

MCP601/1R/2/3/4

2.7V to 6.0V Single Supply CMOS Op Amps

Features

- Single-Supply: 2.7V to 6.0V
- · Rail-to-Rail Output
- · Input Range Includes Ground
- · Gain Bandwidth Product: 2.8 MHz (typical)
- Unity-Gain Stable
- Low Quiescent Current: 230 µA/amplifier (typical)
- Chip Select (CS): MCP603 only
- Temperature Ranges:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C
- AEC-Q100 Qualified. See Product Identification System (Automotive).

Typical Applications

- · Portable Equipment
- A/D Converter Driver
- Photo Diode Pre-amp
- · Analog Filters
- · Data Acquisition
- Notebooks and PDAs
- Sensor Interface

Design Aids

- · SPICE Macro Models
- FilterLab[®] Software
- Mindi™ Simulation Tool
- MAPS (Microchip Advanced Part Selector)
- · Analog Demonstration and Evaluation Boards
- · Application Notes

Package Types

General Description

The Microchip Technology Inc. MCP601/1R/2/3/4 family of low-power operational amplifiers (op amps) are offered in single (MCP601), single with Chip Select $\overline{(CS)}$ (MCP603), dual (MCP602), and quad (MCP604) configurations. These op amps utilize an advanced CMOS technology that provides low bias current, high-speed operation, high open-loop gain, and rail-to-rail output swing. This product offering operates with a single supply voltage that can be as low as 2.7V, while drawing 230 μ A (typical) of quiescent current per amplifier. In addition, the common mode input voltage range goes 0.3V below ground, making these amplifiers ideal for single-supply operation.

These devices are appropriate for low power, battery operated circuits due to the low quiescent current, for A/D convert driver amplifiers because of their wide bandwidth or for anti-aliasing filters by virtue of their low input bias current.

The MCP601, MCP602, and MCP603 are available in standard 8-lead PDIP, SOIC, and TSSOP packages. The MCP601 and MCP601R are also available in a standard 5-lead SOT-23 package, while the MCP603 is available in a standard 6-lead SOT-23 package. The MCP604 is offered in standard 14-lead PDIP, SOIC, and TSSOP packages.

The MCP601/1R/2/3/4 family is available in the Industrial and Extended temperature ranges and has a power supply range of 2.7V to 6.0V.

rachaye Types			
MCP601	MCP602	MCP603	MCP604
PDIP, SOIC, TSSOP	PDIP, SOIC, TSSOP	PDIP, SOIC, TSSOP	PDIP, SOIC, TSSOP
V _{IN} -27V _{DD}	V _{INA} -27V _{OUTB}	V _{IN} -27V _{DD}	V _{INA} - 2 13 V _{IND} -
V _{IN} + 3 6 V _{OUT}	V _{INA} + <u>3</u> <u>6</u> V _{INB} -	V _{IN} + <u>3</u> 6 V _{OUT}	V _{INA} + 3 12 V _{IND} +
V _{SS} 4 5 NC	V _{SS} 4 5 V _{INB} +	V _{SS} 4 5 NC	V _{DD} 4 11 V _{SS}
MCP601	MCP601R	MCP603	V _{INB} + 5 10 V _{INC} +
SOT23-5	SOT23-5	SOT23-6	V _{INB} - 6 9 V _{INC} -
V _{OUT} 1 5 V _{DD}	V _{OUT} 1 5 V _{SS}		V _{OUTB} 7 8 V _{OUTC}
V _{SS} 2	V _{DD} 2	V _{SS} 2 5 CS	
V _{IN} + 3 4 V _{IN} -	V _{IN} + 3 4 V _{IN} -	V _{IN} + 3 4 V _{IN} -	

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings[†] 1.1

V _{DD} – V _{SS}	
Current at Input Pins	±2 mA
Analog Inputs (V _{IN} +, V _{IN} -)	V_{SS} – 1.0V to V_{DD} + 1.0V
All Other Inputs and Outputs	$V_{SS} - 0.3V$ to $V_{DD} + 0.3V$
Difference Input Voltage	
Output Short Circuit Current	Continuous
Current at Output and Supply Pins	±30 mA
Storage Temperature	–65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
ESD Protection On All Pins (HBM; MM)	

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the t device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1.2 **Electrical Specifications**

Electrical Specifications: Unless $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and R_L						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Offset						
Input Offset Voltage	V _{OS}	-2	±0.7	+2	mV	
Industrial Temperature	V _{OS}	-3	±1	+3	mV	T _A = -40°C to +85°C (Note 1)
Extended Temperature	V _{OS}	-4.5	±1	+4.5	mV	T _A = -40°C to +125°C (Note 1)
Input Offset Temperature Drift	$\Delta V_{OS} / \Delta T_A$	_	±2.5	_	µV/°C	T _A = -40°C to +125°C
Power Supply Rejection	PSRR	80	88	_	dB	V _{DD} = 2.7V to 5.5V
Input Current and Impedance						
Input Bias Current	Ι _Β	_	1	_	pА	
Industrial Temperature	Ι _Β	_	20	60	pА	T _A = +85°C (Note 1)
Extended Temperature	Ι _Β	_	450	5000	pА	T _A = +125°C (Note 1)
Input Offset Current	I _{OS}	_	±1	_	pА	
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	_	Ω pF	
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	_	Ω∥pF	
Common Mode						
Common Mode Input Range	V _{CMR}	V _{SS} – 0.3	_	V _{DD} – 1.2	V	
Common Mode Rejection Ratio	CMRR	75	90	_	dB	V _{DD} = 5.0V, V _{CM} = -0.3V to 3.8V
Open-loop Gain						
DC Open-loop Gain (large signal)	A _{OL}	100	115	_	dB	$R_L = 25 \text{ k}\Omega \text{ to } V_L$,
	_					$V_{OUT} = 0.1V$ to $V_{DD} - 0.1V$
	A _{OL}	95	110	—	dB	$R_L = 5 k\Omega$ to V_L ,
						$V_{OUT} = 0.1V$ to $V_{DD} - 0.1V$
Output						
Maximum Output Voltage Swing		V _{SS} + 15		V _{DD} – 20		$R_L = 25 \text{ k}\Omega$ to V_L , Output overdrive = 0.5V
	V _{OL} , V _{OH}	V _{SS} + 45	—	V _{DD} – 60	mV	$R_L = 5 k\Omega$ to V_L , Output overdrive = 0.5V

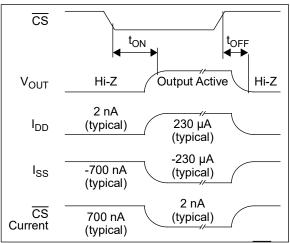
All parts with date codes November 2007 and later have been screened to ensure operation at V_{DD}=6.0V. However, the 2: other minimum and maximum specifications are measured at 2.7V and/or 5.5V.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Specifications: Unless otherwise specified, $\underline{T_A} = +25^{\circ}$ C, $V_{DD} = +2.7$ V to +5.5V, $V_{SS} =$ GND, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and $R_L = 100 \text{ k}\Omega$ to V_L , and \overline{CS} is tied low. (Refer to Figure 1-2 and Figure 1-3).

$v_{OUT} \sim v_{DD}/2, v_{L} = v_{DD}/2, and v_{L}$	- 100 KS2 U	J vL, and OC	s is tieu i		Jingule	1-2 and Figure 1-5).
Parameters	Sym	Min	Тур	Max	Units	Conditions
Linear Output Voltage Swing	V _{OUT}	V _{SS} + 100	_	V _{DD} – 100	mV	R_L = 25 k Ω to $V_L,A_{OL} \ge 100~dB$
	V _{OUT}	V _{SS} + 100	_	V _{DD} – 100	mV	$R_L = 5 \text{ k}\Omega \text{ to } V_L, A_{OL} \ge 95 \text{ dB}$
Output Short Circuit Current	I _{SC}	—	±22	—	mA	V _{DD} = 5.5V
	I _{SC}	_	±12	—	mA	V _{DD} = 2.7V
Power Supply						
Supply Voltage	V _{DD}	2.7		6.0	V	(Note 2)
Quiescent Current per Amplifier	ا _م	_	230	325	μA	I _O = 0

Note 1: These specifications are not tested in either the SOT-23 or TSSOP packages with date codes older than YYWW = 0408. In these cases, the minimum and maximum values are by design and characterization only.

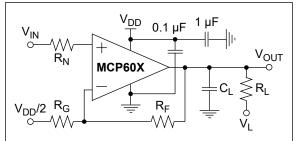

2: All parts with date codes November 2007 and later have been screened to ensure operation at V_{DD}=6.0V. However, the other minimum and maximum specifications are measured at 2.7V and/or 5.5V.

