International IOR Rectifier

SMPS MOSFET

PD - 94384A

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} typ.	I _D
600V	0.110 Ω	40A

IRFPS40N60K

•	Hard Switching Primary or PFC Switch
•	Switch Mode Power Supply (SMPS)
	Unintermentials Device Complet

- Uninterruptible Power Supply
- High Speed Power Switching
- Motor Drive

Applications

Benefits

- Low Gate Charge Qg results in Simple **Drive Requirement**
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Enhanced Body Diode dv/dt Capability

SUPER TO-247AC

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	40	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	24	A
I _{DM}	Pulsed Drain Current ①	160	
P _D @T _C = 25°C	Power Dissipation	570	W
	Linear Derating Factor	4.5	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	7.5	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	¬ °c
	(1.6mm from case)		

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		600	mJ
I _{AR}	Avalanche Current①		40	А
E _{AR}	Repetitive Avalanche Energy®		57	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case®		0.22	
R _{eCS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
ReJA	Junction-to-Ambient®		40	

www.irf.com 1 10/20/04

International
TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	600			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.63		V/°C	Reference to 25°C, I _D = 1mA6
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.110	0.130	Ω	V _{GS} = 10V, I _D = 24A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
1	Drain-to-Source Leakage Current			50	uА	V _{DS} = 600V, V _{GS} = 0V
IDSS	Dialific-Source Leakage Current			250	μΑ	$V_{DS} = 480V$, $V_{GS} = 0V$, $T_{J} = 125$ °C
1	Gate-to-Source Forward Leakage			100		V _{GS} = 30V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	· nA	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	21			S	V _{DS} = 50V, I _D = 24A
Qg	Total Gate Charge			330		I _D = 38A
Qgs	Gate-to-Source Charge			84	nC	V _{DS} = 480V
Q _{gd}	Gate-to-Drain ("Miller") Charge			150		V _{GS} = 10V, See Fig. 6 and 13 ⊕
t _{d(on)}	Turn-On Delay Time		47			V _{DD} = 300V
t _r	Rise Time		110		ns	I _D = 38A
t _{d(off)}	Turn-Off Delay Time		97		""	$R_G = 4.3\Omega$
t _f	Fall Time		60]	V _{GS} = 10V,See Fig. 10 ④
C _{iss}	Input Capacitance		7970			V _{GS} = 0V
Coss	Output Capacitance		750]	V _{DS} = 25V
Crss	Reverse Transfer Capacitance		75		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		9440			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		200			$V_{GS} = 0V$, $V_{DS} = 480V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		260] [V _{GS} = 0V, V _{DS} = 0V to 480V S

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			40		MOSFET symbol
	(Body Diode)				A	showing the
I _{SM}	Pulsed Source Current			160		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.5	V	$T_J = 25$ °C, $I_S = 38A$, $V_{GS} = 0V$ ④
1	Reverse Recovery Time		630	950	ne	$T_J = 25^{\circ}C$ $I_F = 38A$
t _{rr}			730	1090	ns ·	$T_J = 125^{\circ}C$ di/dt = 100A/ μ s •
Qrr	Reverse Recovery Charge		14	20	μC	T _J = 25°C
- II	Treverse reservery change		17	25	μο	T _J = 125°C
I _{RRM}	Reverse Recovery Current		39	58	Α	$T_J = 25$ °C
ton	n Forward Turn-On Time			ım-on ti	me is ne	egligible (turn-on is dominated by L _S +L _D)

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- $\begin{tabular}{l} \hline \& Starting T_J = 25°C, L = 0.84mH, R_G = 25$\Omega, I_{AS} = 38A, (See Figure 12a) \\ \end{tabular}$
- 3 I_SD \leq 38A, di/dt \leq 224A/ μ s, V_DD \leq V(BR)DSS, T_J \leq 150°C
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ \, {\mathbb G} \,\, {\rm C}_{\rm oss}$ eff. is a fixed capacitance that gives the same charging time as C_{\rm oss} while V_DS is rising from 0 to 80% V_DSS

International TOR Rectifier

IRFPS40N60K

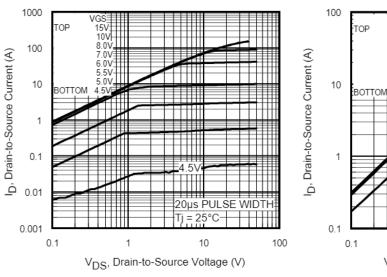
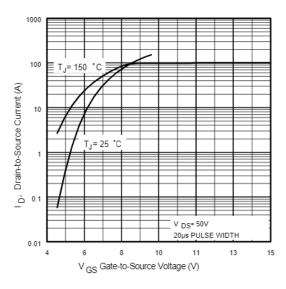



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

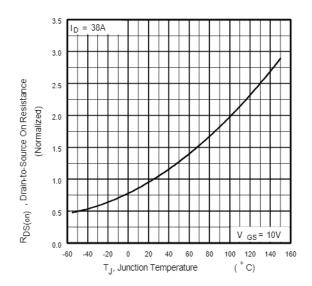


Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International TOR Rectifier

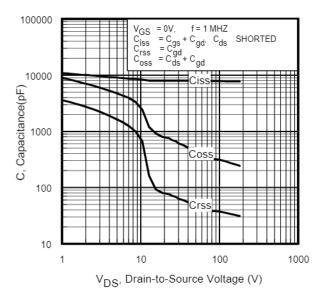
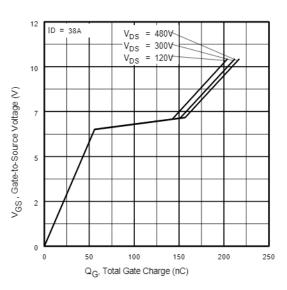



Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

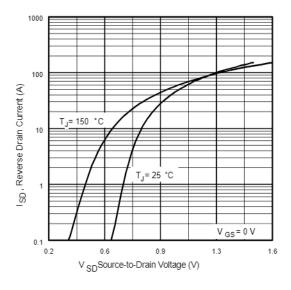


Fig 7. Typical Source-Drain Diode Forward Voltage

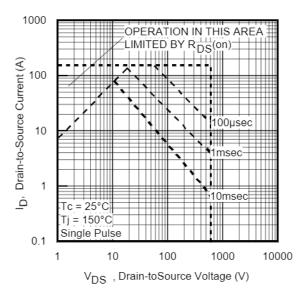


Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFPS40N60K

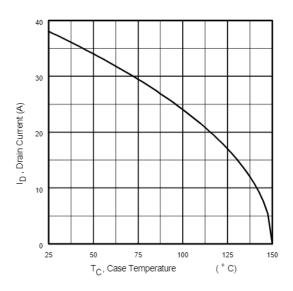


Fig 9. Maximum Drain Current Vs.
Case Temperature

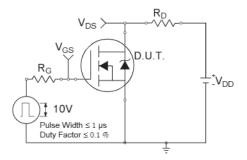


Fig 10a. Switching Time Test Circuit

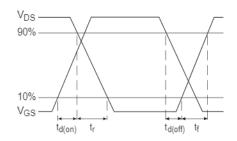


Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

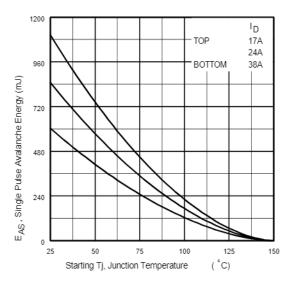


Fig 12a. Maximum Avalanche Energy Vs. Drain Current

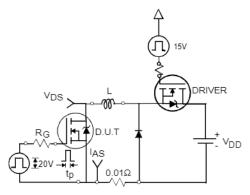
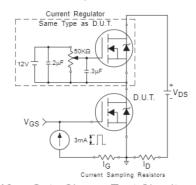



Fig 12b. Unclamped Inductive Test Circuit

Fig 13a. Gate Charge Test Circuit 6

International
TOR Rectifier

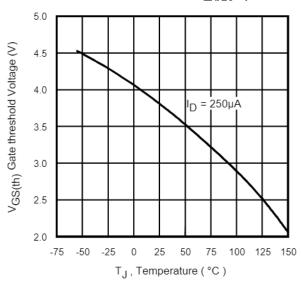


Fig 14. Threshold Voltage Vs. Temperature

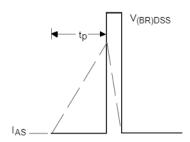


Fig 12c. Unclamped Inductive Waveforms

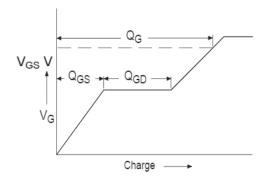
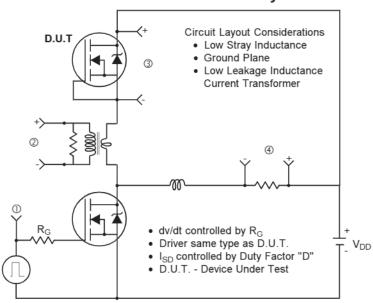
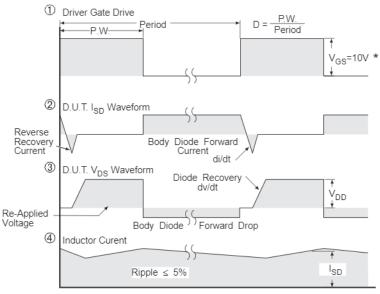




Fig 13b. Basic Gate Charge Waveform www.irf.com

Peak Diode Recovery dv/dt Test Circuit

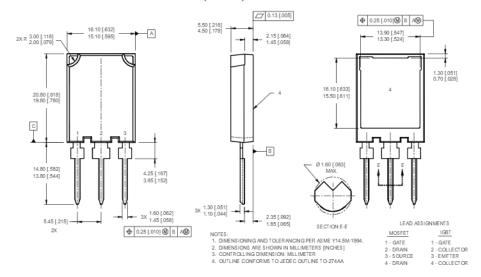
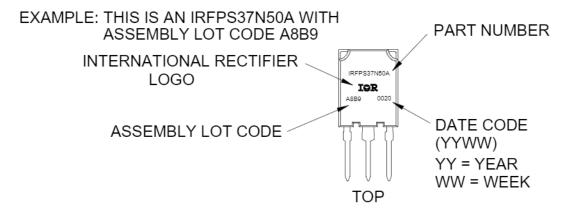

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs


International
TOR Rectifier

SUPER TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

Super-247™ Part Marking Information

Data and specifications subject to change without notice.

This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.10/04

www.irf.com

8