb</sub>) and maximum loaded condition (T<sub>C</sub>).

The temperature rise is given by  $\Delta T = T_C - T_{amb}$ .

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

#### **APPLICATION NOTE AND LIMITING CONDITIONS**

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: <a href="mailto:dc-film@vishay.com">dc-film@vishay.com</a>

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage  $(U_P)$  shall not be greater than the rated DC voltage  $(U_{RDC})$
- 2. The peak-to-peak voltage (U<sub>P-P</sub>) shall not be greater than 2√2 x U<sub>RAC</sub> to avoid the ionization inception level
- The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U<sub>RDC</sub> and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times \left(dt < U_{RDC} \times \left(\frac{dU}{dt}\right)_{rated}\right)$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).
- 7. For continuous use as series connection with an impedance to the mains, please refer to application note <a href="https://www.vishay.com/doc?28153">www.vishay.com/doc?28153</a>.

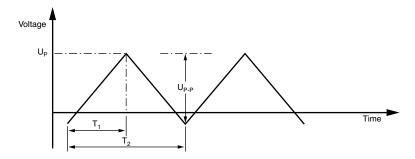


### Vishay BCcomponents

| VOLTAGE CONDITIONS FOR 6 ABOVE                   |                          |                                                                      |  |  |  |  |
|--------------------------------------------------|--------------------------|----------------------------------------------------------------------|--|--|--|--|
| ALLOWED VOLTAGES                                 | T <sub>amb</sub> ≤ 85 °C | 85 °C < T <sub>amb</sub> ≤ 105 °C                                    |  |  |  |  |
| Maximum continuous RMS voltage                   | U <sub>RAC</sub>         | See "Max. AC voltage as function of temperature" per characteristics |  |  |  |  |
| Maximum temperature RMS-overvoltage (< 24 h)     | 1.25 x U <sub>RAC</sub>  | U <sub>RAC</sub>                                                     |  |  |  |  |
| Maximum peak voltage (V <sub>O-P</sub> ) (< 2 s) | 1.6 x U <sub>RDC</sub>   | 1.3 x U <sub>RDC</sub>                                               |  |  |  |  |

#### **Example**

C = 330 nF - 63 V used for the voltage signal shown in next drawing.


 $U_{P-P} = 40 \text{ V}$ ;  $U_P = 35 \text{ V}$ ;  $T_1 = 100 \text{ }\mu\text{s}$ ;  $T_2 = 200 \text{ }\mu\text{s}$ 

The ambient temperature is 35 °C

Checking conditions:

- 1. The peak voltage  $U_P = 35 \text{ V}$  is lower than 63  $V_{DC}$
- 2. The peak-to-peak voltage 40 V is lower than  $2\sqrt{2}$  x 40 V<sub>AC</sub> = 113 U<sub>P-P</sub>
- 3. The voltage pulse slope (dU/dt) = 40 V/100  $\mu$ s = 0.4 V/ $\mu$ s This is lower than 60 V/ $\mu$ s (see specific reference data for each version)
- 4. The dissipated power is 16.2 mW as calculated with fourier terms The temperature rise for W<sub>max.</sub> = 3.5 mm and pitch = 5 mm will be 16.2 mW/3.0 mW/°C = 5.4 °C This is lower than 15 °C temperature rise at 35 °C, according figure "Max. allowed component temperature rise"
- 5. Not applicable
- 6. Not applicable
- 7. Not applicable

#### Voltage Signal



#### **INSPECTION REQUIREMENTS**

#### **General Notes**

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

| GROUP C INSPECTION REQUI                        | REMENTS                                                                                                                                      |                                                               |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| SUB-CLAUSE NUMBER AND TEST                      | CONDITIONS                                                                                                                                   | PERFORMANCE REQUIREMENTS                                      |
| SUB-GROUP C1A PART OF SAMPLE<br>OF SUB-GROUP C1 |                                                                                                                                              |                                                               |
| 4.1 Dimensions (detail)                         |                                                                                                                                              | As specified in chapters "General Data" of this specification |
| 4.3.1 Initial measurements                      | Capacitance Tangent of loss angle: for C $\leq$ 470 nF at 100 kHz for 470 nF $<$ C $\leq$ 10 $\mu$ F at 10 kHz for C $>$ 10 $\mu$ F at 1 kHz |                                                               |
| 4.3 Robustness of terminations                  | Tensile and bending                                                                                                                          | No visible damage                                             |
| 4.4 Resistance to soldering heat                | Method: 1A<br>Solder bath: 280 °C ± 5 °C<br>Duration: 10 s                                                                                   |                                                               |