AC CHARACTERISTICS

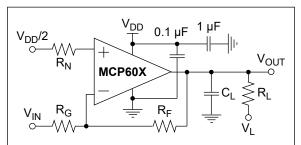
Electrical Specifications: Unless othe $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and $R_L = 10$						
Parameters	Sym	Min	Тур	Мах	Units	Conditions
Frequency Response						
Gain Bandwidth Product	GBWP	—	2.8	_	MHz	
Phase Margin	PM	—	50	_	0	G = +1 V/V
Step Response						
Slew Rate	SR	—	2.3	_	V/µs	G = +1 V/V
Settling Time (0.01%)	t _{settle}	—	4.5	_	μs	G = +1 V/V, 3.8V step
Noise						
Input Noise Voltage	E _{ni}		7	_	μV _{P-P}	f = 0.1 Hz to 10 Hz
Input Noise Voltage Density	e _{ni}	—	29	_	nV/√Hz	f = 1 kHz
	e _{ni}	_	21	_	nV/√Hz	f = 10 kHz
Input Noise Current Density	i _{ni}		0.6	_	fA/√Hz	f = 1 kHz

MCP603 CHIP SELECT (CS) CHARACTERISTICS

Electrical Specifications: Unless otherwise $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, and $R_L = 100$ k						
Parameters	Sym	Min	Тур	Мах	Units	Conditions
CS Low Specifications						
CS Logic Threshold, Low	V _{IL}	V _{SS}	_	0.2 V _{DD}	V	
CS Input Current, Low	I _{CSL}	-1.0	_	_	μA	$\overline{\text{CS}} = 0.2 \text{V}_{\text{DD}}$
CS High Specifications						
CS Logic Threshold, High	V _{IH}	0.8 V _{DD}	_	V _{DD}	V	
CS Input Current, High	I _{CSH}	_	0.7	2.0	μA	$\overline{CS} = V_{DD}$
Shutdown V _{SS} current	I _{Q_SHDN}	-2.0	-0.7	_	μA	$\overline{CS} = V_{DD}$
Amplifier Output Leakage in Shutdown	IO_SHDN		1	_	nA	
Timing						
$\overline{\text{CS}}$ Low to Amplifier Output Turn-on Time	t _{ON}	_	3.1	10	μs	$\overline{CS} \le 0.2 V_{DD}, G = +1 V/V$
$\overline{\text{CS}}$ High to Amplifier Output High-Z Time	t _{OFF}		100	_	ns	$\overline{CS} \ge 0.8V_{DD}$, G = +1 V/V, No load.
Hysteresis	V _{HYST}	—	0.4		V	V _{DD} = 5.0V


FIGURE 1-1: MCP603 Chip Select (\overline{CS}) Timing Diagram.

Electrical Specifications: Unless otherwise indicated, V_{DD} = +2.7V to +5.5V					and V _{SS} = GND.	
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	Τ _Α	-40		+85	°C	Industrial temperature parts
	Τ _Α	-40		+125	°C	Extended temperature parts
Operating Temperature Range	Τ _Α	-40		+125	°C	Note 1
Storage Temperature Range	Τ _Α	-65	—	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SOT23	θ_{JA}	—	256	—	°C/W	
Thermal Resistance, 6L-SOT23	θ_{JA}		230	—	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	—	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W	
Thermal Resistance, 8L-TSSOP	θ_{JA}	_	124	_	°C/W	
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W	
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W	
Thermal Resistance, 14L-TSSOP	θ_{JA}		100	_	°C/W	


Note 1: The Industrial temperature parts operate over this extended range, but with reduced performance. The Extended temperature specs do not apply to Industrial temperature parts. In any case, the internal Junction temperature (T_J) must not exceed the absolute maximum specification of 150°C.

1.3 Test Circuits

The test circuits used for the DC and AC tests are shown in Figure 1-2 and Figure 1-3. The bypass capacitors are laid out according to the rules discussed in **Section 4.5 "Supply Bypass"**.

FIGURE 1-2: AC and DC Test Circuit for Most Non-Inverting Gain Conditions.

FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.7V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L , $C_L = 50 \text{ pF}$ and \overline{CS} is tied low.

2.1 DC Input Precision

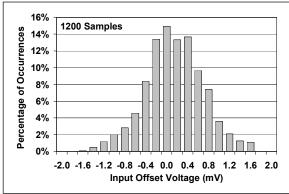


FIGURE 2-1: Input Offset Voltage.

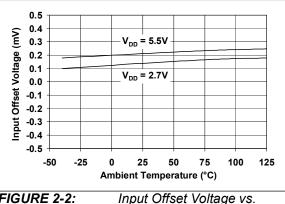


FIGURE 2-2: Input Temperature.

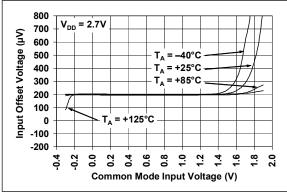
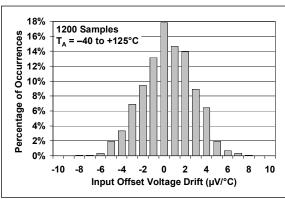
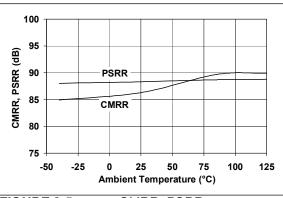
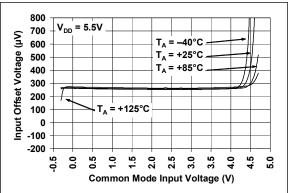
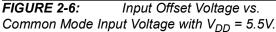
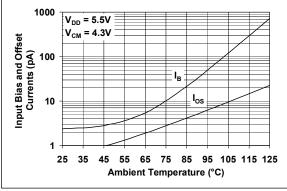


FIGURE 2-3:Input Offset Voltage vs.Common Mode Input Voltage with $V_{DD} = 2.7V.$


FIGURE 2-4: Input Offset Voltage Drift.

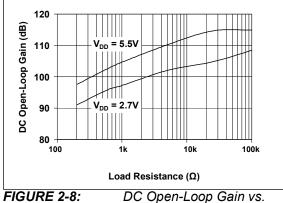

FIGURE 2-5: CMRR, PSRR vs. Temperature.

FIGURE 2-7: Input Bias Current, Input Offset Current vs. Ambient Temperature.

Load Resistance.

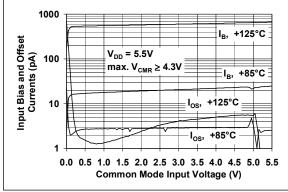


FIGURE 2-9: Input Bias Current, Input Offset Current vs. Common Mode Input Voltage.

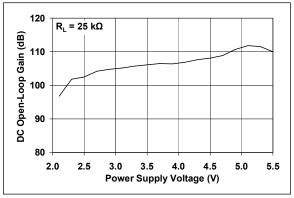
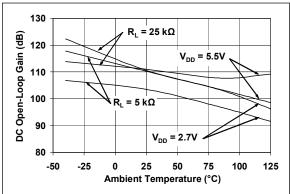
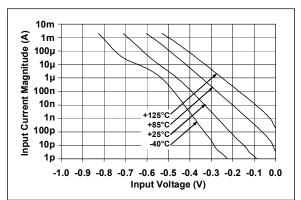




FIGURE 2-10: DC Open-Loop Gain vs. Supply Voltage.

FIGURE 2-11: DC Open-Loop Gain vs. Temperature.

FIGURE 2-12: Measured Input Current vs. Input Voltage (below V_{SS}).

MCP601/1R/2/3/4

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.7V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L , $C_L = 50 \text{ pF}$ and \overline{CS} is tied low.

2.2 Other DC Voltages and Currents

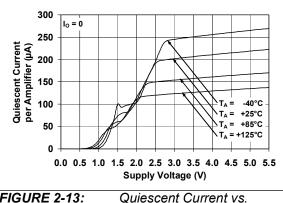


FIGURE 2-13: Quiescent Supply Voltage.

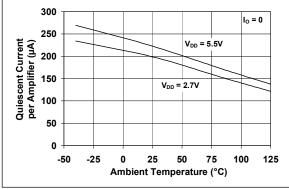
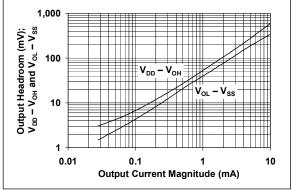
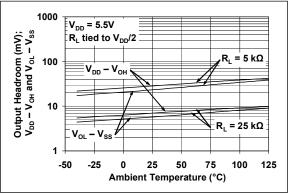
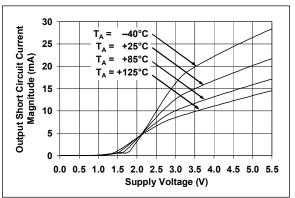
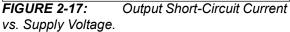


FIGURE 2-14: Quiescent Current vs. Temperature.

