Ультразвуковой дальномер Roborace HC-SR04: руководство по использованию

<u>Ультразвуковой датчик расстояния Roborace HC-SR04</u> поможет мобильным роботам определять расстояния до объектов, объезжать препятствия и строить карту помещения. Дальномер также выступит в роли сенсора уровня воды, детектора движения или триггерам в охранных системах.

Общие сведения

Ультразвуковой дальномер измеряет расстояние между датчиком и объектом с помощью эхолокации. Передатчик излучает ультразвуковую волну на частоте, неуловимой человеческим слухом. Достигая препятствие, сигнал отражается и возвращается на эхо-приёмник. Зная время, за которое звук проходит от передатчика до приемника, рассчитывается расстояние до объекта.

Ультразвуковой передатчик и приёмник

На модуле расположена пара ультразвуковых преобразователей сигналов.

- Передатчик (Transmitter) АW8T40-16OA00 предназначен для передачи ультразвуковых волн в окружающее пространство.
- Приёмник (Receive) АW8R40-160A00 предназначен для приёма отраженных ультразвуковых волн от предметов окружающего мира.

Ультразвуковой передатчик и приемник подключены к электронной обвязки модуля.

Электронная обвязка модуля

Электронная обвязка модуля выполнена на чипе CS100, который объединяет ультразвуковую схему передачи, ультразвуковую схему приёма и схему цифровой обработки. Для работы CS100

необходим кварцевый резонатор 8 МГц, также обвязка из конденсаторов и резисторов.

Контакты подключения

Датчик расстояния подключается к управляющей электронике через группу из четырёх контактов.

Контакт	Функция	Подключение
GND	Земля	Подключите к земле микроконтроллера.
ECHO	Контакт приёма сигнала	Подключите к пину ввода-вывода микроконтроллера.
TRIG	Контакт отправки сигнала	Подключите к пину ввода-вывода микроконтроллера.
VCC	Питание	Подключите к питанию микроконтроллера.

Подробности работы

Давайте ещё раз более детально рассмотрим принцип работы ультразвукового дальномера.

Фаза	Действие	Линия TRIG	Линия ЕСНО
0	Датчик в режиме ожидания.	0	0
1	Подайте стартовый импульс с внешнего контроллера на линию TRIG длительностью 10 мкс.	1	0
2	Датчик в режиме посылки звуковой волны. Через 250 мск датчик сгенерирует восемь импульсов на ультразвуковой передатчик (Transmitter).	0	0
3	Датчик в режиме приёма звуковой волны. По спаду последнего из восьми сгенерированных импульсов на передатчик, датчик устанавливает высокий уровень на линии ЕСНО и входит в режим приёма получения отраженной волны на ультразвуковой приёмник (Receive).	0	1
4	 Датчик в режиме приёма звуковой волны. Если отражённая волна пришла на приёмник (Receive): после получения последнего импульса волны, датчик переходит в режим ожидания и устанавливает низкий уровень на линии ЕСНО. Время наличия высокого уровня на линии ЕСНО равно времени прохождения ультразвуковой волны от датчика до препятствия и обратно. Если в течении 38 мс датчик не принял отраженную волну: датчик переходит в режим ожидания в режим ожидания и устанавливает высокий 	0	1

Рекомендуется выдерживать паузу не менее 50 мс между двумя измерениями, т.к. отражённая волна первого измерения может отразиться от удалённых объектов и стать причиной искажения результатов второго измерения.

Но вы можете не задумываться о временных рамках, мы написали различные библиотеки для упрощения работы с датчиком.

А для фанатов физики, мы подготовили <u>подробный Datasheet с</u> <u>уравнениями и формулами</u>.

Примеры работы с Arduino

Библиотеки

Для поиска расстояния до объекта, необходимо вручную посылать и контролировать время отклика импульса. Но вы можете не задумываться о временных рамках, мы написали целых три библиотеки для упрощения работы с датчиком. Каждая библиотека имеет преимущества и недостатки.

Библиотека iarduino_HC_SR04

Посылка и приём импульсов происходит программно.

- Преимущества:
 - Совместимость со всеми платами Arduino.
 - Дальномер можно подключать к любым выводам Arduino.
- Недостатки:
 - Библиотека ждёт ответа от датчика, который может длиться до 38 мс.

Библиотека iarduino_HC_SR04_tmr

Посылка и приём импульсов происходит через аппаратный таймер — Timer2.