| SUB-CLAUSE NUMBER AND TEST                   | CONDITIONS                                                                                                                                                                                                      | PERFORMANCE REQUIREMENTS                                                                                                                                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1 | CONSTITUTION                                                                                                                                                                                                    |                                                                                                                                                                                                                                                    |
| 4.14 Component solvent resistance            | Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: min. 1 h, max. 2 h                                                                                                |                                                                                                                                                                                                                                                    |
| 4.4.2 Final measurements                     | Visual examination                                                                                                                                                                                              | No visible damage<br>Legible marking                                                                                                                                                                                                               |
|                                              | Capacitance                                                                                                                                                                                                     | $ \Delta C/C  \le 2$ % of the value measured initially                                                                                                                                                                                             |
|                                              | Tangent of loss angle                                                                                                                                                                                           | Increase of $\tan \delta$<br>$\leq 0.005$ for: $C \leq 100$ nF or<br>$\leq 0.010$ for: $100$ nF < $C \leq 220$ nF or<br>$\leq 0.015$ for: $220$ nF < $C \leq 470$ nF and<br>$\leq 0.003$ for: $C > 470$ nF<br>Compared to values measured in 4.3.1 |
| SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1 |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                    |
| 4.6.1 Initial measurements                   | Capacitance Tangent of loss angle: for $C \le 470$ nF at 100 kHz for 470 nF < $C \le 10$ $\mu$ F at 10 kHz for $C > 10$ $\mu$ F at 1 kHz                                                                        | No visible damage                                                                                                                                                                                                                                  |
| 4.6 Rapid change of temperature              | $\theta A = -55 ^{\circ}C$ $\theta B = +105 ^{\circ}C$ 5 cycles Duration t = 30 min                                                                                                                             |                                                                                                                                                                                                                                                    |
| 4.7 Vibration                                | Visual examination Mounting: see section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h | No visible damage                                                                                                                                                                                                                                  |
| 4.7.2 Final inspection                       | Visual examination                                                                                                                                                                                              | No visible damage                                                                                                                                                                                                                                  |
| 4.9 Shock                                    | Mounting:<br>see section "Mounting" of this specification<br>Pulse shape: half sine<br>Acceleration: 490 m/s <sup>2</sup><br>Duration of pulse: 11 ms                                                           |                                                                                                                                                                                                                                                    |
| 4.9.3 Final measurements                     | Visual examination                                                                                                                                                                                              | No visible damage                                                                                                                                                                                                                                  |
|                                              | Capacitance                                                                                                                                                                                                     | $ \Delta C/C  \le 3$ % of the value measured in 4.6.                                                                                                                                                                                               |
|                                              | Tangent of loss angle                                                                                                                                                                                           | Increase of tan $\delta$<br>≤ 0.005 for: C ≤ 100 nF or<br>≤ 0.010 for: 100 nF < C ≤ 220 nF or<br>≤ 0.015 for: 220 nF < C ≤ 470 nF and<br>≤ 0.003 for: C > 470 nF<br>Compared to values measured in 4.6.1                                           |
|                                              | Insulation resistance                                                                                                                                                                                           | As specified in section "Insulation Resistance" of this specification                                                                                                                                                                              |



| GROUP C INSPECTION REQUIREMENTS                                                                |                                               |                                                                                         |                                                                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SUB-CLAUSE NUMBER AND TEST SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B |                                               | CONDITIONS                                                                              | PERFORMANCE REQUIREMENTS                                                                                                                                                                                                                                      |  |
|                                                                                                |                                               |                                                                                         |                                                                                                                                                                                                                                                               |  |
| 4.10                                                                                           | Climatic sequence                             |                                                                                         |                                                                                                                                                                                                                                                               |  |
| 4.10.2                                                                                         | Dry heat                                      | Temperature: +105 °C Duration: 16 h                                                     |                                                                                                                                                                                                                                                               |  |
| 4.10.3                                                                                         | Damp heat cyclic<br>Test Db, first cycle      |                                                                                         |                                                                                                                                                                                                                                                               |  |
| 4.10.4                                                                                         | Cold                                          | Temperature: -55 °C<br>Duration: 2 h                                                    |                                                                                                                                                                                                                                                               |  |
| 4.10.6                                                                                         | Damp heat cyclic<br>Test Db, remaining cycles |                                                                                         |                                                                                                                                                                                                                                                               |  |
| 4.10.6.2                                                                                       | Final measurements                            | Voltage proof = U <sub>RDC</sub> for 1 min within 15 min after removal from testchamber | No breakdown of flash-over                                                                                                                                                                                                                                    |  |
|                                                                                                |                                               | Visual examination                                                                      | No visible damage<br>Legible marking                                                                                                                                                                                                                          |  |
|                                                                                                |                                               | Capacitance                                                                             | $ \Delta C/C  \le 3$ % of the value measured in 4.4.2 or 4.9.3                                                                                                                                                                                                |  |
|                                                                                                |                                               | Tangent of loss angle                                                                   | Increase of tan $\delta$<br>$\leq 0.005$ for: $C \leq 100$ nF or<br>$\leq 0.010$ for: $100$ nF $< C \leq 220$ nF or<br>$\leq 0.015$ for: $220$ nF $< C \leq 470$ nF and<br>$\leq 0.005$ for: $C > 470$ nF<br>Compared to values measured in 4.3.1 or<br>4.6.1 |  |
|                                                                                                |                                               | Insulation resistance                                                                   | ≥ 50 % of values specified in section<br>"Insulation Resistance" of this specification                                                                                                                                                                        |  |
| SUB-GI                                                                                         | ROUP C2                                       |                                                                                         |                                                                                                                                                                                                                                                               |  |
| 4.11                                                                                           | Damp heat steady state                        | 56 days, 40 °C, 90 % to 95 % RH                                                         |                                                                                                                                                                                                                                                               |  |
| 4.11.1 I                                                                                       | nitial measurements                           | Capacitance Tangent of loss angle at 1 kHz                                              |                                                                                                                                                                                                                                                               |  |
| 4.11.3 Fina                                                                                    | inal measurements                             | Voltage proof = U <sub>RDC</sub> for 1 min within 15 min after removal from testchamber | No breakdown of flash-over                                                                                                                                                                                                                                    |  |
|                                                                                                |                                               | Visual examination                                                                      | No visible damage<br>Legible marking                                                                                                                                                                                                                          |  |
|                                                                                                |                                               | Capacitance                                                                             | $ \Delta C/C  \le 5$ % of the value measured in 4.11.1                                                                                                                                                                                                        |  |
|                                                                                                |                                               | Tangent of loss angle                                                                   | Increase of tan $\delta \le 0.005$<br>Compared to values measured in 4.11.1                                                                                                                                                                                   |  |
|                                                                                                |                                               | Insulation resistance                                                                   | ≥ 50 % of values specified in section<br>"Insulation Resistance" of this specification                                                                                                                                                                        |  |