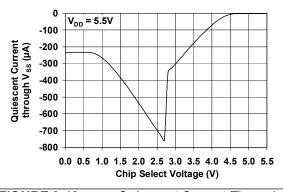

FIGURE 2-15: Output Voltage Headroom vs. Output Current.

FIGURE 2-16: Output Voltage Headroom vs. Temperature.

FIGURE 2-18: Quiescent Current Through V_{SS} vs. Chip Select Voltage (MCP603).

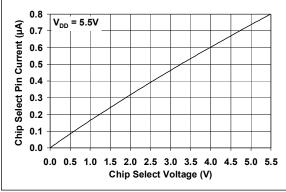
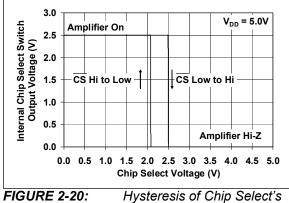



FIGURE 2-19: Chip Select Pin Input Current vs. Chip Select Voltage.

Internal Switch.

MCP601/1R/2/3/4

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.7V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L , $C_L = 50 \text{ pF}$ and \overline{CS} is tied low.

2.3 Frequency Response

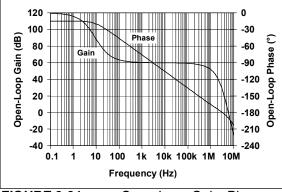


FIGURE 2-21: Open-Loop Gain, Phase vs. Frequency.

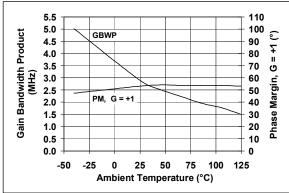
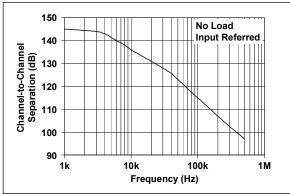



FIGURE 2-22: Gain Bandwidth Product, Phase Margin vs. Temperature.

FIGURE 2-23: Channel-to-Channel Separation vs. Frequency.

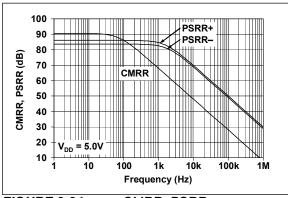
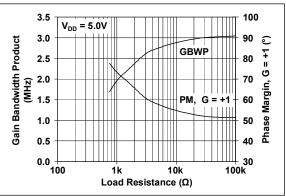



FIGURE 2-24: CMRR, PSRR vs. Frequency.

FIGURE 2-25: Gain Bandwidth Product, Phase Margin vs. Load Resistance.

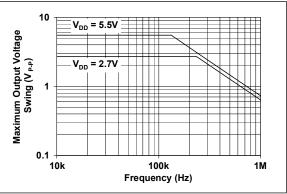
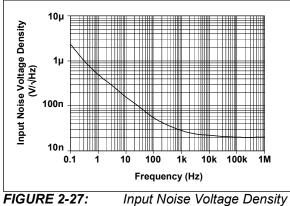
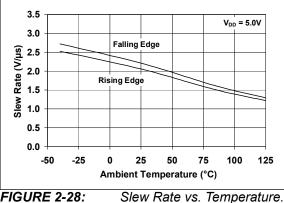



FIGURE 2-26: Maximum Output Voltage Swing vs. Frequency.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.7V to +5.5V, V_{SS} = GND, V_{CM} = V_{DD}/2, V_{OUT} \approx V_{DD}/2, V_L = V_{DD}/2, R_L = 100 k Ω to V_L, C_L = 50 pF and CS is tied low.

2.4 Input Noise



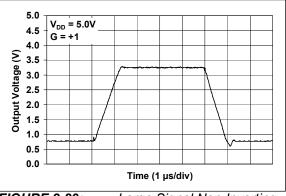
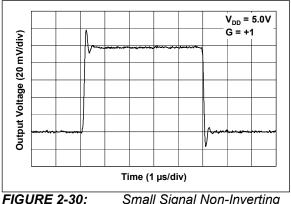
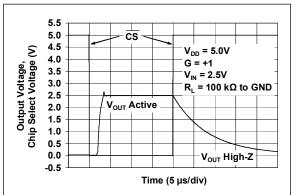
vs. Frequency.

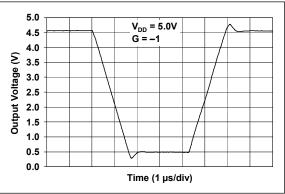
MCP601/1R/2/3/4

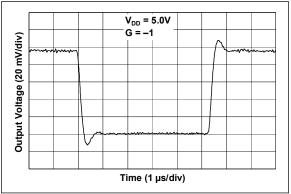
Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +2.7V to +5.5V, V_{SS} = GND, V_{CM} = V_{DD}/2, V_{OUT} \approx V_{DD}/2, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L , $C_L = 50 \text{ pF}$ and \overline{CS} is tied low.

2.5 **Time Response**

FIGURE 2-28:


FIGURE 2-29: Large Signal Non-Inverting Pulse Response.


Small Signal Non-Inverting Pulse Response.

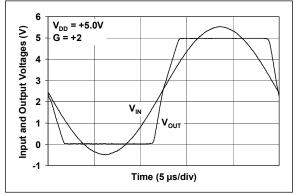

FIGURE 2-31: Chip Select Timing (MCP603).

FIGURE 2-32: Large Signal Inverting Pulse Response.

FIGURE 2-33: Small Signal Inverting Pulse Response.

FIGURE 2-34: The MCP601/1R/2/3/4 family of op amps shows no phase reversal under input overdrive.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).

MCP60	01	MCP601R	M	CP603		
PDIP, SOIC, TSSOP	SOT-23-5	SOT-23-5 (Note 1)	SOT-23-6	PDIP, SOIC, TSSOP	Symbol	Description
6	1	1	6	6	V _{OUT}	Analog Output
2	4	4	2	2	V _{IN} –	Inverting Input
3	3	3	3	3	V _{IN} +	Non-inverting Input
7	5	2	7	7	V _{DD}	Positive Power Supply
4	2	5	4	4	V _{SS}	Negative Power Supply
		_	8	8	CS	Chip Select
1, 5, 8	—	—	1, 5	1	NC	No Internal Connection

Note 1: The MCP601R is only available in the 5-pin SOT-23 package.

TABLE 3-2: PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS

MCP602	MCP604		
PDIP, SOIC, TSSOP	PDIP, SOIC, TSSOP	Symbol	Description
1	1	V _{OUTA}	Analog Output (op amp A)
2	2	V _{INA} –	Inverting Input (op amp A)
3	3	V _{INA} +	Non-inverting Input (op amp A)
8	4	V _{DD}	Positive Power Supply
5	5	V _{INB} +	Non-inverting Input (op amp B)
6	6	V _{INB} –	Inverting Input (op amp B)
7	7	V _{OUTB}	Analog Output (op amp B)
—	8	V _{OUTC}	Analog Output (op amp C)
	9	V _{INC} -	Inverting Input (op amp C)
—	10	V _{INC} +	Non-inverting Input (op amp C)
4	11	V _{SS}	Negative Power Supply
	12	V _{IND} +	Non-inverting Input (op amp D)
	13	V _{IND} -	Inverting Input (op amp D)
	14	V _{OUTD}	Analog Output (op amp D)

3.1 Analog Outputs

The op amp output pins are low-impedance voltage sources.

3.2 Analog Inputs

The op amp non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.3 Chip Select Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

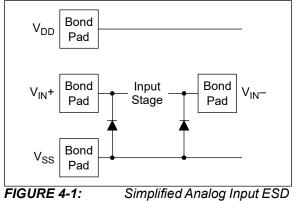
3.4 Power Supply Pins

The positive power supply pin (V_{DD}) is 2.7V to 6.0V higher than the negative power supply pin (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} requires bypass capacitors.

4.0 APPLICATIONS INFORMATION

The MCP601/1R/2/3/4 family of op amps are fabricated on Microchip's state-of-the-art CMOS process. They are unity-gain stable and suitable for a wide range of general purpose applications.


4.1 Inputs

4.1.1 PHASE REVERSAL

The MCP601/1R/2/3/4 op amp is designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 2-12 shows the input voltage exceeding the supply voltage without any phase reversal.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors, and to minimize input bias current (I_B). The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go too far above V_{DD} ; their breakdown voltage is high enough to allow normal operation, and low enough to bypass quick ESD events within the specified limits.

In order to prevent damage and/or improper operation of these op amps, the circuit they are in must limit the currents and voltages at the V_{IN}+ and V_{IN}- pins (see **Absolute Maximum Ratings†** at the beginning of **Section 1.0 "Electrical Characteristics**"). Figure 4-2 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (V_{IN}+ and V_{IN}-) from going too far below ground, and the resistors R₁ and R₂ limit the possible current drawn out of the input pins. Diodes D₁ and D₂ prevent the input pins (V_{IN}+ and V_{IN}-) from going too far above V_{DD}, and dump any currents onto V_{DD}. When implemented as shown, resistors R₁ and R₂ also limit the current through D₁ and D₂.