- Преимущество:
 - Библиотека не ждёт ответа от датчика, который может длиться до 38 мс.
- Недостатки:
 - Совместимость только с платами Arduino с ядром AVR: Uno, Leonardo, Mega, Nano и их аналоги.
 - Нельзя использовать ШИМ на контактах: 3 и 11
 - Нельзя подключить более четырёх дальномеров.
 - Нельзя работать с библиотеками которые так же используют аппаратный таймер Timer2.

Библиотека iarduino_HC_SR04_int

Посылка и приём импульсов происходит через аппаратные прерывания.

- Преимущество:
 - Библиотека не ждёт ответа от датчика, который может длиться до 38 мс.
- Недостатки:
 - Совместимость только с платами Arduino, которые поддерживают прерывания.
 - Контакт ECHO нужно подключать только к тем выводам Arduino, которые поддерживают внешние прерывания. Контакт TRIG можно подключать к любому выводу Arduino.
 - Количество подключаемых датчиков ограничено количеством выводов с прерыванием.

На каждой плате распиновка и количество прерываний отличается между собой. Для справки <u>читайте официальную документацию от</u> <u>производителя</u>.

Рассмотрим по одному примеру для каждой библиотеки.

Пример работы с iarduino_HC_SR04

Библиотека iarduino_HC_SR04 позволяет использовать любые платы Arduino. Для примера возьмём контроллер <u>Arduino Uno</u>.

Что понадобится

- 1× <u>Arduino Uno</u>
- 1× <u>Дальномер Roborace HC-SR04</u>
- 1× Соединительные провода «папа-мама»
- 1× <u>Кабель USB</u>

Рекомендуем также обратить внимание на дополнительные расширения:

- <u>Trema Shield</u> поможет подключить дальномер к Arduino с помощью <u>соединительных провода</u> <u>«мама-мама»</u>.
- <u>ICSP-переходник</u> поможет подключить дальномер к Arduino без проводов вовсе.

Схема устройства

Библиотека iarduino_HC_SR04 позволяет использовать для коммуникации с дальномером любые пины ввода-вывода. Для примера повесим контакты датчика расстояния TRIG и ECHO на пины контроллера 12 и 11.

// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 12;
constexpr uint8_t PIN_SENSOR_ECHO = 11;

Схема устройства с Trema Shield

Схема устройства через ICSP-переходник

При коммуникации дальномера через ICSP-переходник, используйте инициализацию пинов ЕСНО и TRIG приведённую ниже. Все подробности <u>мы описали в отдельной статье по ICSP-</u> <u>переходнику</u>.

// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = PIN_SPI_MISO;
constexpr uint8_t PIN_SENSOR_ECHO = PIN_SPI_MOSI;

Программная настройка

- Скачайте и настройте Arduino IDE.
- Скачайте и установите библиотеку iarduino HC SR04.

Программный код

```
// Библиотека для работы с дальномером
#include <iarduino_HC_SR04.h>
// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 12;
constexpr uint8_t PIN_SENSOR_ECHO = 11;
// Создаем объект для работы с дальномером
// и передаем в него пины TRIG и ECHO
iarduino_HC_SR04 sensor(PIN_SENSOR_TRIG, PIN_SENSOR_ECHO);
void setup(){
 // Открываем Serial-порт
 Serial.begin(9600);
}
```


Результат работы

После прошивки устройства, дальномер будем считывать расстояние до преграды и выводить в консоль.

Пример работы с iarduino_HC_SR04_tmr

Библиотека iarduino_HC_SR04_tmr позволяет использовать только Arduino с ядром AVR. Для примера возьмём контроллер <u>Arduino Uno</u>.

Что понадобится

- 1× Arduino Uno
- 1× Дальномер Roborace HC-SR04
- 1× Соединительные провода «папа-мама»
- 1× <u>Кабель USB</u>

Рекомендуем также обратить внимание на дополнительные расширения:

- <u>Trema Shield</u> поможет подключить дальномер к Arduino с помощью <u>соединительных провода</u> <u>«мама-мама»</u>.
- ICSP-переходник поможет подключить дальномер к Arduino без проводов вовсе.

Схема устройства

Библиотека iarduino_HC_SR04_tmr позволяет использовать для коммуникации с дальномером любые пины ввода-вывода. Для примера повесим контакты датчика расстояния TRIG и ECHO на пины контроллера 12 и 11.

// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 12;
constexpr uint8_t PIN_SENSOR_ECHO = 11;

Схема устройства с Trema Shield

Схема устройства через ICSP-переходник

При коммуникации дальномера через ICSP-переходник, используйте инициализацию пинов ЕСНО и TRIG приведённую ниже. Все подробности <u>мы описали в отдельной статье по ICSP-</u> <u>переходнику</u>.

```
// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = PIN_SPI_MISO;
constexpr uint8_t PIN_SENSOR_ECHO = PIN_SPI_MOSI;
```


Программная настройка

- Скачайте и настройте Arduino IDE.
- Скачайте и установите библиотеку iarduino_HC_SR04_tmr.

```
// Библиотека для работы с дальномером
#include <iarduino_HC_SR04_tmr.h>
// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 12;
constexpr uint8_t PIN_SENSOR_ECHO = 11;
// Создаем объект для работы с дальномером
// и передаем в него пины TRIG и ECHO
iarduino_HC_SR04_tmr sensor(PIN_SENSOR_TRIG, PIN_SENSOR_ECHO);
void setup(){
 // Открываем Serial-порт
 Serial.begin(9600);
 // Инициируем работу с датчиком
 sensor.begin();
void loop(){
 // Вычисляем расстояние до объекта
 int sensorDistance = sensor.distance();
 // Выводим расстояние в Serial-порт
 Serial.print(sensorDistance);
 Serial.println(" cm");
 // Ждём 100 мс
  delay(100);
}
```

Результат работы

После прошивки устройства, дальномер будем считывать расстояние до преграды и выводить в консоль.

Пример работы с iarduino_HC_SR04_int

Библиотека iarduino_HC_SR04_int позволяет использовать платы Arduino с поддержкой внешних прерываний. Для примера возьмём контроллер <u>Arduino Uno</u>.

Что понадобится

- 1× Arduino Uno
- 1× <u>Дальномер Roborace HC-SR04</u>
- 1× Соединительные провода «папа-мама»
- 1× <u>Кабель USB</u>

Рекомендуем также обратить внимание на дополнительную плату расширения Trema Shield,

которая поможет подключить дальномер к Arduino с помощью <u>соединительных провода «мама-</u><u>мама»</u>.

Схема устройства

Библиотека iarduino_HC_SR04_int позволяет на пин TRIG вешать любой контакт вводавывода, а на пин ECHO требует контакт с поддержкой внешнего прерывания. Для примера повесим контакты датчика расстояния TRIG и ECHO на пины контроллера 3 и 2.

// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 3;
constexpr uint8_t PIN_SENSOR_ECHO = 2;

Схема устройства с Trema Shield

Программная настройка

- Скачайте и настройте Arduino IDE.
- <u>Скачайте и установите библиотеку iarduino_HC_SR04_int.</u>

Программный код

// Библиотека для работы с дальномером #include <iarduino_HC_SR04_int.h>

```
// Назначаем пины датчика расстояния
constexpr uint8_t PIN_SENSOR_TRIG = 3;
constexpr uint8_t PIN_SENSOR_ECHO = 2;
// Создаем объект для работы с дальномером
// и передаем в него пины TRIG и ECHO
iarduino_HC_SR04_int sensor(PIN_SENSOR_TRIG, PIN_SENSOR_ECHO);
void setup(){
 // Открываем Serial-порт
 Serial.begin(9600);
void loop(){
 // Вычисляем расстояние до объекта
 int sensorDistance = sensor.distance();
 // Выводим расстояние в Serial-порт
 Serial.print(sensorDistance);
 Serial.println(" cm");
 // Ждём 100 мс
 delay(100);
}
```

Результат работы

После прошивки устройства, дальномер будем считывать расстояние до преграды и выводить в консоль.

Габаритный чертёж

Комплектация

• 1× Плата-модуль

Характеристики

- Модель: Ультразвуковой дальномер Roborace HC-SR04
- Напряжение питания Vcc: 3,3-5 В
- Напряжение логических уровней: 3,3-5 В
- Аппаратный интерфейс: 4×PLS
- Программный интерфейс: цифровой сигнал
- Диапазон измерений: 2-400 см
- Погрешность: 0,3 см
- Эффективный угол обзора: 15°
- Размеры: 68,5×23,4×20,4 мм