| GROUP C INSPECTION REQUIREMENTS |                                                                                                                                            |                                                                                                                                                                                                                                                |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SUB-CLAUSE NUMBER AND TEST      | CONDITIONS                                                                                                                                 | PERFORMANCE REQUIREMENTS                                                                                                                                                                                                                       |  |  |
| SUB GROUP C3                    |                                                                                                                                            |                                                                                                                                                                                                                                                |  |  |
| 4.12 Endurance                  | Duration: 2000 h<br>1.25 x U <sub>RDC</sub> at 85 °C<br>0.8 x 1.25 U <sub>RDC</sub> at 105 °C                                              |                                                                                                                                                                                                                                                |  |  |
| 4.12.1 Initial measurements     | Capacitance Tangent of loss angle: for $C \le 470$ nF at 100 kHz for $470$ nF $< C \le 10$ $\mu$ F at 10 kHz for $C > 10$ $\mu$ F at 1 kHz |                                                                                                                                                                                                                                                |  |  |
| 4.12.5 Final measurements       | Visual examination                                                                                                                         | No visible damage<br>Legible marking                                                                                                                                                                                                           |  |  |
|                                 | Capacitance                                                                                                                                | $ \Delta C/C  \le 5$ % compared to values measured in 4.12.1                                                                                                                                                                                   |  |  |
|                                 | Tangent of loss angle                                                                                                                      | Increase of tan $\delta$<br>$\leq 0.005$ for: C $\leq 100$ nF or<br>$\leq 0.010$ for: 100 nF < C $\leq 220$ nF or<br>$\leq 0.015$ for: 220 nF < C $\leq 470$ nF and<br>$\leq 0.003$ for: C > 470 nF<br>Compared to values measured in 4.12.1   |  |  |
|                                 | Insulation resistance                                                                                                                      | ≥ 50 % of values specified in section<br>"Insulation Resistance" of this specification                                                                                                                                                         |  |  |
| SUB-GROUP C4                    |                                                                                                                                            |                                                                                                                                                                                                                                                |  |  |
| 4.13 Charge and discharge       | 10 000 cycles Charged to $U_{RDC}$ Discharge resistance: $R = \frac{U_R}{C \times 2.5 \times (dU/dt)_R}$                                   |                                                                                                                                                                                                                                                |  |  |
| 4.13.1 Initial measurements     | Capacitance Tangent of loss angle: for $C \le 470$ nF at 100 kHz for 470 nF < $C \le 10$ $\mu$ F at 10 kHz for $C > 10$ $\mu$ F at 1 kHz   |                                                                                                                                                                                                                                                |  |  |
| 4.13.3 Final measurements       | Capacitance                                                                                                                                | $ \Delta C/C  \le 3$ % compared to values measured in 4.13.1                                                                                                                                                                                   |  |  |
|                                 | Tangent of loss angle                                                                                                                      | Increase of tan $\delta$<br>$\leq 0.005$ for: C $\leq 100$ nF or<br>$\leq 0.010$ for: 100 nF < C $\leq 220$ nF or<br>$\leq 0.015$ for: 220 nF < C $\leq 470$ nF and<br>$\leq 0.003$ for: C $> 470$ nF<br>Compared to values measured in 4.13.1 |  |  |
|                                 | Insulation resistance                                                                                                                      | ≥ 50 % of values specified in section<br>"Insulation Resistance" of this specification                                                                                                                                                         |  |  |

### **Legal Disclaimer Notice**



Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.