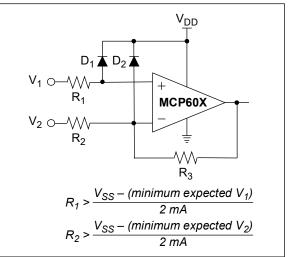
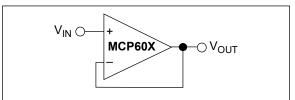


FIGURE 4-2: Protecting the Analog Inputs.


It is also possible to connect the diodes to the left of resistors R₁ and R₂. In this case, current through the diodes D₁ and D₂ needs to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins (V_{IN}+ and V_{IN}-) must be very small.

A significant amount of current can flow out of the inputs when the common mode voltage (V_{CM}) is below ground (V_{SS}); see Figure 2-12. Applications that are high impedance may need to limit the useable voltage range.

4.1.3 NORMAL OPERATION

The Common Mode Input Voltage Range (V_{CMR}) includes ground in single-supply systems (V_{SS}), but does not include V_{DD}. This means that the amplifier input behaves linearly as long as the Common Mode Input Voltage (V_{CM}) is kept within the specified V_{CMR} limits (V_{SS}–0.3V to V_{DD}–1.2V at +25°C).

Figure 4-3 shows a unity gain buffer. Since V_{OUT} is the same voltage as the inverting input, V_{OUT} must be kept below V_{DD}-1.2V for correct operation.

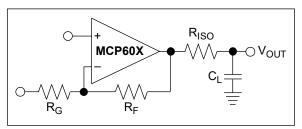
FIGURE 4-3: Unity Gain Buffer has a Limited V_{OUT} Range.

4.2 Rail-to-Rail Output

There are two specifications that describe the output swing capability of the MCP601/1R/2/3/4 family of op amps. The first specification (Maximum Output Voltage Swing) defines the absolute maximum swing that can be achieved under the specified load conditions. For instance, the output voltage swings to within 15 mV of the negative rail with a 25 k Ω load to V_{DD}/2. Figure 2-34 shows how the output voltage is limited when the input goes beyond the linear region of operation.

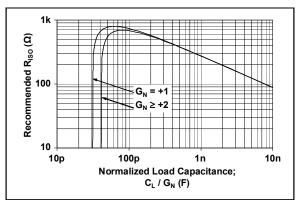
The second specification that describes the output swing capability of these amplifiers is the Linear Output Voltage Swing. This specification defines the maximum output swing that can be achieved while the amplifier is still operating in its linear region. To verify linear operation in this range, the large signal (DC Open-Loop Gain (A_{OL})) is measured at points 100 mV inside the supply rails. The measurement must exceed the specified gains in the specification table.

4.3 MCP603 Chip Select


The MCP603 is a single amplifier with Chip Select (CS). When CS is pulled high, the supply current drops to -0.7 μ A (typ.), which is pulled through the CS pin to V_{SS}. When this happens, the amplifier output is put into a high-impedance state. Pulling CS low enables the amplifier.

The $\overline{\text{CS}}$ pin has an internal 5 M Ω (typical) pull-down resistor connected to V_{SS}, so it goes low if the $\overline{\text{CS}}$ pin is left floating. Figure 1-1 is the Chip Select timing diagram and shows the output voltage, supply currents, and $\overline{\text{CS}}$ current in response to a $\overline{\text{CS}}$ pulse. Figure 2-31 shows the measured output voltage response to a $\overline{\text{CS}}$ pulse.

4.4 Capacitive Loads

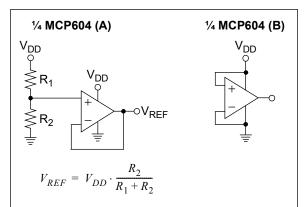

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response with overshoot and ringing in the step response.

When driving large capacitive loads with these op amps (e.g., > 40 pF when G = +1), a small series resistor at the output (R_{ISO} in Figure 4-4) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth is generally lower than the bandwidth with no capacitive load.

FIGURE 4-4: Output resistor R_{ISO} stabilizes large capacitive loads.

Figure 4-5 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N) in order to make it easier to interpret the plot for arbitrary gains. G_N is the circuit's noise gain. For non-inverting gains, G_N and the gain are equal. For inverting gains, $G_N = 1 + |Gain|$ (e.g., -1 V/V gives $G_N = +2$ V/V).

FIGURE 4-5: Recommended R_{ISO} values for capacitive loads.

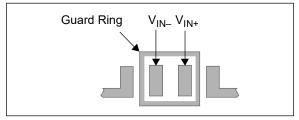

Once you have selected $R_{\rm ISO}$ for your circuit, double-check the resulting frequency response peaking and step response overshoot in your circuit. Evaluation on the bench and simulations with the MCP601/1R/2/3/4 SPICE macro model are very helpful. Modify $R_{\rm ISO}$'s value until the response is reasonable.

4.5 Supply Bypass

With this family of op amps, the power supply pin (V_{DD} for single-supply) must have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts.

4.6 Unused Op Amps

An unused op amp in a quad package (MCP604) is configured as shown in Figure 4-6. These circuits prevent the output from toggling and causing crosstalk. Circuits A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp; the op amp buffers that reference voltage. Circuit B uses the minimum number of components and operates as a comparator, but it may draw more current.



4.7 PCB Surface Leakage

In applications where low input bias current is critical, printed circuit board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow. This is greater than the MCP601/1R/2/3/4 family's bias current at +25°C (1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7.

FIGURE 4-7:

Example Guard Ring layout.

 Connect the guard ring to the inverting input pin (V_{IN}-) for non-inverting gain amplifiers, including unity-gain buffers. This biases the guard ring to the common mode input voltage. 2. Connect the guard ring to the non-inverting input pin $(V_{IN}+)$ for inverting gain amplifiers and transimpedance amplifiers (converts current to voltage, such as photo detectors). This biases the guard ring to the same reference voltage as the op amp (e.g., $V_{DD}/2$ or ground).

4.8 Typical Applications

4.8.1 ANALOG FILTERS

Figure 4-8 and Figure 4-9 show low-pass, second-order, Butterworth filters with a cutoff frequency of 10 Hz. The filter in Figure 4-8 has a non-inverting gain of +1 V/V, and the filter in Figure 4-9 has an inverting gain of -1 V/V.

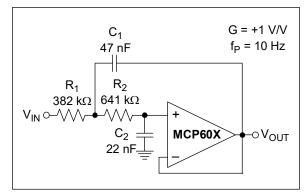
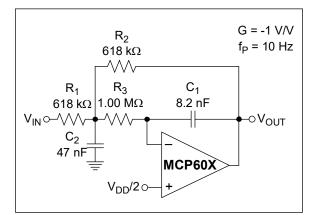
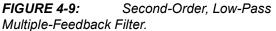




FIGURE 4-8: Second-Order, Low-Pass Sallen-Key Filter.

The MCP601/1R/2/3/4 family of op amps have low input bias current, which allows the designer to select larger resistor values and smaller capacitor values for these filters. This helps produce a compact PCB layout. These filters, and others, can be designed using Microchip's Design Aids; see Section 5.2 "FilterLab® Software" and Section 5.3 "Mindi™ Simulatior Tool".

4.8.2 INSTRUMENTATION AMPLIFIER CIRCUITS

Instrumentation amplifiers have a differential input that subtracts one input voltage from another and rejects common mode signals. These amplifiers also provide a single-ended output voltage.

The three-op amp instrumentation amplifier is illustrated in Figure 4-10. One advantage of this approach is unity-gain operation, while one disadvantage is that the common mode input range is reduced as R_2/R_G gets larger.

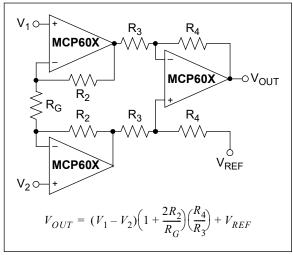
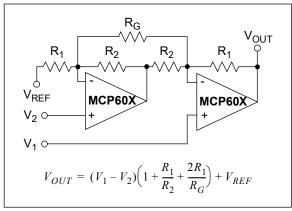
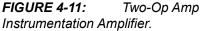
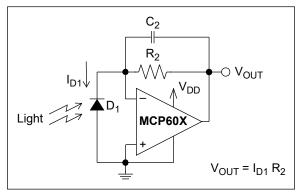




FIGURE 4-10: Three-Op Amp Instrumentation Amplifier.

The two-op amp instrumentation amplifier is shown in Figure 4-11. While its power consumption is lower than the three-op amp version, its main drawbacks are that the common mode range is reduced with higher gains and it must be configured in gains of two or higher.



Both instrumentation amplifiers must use a bulk bypass capacitor of at least 1 $\mu\text{F}.$ The CMRR of these amplifiers is set by both the op amp CMRR and resistor matching.

4.8.3 PHOTO DETECTION

The MCP601/1R/2/3/4 op amps can be used to easily convert the signal from a sensor that produces an output current (such as a photo diode) into a voltage (a transimpedance amplifier). This is implemented with a single resistor (R_2) in the feedback loop of the amplifiers shown in Figure 4-12 and Figure 4-13. The optional capacitor (C_2) sometimes provides stability for these circuits.

A photodiode configured in the Photovoltaic mode has zero voltage potential placed across it (Figure 4-12). In this mode, the light sensitivity and linearity is maximized, making it best suited for precision applications. The key amplifier specifications for this application are: low input bias current, low noise, common mode input voltage range (including ground), and rail-to-rail output.

In contrast, a photodiode that is configured in the Photoconductive mode has a reverse bias voltage across the photo-sensing element (Figure 4-13). This decreases the diode capacitance, which facilitates high-speed operation (e.g., high-speed digital communications). The design trade-off is increased diode leakage current and linearity errors. The op amp needs to have a wide Gain Bandwidth Product (GBWP).

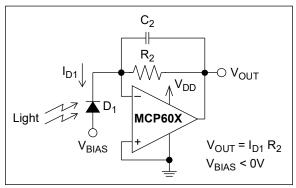


FIGURE 4-13: Photoconductive Mode Detector.

5.0 DESIGN AIDS

Microchip provides the basic design tools needed for the MCP601/1R/2/3/4 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP601/1R/2/3/4 op amps is available on the Microchip web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation over the temperature range. See the model file for information on its capabilities.

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab[®] Software

Microchip's FilterLab[®] software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 Mindi[™] Simulatior Tool

Microchip's Mindi[™] simulator tool aids in the design of various circuits useful for active filter, amplifier and power-management applications. It is a free online simulation tool available from the Microchip web site at www.microchip.com/mindi. This interactive simulator enables designers to quickly generate circuit diagrams, simulate circuits. Circuits developed using the Mindi simulation tool can be downloaded to a personal computer or workstation.

5.4 MAPS (Microchip Advanced Part Selector)

MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website at www.microchip.com/ maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparasion reports. Helpful links are also provided for Datasheets, Purchase, and Sampling of Microchip parts.

5.5 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at www.microchip.com/evaluation-boards.

Two of our boards that are especially useful are:

- P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board
- P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evaluation Board

5.6 Application Notes

The following Microchip Application Notes are available on the Microchip web site at www.microchip. com/appnotes and are recommended as supplemental reference resources.

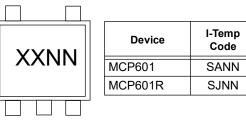
ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821

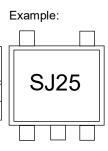
AN722: "Operational Amplifier Topologies and DC Specifications", DS00722

AN723: "Operational Amplifier AC Specifications and Applications", DS00723

AN884: "Driving Capacitive Loads With Op Amps", DS00884

AN990: *"Analog Sensor Conditioning Circuits – An Overview",* DS00990

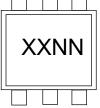

These application notes and others are listed in the design guide:


"Signal Chain Design Guide", DS21825

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

5-Lead SOT-23 (MCP601 and MCP601R only)


E-Temp

Code

SLNN

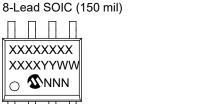
SMNN

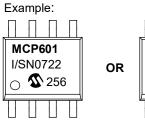
6-Lead SOT-23 (MCP603 only)

Device	I-Temp Code	E-Temp Code
MCP603	AENN	AUNN

E	Example:
	AU25
L	

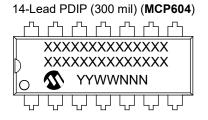
Legend:	XXX	Customer-specific information								
	Y	Year	code	(last		digit	of	caler	ndar	year)
	ΥY	Year	code	(last	2	digits	of	cale	endar	year)
	WW	Week	code	(week	of	Janua	ry 1	is	week	'01')
	NNN	Alphanu	umeric			tracea	bility			code
	e3	Pb-free				ator f		Matte	Tin	(Sn)
	*	This pa	ickage is	s Pb-free	. Th	e Pb-fre	e JEDE	EC de	signator	(@3)
				the outer						
Note:	In the ever	nt the full	Microch	ip part nu	mbe	r cannot l	be marł	ked on	one line	e, it will
	be carried	d over t	o the n	ext line,	thu	s limiting	g the r	numbe	r of av	ailable
	characters	s for custo	omer-spe	ecific infor	mati	on.				
			-							

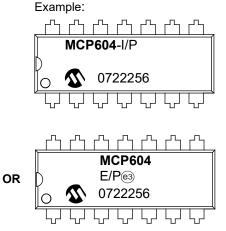

Package Marking Information (Continued)

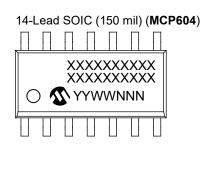

8-Lead PDIP (300 mil)

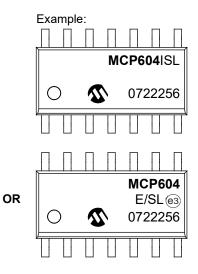
Example: MCP601 I/P256 0722 C C C

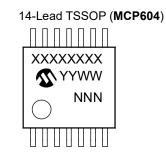
	Π	Π	
М	СРе	601 E	Ξ
S	N@	072	2
0	S	256	3
			Π

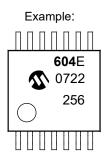

8-Lead TSSOP

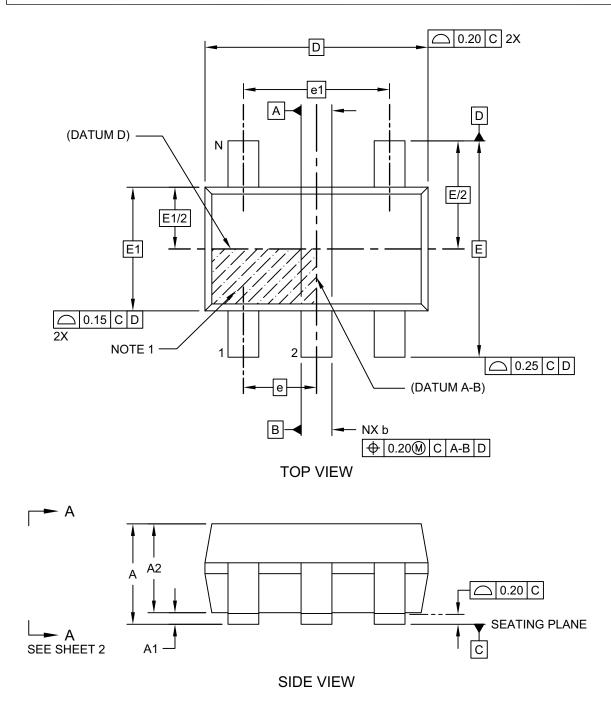



Example:

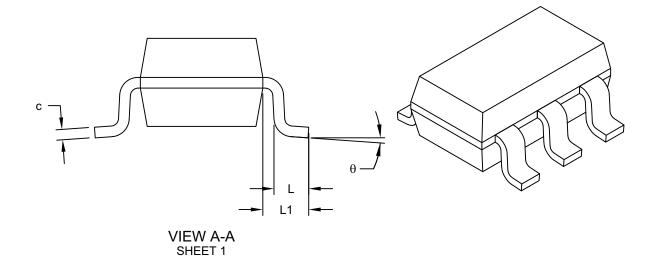

601 1722 256	2
--------------------	---


Package Marking Information (Continued)





5-Lead Plastic Small Outline Transistor (OT) [SOT-23]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-091-OT Rev H Sheet 1 of 2

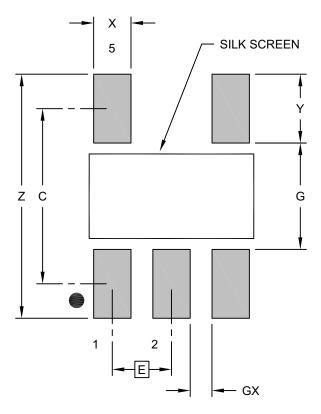
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		5	
Pitch	е		0.95 BSC	
Outside lead pitch	e1		1.90 BSC	
Overall Height	Α	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	-	-	0.15
Overall Width	E		2.80 BSC	
Molded Package Width	E1		1.60 BSC	
Overall Length	D		2.90 BSC	
Foot Length	L	0.30	-	0.60
Footprint	L1		0.60 REF	
Foot Angle	θ	0°	-	10°
Lead Thickness	С	0.08	-	0.26
Lead Width	b	0.20	-	0.51

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev H Sheet 2 of 2

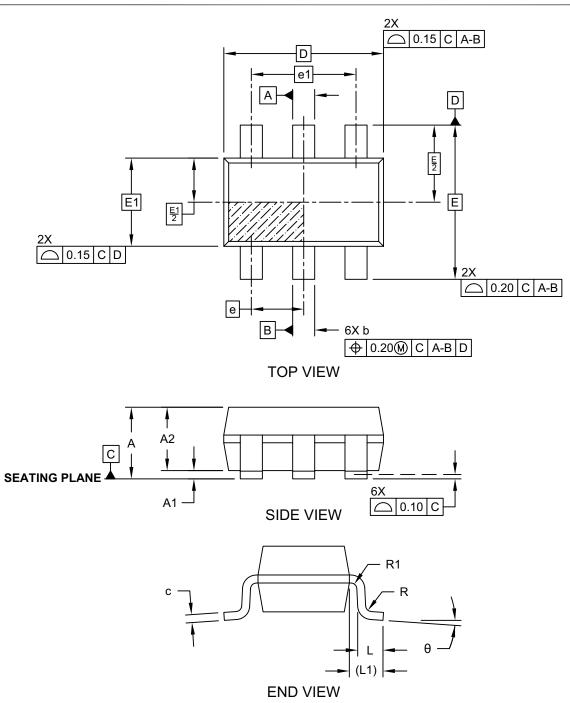
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	S	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.95 BSC	
Contact Pad Spacing	С		2.80	
Contact Pad Width (X5)	Х			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Ζ			3.90

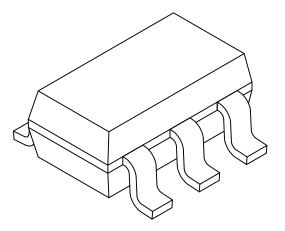
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-OT Rev H

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-028-CH Rev E Sheet 1 of 2

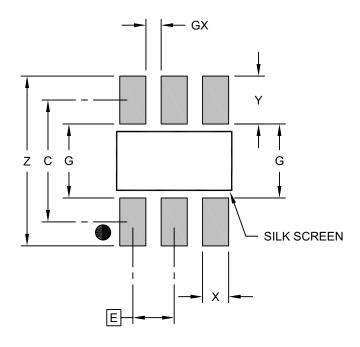
6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	/ILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	Ν		6		
Pitch	е		0.95 BSC		
Outside lead pitch	e1		1.90 BSC		
Overall Height	Α	0.90	-	1.45	
Molded Package Thickness	A2	0.89	1.15	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	E		2.80 BSC		
Molded Package Width	E1		1.60 BSC		
Overall Length	D		2.90 BSC		
Foot Length	L	0.30	0.45	0.60	
Footprint	L1		0.60 REF		
Foot Angle	θ	0°	-	10°	
Lead Thickness	С	0.08	-	0.26	
Lead Width	b	0.20	-	0.51	

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.


Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-028-CH Rev E Sheet 2 of 2

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

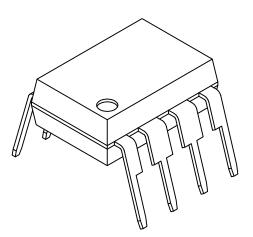
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

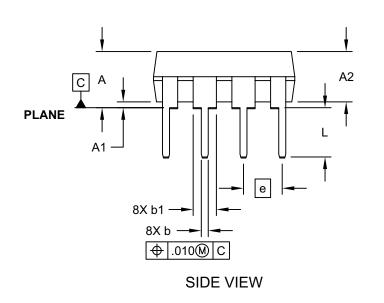
RECOMMENDED LAND PATTERN

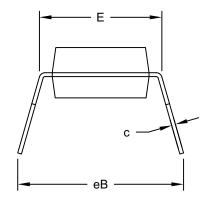
	Units			S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.95 BSC	
Contact Pad Spacing	С		2.80	
Contact Pad Width (X3)	Х			0.60
Contact Pad Length (X3)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

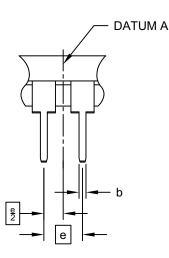

1. Dimensioning and tolerancing per ASME Y14.5M

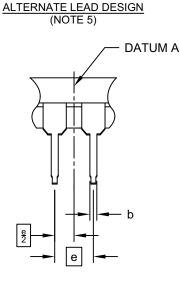

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2028-CH Rev E


8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

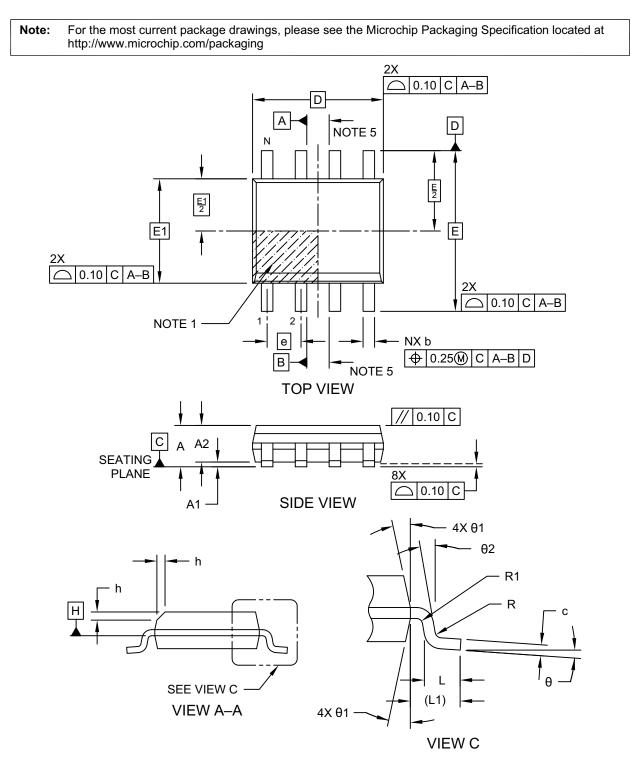



END VIEW

Microchip Technology Drawing No. C04-018-P Rev F Sheet 1 of 2

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

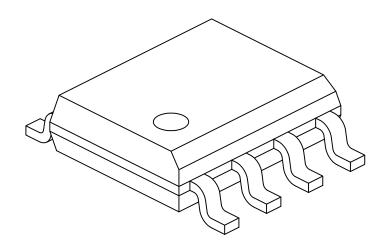
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev F Sheet 2 of 2


8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	IILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E		6.00 BSC	
Molded Package Width	E1		3.90 BSC	
Overall Length	D	4.90 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Lead Bend Radius	R	0.07	-	_
Lead Bend Radius	R1	0.07	_	_
Foot Angle	θ	0°	-	8°
Mold Draft Angle	θ1	5°	_	15°
Lead Angle	θ2	0°	-	_

Notes:

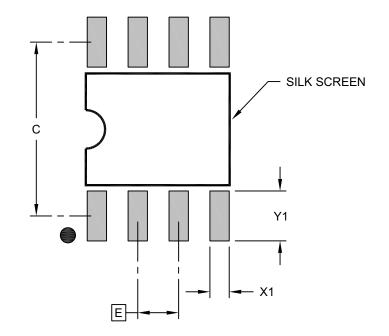
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

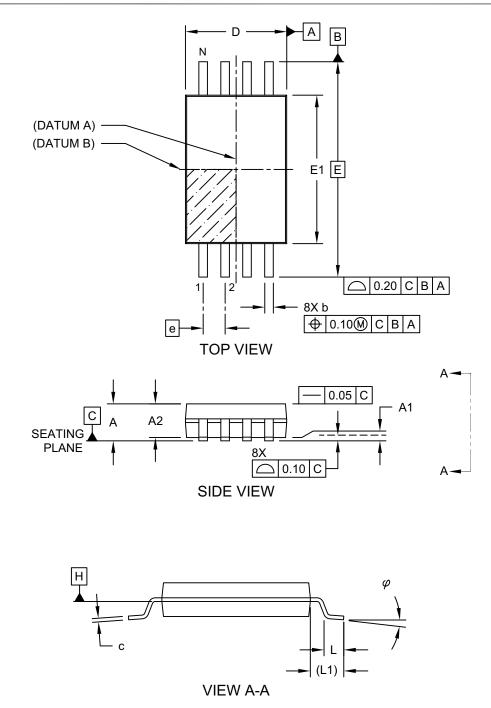
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

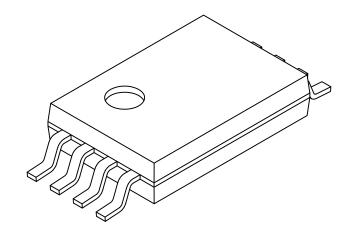
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

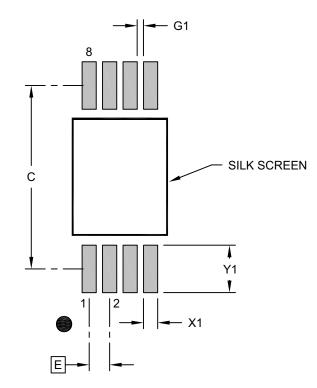
Microchip Technology Drawing C04-086 Rev C Sheet 1 of 2

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Number of Pins	Ν		8	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.80	1.00	1.05
Standoff	A1	0.05	-	-
Overall Width	E		6.40 BSC	
Molded Package Width	E1	4.30	4.40	4.50
Overall Length	D	2.90	3.00	3.10
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.19	-	0.30

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086 Rev C Sheet 2 of 2

8-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

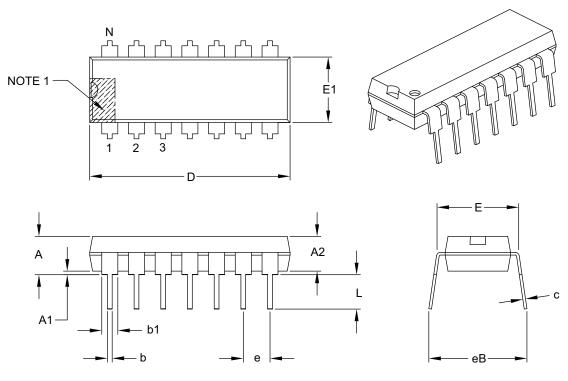
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		5.80	
Contact Pad Width (X8)	X1			0.45
Contact Pad Length (X8)	Y1			1.50
Contact Pad to Center Pad (X6)	G1	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2086 Rev B

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

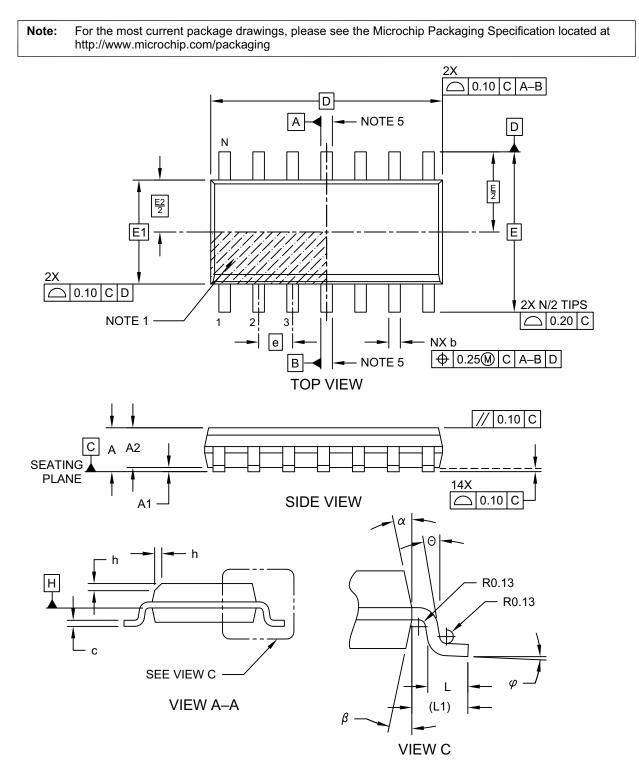
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

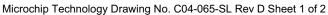
	Units		INCHES		
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν		14		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	—	
Shoulder to Shoulder Width	Е	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	_	_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

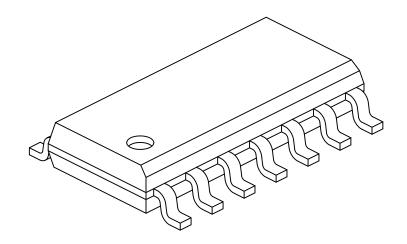
2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B


14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

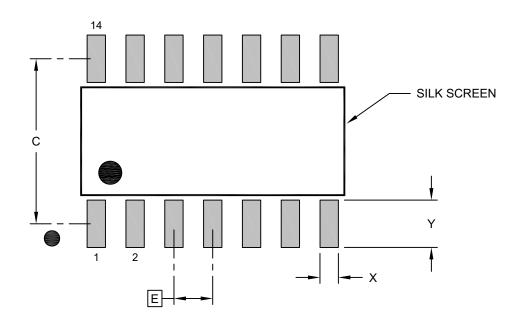
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν		14			
Pitch	е		1.27 BSC			
Overall Height	Α	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	0.10 -			
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40				
Footprint	L1	1.04 REF				
Lead Angle	Θ	0°	0° -			
Foot Angle	φ	0°	0° -			
Lead Thickness	С	0.10	0.10 -			
Lead Width	b	0.31	0.31 -			
Mold Draft Angle Top	α	5°	5° -			
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

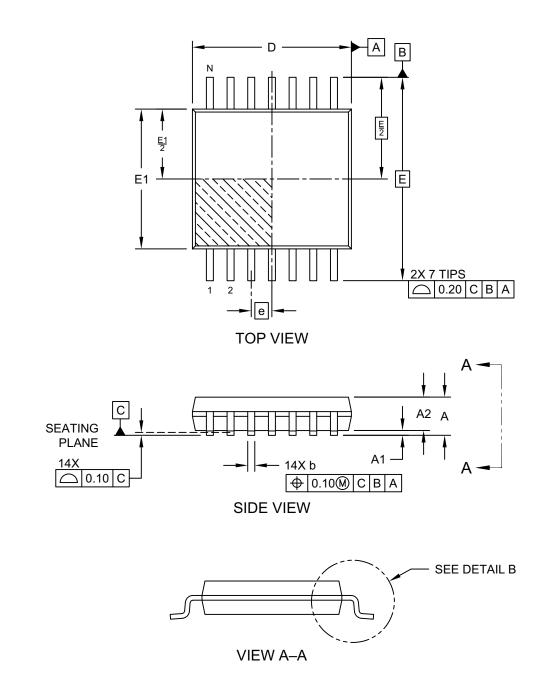
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	Ν	MILLIMETERS			
Dimensior				MAX		
Contact Pitch	E		1.27 BSC			
Contact Pad Spacing	С		5.40			
Contact Pad Width (X14)	Х			0.60		
Contact Pad Length (X14)	Y			1.55		

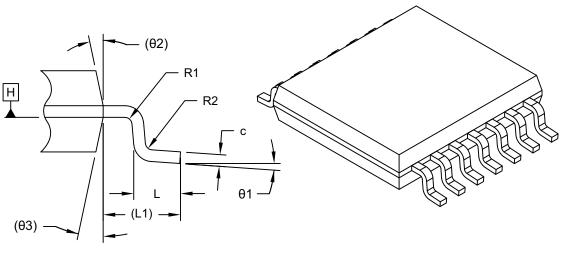
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087 Rev E Sheet 1 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

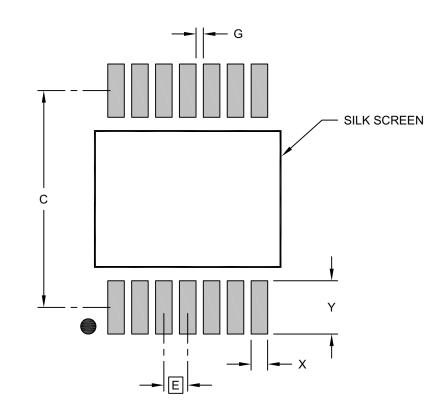
D	E.	ГA	۱I	B

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Number of Terminals	Ν		14	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.80	1.00	1.05
Overall Length	D	4.90	5.00	5.10
Overall Width	E 6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50
Terminal Width	b	0.19	-	0.30
Terminal Thickness	С	0.09	-	0.20
Terminal Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Lead Bend Radius	R1	0.09	-	-
Lead Bend Radius	R2	0.09	-	-
Foot Angle	θ1	0°	-	8°
Mold Draft Angle	θ2	_	12° REF	_
Mold Draft Angle	θ3	_	12° REF	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087 Rev E Sheet 2 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С			
Contact Pad Width (Xnn)	Х			0.45
Contact Pad Length (Xnn)	Y			1.45
Contact Pad to Contact Pad (Xnn)	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2087 Rev E

MCP601/1R/2/3/4

NOTES:

APPENDIX A: REVISION HISTORY

Revision H (May 2023)

The following is a list of modifications:

- Updated Section "Features".
- Updated Section 2.0 "Typical Performance Curves".
- Updated Section 6.0 "Packaging Information".
- Updated Section "Product Identification System".
- Added Section "Product Identification System (Automotive)".

Revision G (December 2007)

The following is a list of modifications:

- Updated Figure 2-8 and Figure 2-25.
- Updated Table 3-1 and Table 3-2.
- Updated notes to Section 1.0 "Electrical Characteristics".
- Expanded Analog Input Absolute Maximum Voltage Range (applies retroactively).
- Expanded operating V_{DD} to a maximum of 6.0V.
- Added Figure 2-12.
- Added Section 4.1.1 "Phase Reversal", Section 4.1.2 "Input Voltage and Current Limits", and Section 4.1.3 "Normal Operation".
- Updated Section 6.0 "Packaging Information".

Revision F (February 2004)

• Undocumented changes.

Revision E (September 2003)

• Undocumented changes.

Revision D (April 2000)

• Undocumented changes.

Revision C (July 1999)

• Undocumented changes.

Revision B (June 1999)

• Undocumented changes.

Revision A (March 1999)

• Original Release of this Document.

MCP601/1R/2/3/4

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾	<u>–X</u>	<u>/XX</u>	<u>XXX⁽²⁾</u>	Exa	imples:	
Device	Tape and Reel	Temperature	Package	Class	a)	MCP601-I/P:	Single Op Amp, Industrial Temperature, 8 lead PDIP Package.
	Option	Range			b)	MCP601-E/SN:	Single Op Amp, Extended Temperature, 8 lead SOIC Package.
Device	MCP601 MCP601T	Single Op Amp Single Op Amp (Tape a (SOT-23, SOIC, TSSC			c)	MCP601T-E/ST:	Single Op Amp, Tape and Reel, Extended Temperature,
	MCP601RT	Single Op Amp (Tape a (SOT-23-5)	and Reel)		d)	MCP601RT-I/OT:	8 lead TSSOP Package. Single Op Amp, Tape and Reel,
	MCP602	Dual Op Amp					Industrial Temperature,
	MCP602T	Dual Op Amp (Tape ar (SOIC, TSSOP)	id Reel)		e)	MCP601RT-E/OT	5 lead SOT-23 Package. Single Op Amp, Tape and Reel,
	MCP603	Single Op Amp with Cl	nip Select				Extended Temperature,
	MCP603T	Single Op Amp with Cl (SOT-23, SOIC, TSSC		and Reel)	->		5 lead SOT-23 Package.
	MCP604 MCP604T	Quad Op Amp Quad Op Amp (Tape a	nd Real)		a)	MCP602-I/SN:	Dual Op Amp, Industrial Temperature, 8 lead SOIC Package.
	WCF 004 1	(SOIC, TSSOP)			b)	MCP602-E/P:	Dual Op Amp, Extended Temperature, 8 lead PDIP Package.
Temperature Ra	0	0° C to+85° C (Industri 0° C to+125° C (Exten	,		c)	MCP602T-E/ST:	Dual Op Amp, Tape and Reel, Extended Temperature,
							8 lead TSSOP Package.
Package	OT = Pla	astic SOT-23, 5-lead (N	ICP601 only)		a)	MCP603-I/SN:	Single Op Amp with Chip Select
	CH = Pla	astic SOT-23, 6-lead (N	ICP603 only)			WCI 003-1/011.	Industrial Temperature,
	P = Pla	astic DIP (300 mil body), 8, 14 lead		b)		8 lead SOIC Package.
		astic SOIC (3.90 mm be	ody), 8 lead			MCP603-E/P:	Single Op Amp with Chip Select, Extended Temperature,
		astic SOIC (3.90 mm be			c)	MCP603T-E/ST:	8 lead PDIP Package.
Class		astic TSSOP (4.4 mm b	ody), 8, 14 leac		0,	MCF0031-E/31.	Single Op Amp with Chip Select, Tape and Reel, Extended Temperature, 8 lead TSSOP Package.
Class		n-Automotive tomotive			d)	MCP603T-I/SN:	Single Op Amp with Chip Select, Tape and Reel,
		ntifier only appears i					Industrial Temperature, 8 lead SOIC Package.
10	n the device pack	ntifier is used for orderir age. Check with your with the Tape and Reel	Microchip Sal		e)	MCP603T-I/CH:	Single Op Amp with Chip Select, Tape and Reel, Industrial Temperature,
2 : A	utomotive parts are	AEC-Q100 qualified. I	E-Temp: Grade	1	f)	MCP603T-E/CH:	6 lead SOT-23 Package. Single Op Amp with Chip Select Tape and Reel, Extended Temperature, 6 lead SOT-23 Package.
					a)	MCP604-I/P:	Quad Op Amp, Industrial Temperature, 14 lead PDIP Package.
					b)	MCP604-E/SL:	Quad Op Amp, Extended Temperature, 14 lead SOIC Package.
					c)	MCP604T-E/ST:	Quad Op Amp, Tape and Reel, Extended Temperature, 14 lead TSSOP Package.

MCP601/1R/2/3/4

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

	(4)	X	N/N	(0)	Ex		
PART NO. Device	[X] ⁽¹⁾ Tape and Ree		/XX Package	XXX ⁽²⁾ Class	a)	MCP601-E/SNVAO:	Automotive, Single Op Amp, Extended Temperature,
	Option	Range			b)	MCP601T-E/STVAO:	8 lead SOIC Package. Automotive.
Device	MCP601	Single Op Amp					Single Op Amp, Tape and Reel,
	MCP601T	Single Op Amp (Tape a (SOT-23, SOIC, TSSC					Extended Temperature, 8 lead TSSOP Package.
	MCP601R1	Single Op Amp (Tape a (SOT-23-5)	and Reel)		c)	MCP601RT-E/OTVAO:	Automotive, Single Op Amp, Tape and Reel,
	MCP602	Dual Op Amp				MCP602T-E/STVAO:	Extended Temperature,
	MCP602T	Dual Op Amp (Tape ar (SOIC, TSSOP)	nd Reel)		a)		5 lead SOT-23 Package.
	MCP603	Single Op Amp with Cl	nip Select		a)		Automotive, Dual Op Amp, Tape and Reel, Extended Temperature, 8 lead TSSOP Package.
	MCP603T	Single Op Amp with Cl (SOT-23, SOIC, TSSC		e and Reel)			
	MCP604	Quad Op Amp					o lead 10001 1 dokage.
	MCP604T	Quad Op Amp (Tape a (SOIC, TSSOP)	nd Reel)		a)	MCP603T-E/STVAO:	Automotive, Single Op Amp with Chip Sele Tape and Reel, Extended Temperature,
Temperature Rar	nge I = -	40° C to+85° C (Industri	al)				8 lead TSSOP Package.
	E =-	40° C to+125° C (Extend	ded)		b)	MCP603T-E/CHVAO:	Automotive, Single Op Amp with Chip Seler Tape and Reel,
Package	OT = P	lastic SOT-23, 5-lead (N	ICP601 only)				Extended Temperature, 6 lead SOT-23 Package.
	CH = P	lastic SOT-23, 6-lead (N	ICP603 only)				• · · · · • • • • • • · · · · · · · · ·
	P = P	lastic DIP (300 mil body), 8, 14 lead		a)	MCP604-E/SLVAO:	Automotive, Quad Op Amp,
	SN = P	lastic SOIC (3.90 mm be	ody), 8 lead				Extended Temperature,
	SL = P	lastic SOIC (3.90 mm be	ody), 14 lead		b)		14 lead SOIC Package.
	ST = P	lastic TSSOP (4.4 mm b	ody), 8, 14 lead	Ł		MCP604T-E/STVAO:	Automotive, Quad Op Amp, Tape and Reel,
Class	Blank = N	on-Automotive					Extended Temperature,
	VAO = A	utomotive					14 lead TSSOP Package.
de on pa	scription. This ide the device pac ckage availability	entifier only appears i entifier is used for orderir kage. Check with your with the Tape and Reel re AEC-Q100 qualified. I	g purposes and Microchip Sal option.	is not printed es Office fo	d		

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc b}}$ 1999-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2411-0

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/support Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

EUROPE

Austria - Wels

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MCP604-I/ST MCP604-I/SL MCP602-E/P MCP604-I/P MCP603-I/P MCP601-E/P MCP604-E/P MCP601-I/P MCP603T-I/CH MCP603T-I/SN MCP602T-I/SN MCP601T-I/ST MCP603T-I/ST MCP601T-I/SN MCP604T-I/ST MCP604T-I/SL MCP601T-I/OT MCP602T-I/ST MCP602-E/SN MCP602-E/ST MCP603-E/P MCP604-E/ST MCP604-E/SL MCP602-I/SN MCP601-E/SN MCP601-E/ST MCP603-E/SN MCP603-E/ST MCP601RT-E/OT MCP602-I/ST MCP601-I/ST MCP601-I/SN MCP601RT-I/OT MCP603-I/ST MCP603-I/SN MCP602-I/P MCP602T-E/ST MCP603T-E/CH MCP602T-E/SN MCP604T-E/SL MCP601T-E/ST MCP603T-E/ST MCP604T-E/ST MCP601T-E/SN MCP603T-E/SN MCP601T-E/OT MCP602-E/SNVAO