XMC4500

Microcontroller Series for Industrial Applications

XMC4000 Family

ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M4
32-bit processor core

Data Sheet V1. 4 2016-01

Edition 2016-01

Published by Infineon Technologies AG 81726 Munich, Germany
© 2016 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC4500
Microcontroller Series
for Industrial Applications
XMC4000 Family

ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M4
32-bit processor core

Data Sheet
V1.4 2016-01

XMC4500 Data Sheet

Revision History: V1.4 2016-01

Previous Versions:
V1.3, 2014-03
V1.2, 2013-07
V1.1, 2013-07
V1.0, 2013-01
V0.9, 2012-12
V0.8, 2012-11

Page	Subjects
$\mathbf{4 3}$	Added information that $\overline{\text { PORST Pull-up is identical to the pull-up on }}$ standard I/O pins.
$\mathbf{4 2}$	Added footnote explaining minimum $V_{\text {BAT }}$ requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
$\mathbf{5 9}$	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
$\mathbf{6 1}$	Relaxed RTC_XTAL $V_{\text {PPX }}$ parameter value and changed it to a system requirement.
$\mathbf{1 1 5 f f}$	Added PG-LQFP-100-25 and PG-LQFP-144-24 package information.
$\mathbf{1 1 5}$	Added tables describing the differences between PG-LQFP-100-11 to PG- LQFP-100-25 as well as PG-LQFP-144-18 to PG-LQFP-144-24 packages.

Trademarks

C166 ${ }^{\text {TM }}$, TriCore ${ }^{\text {TM }}$, XMC $^{\text {TM }}$ and DAVE ${ }^{\text {TM }}$ are trademarks of Infineon Technologies AG. ARM ${ }^{\circledR}$, ARM Powered ${ }^{\circledR}$, Cortex ${ }^{\circledR}$, Thumb ${ }^{\circledR}$ and AMBA $^{\circledR}$ are registered trademarks of ARM, Limited.

CoreSight ${ }^{\text {TM }}$, ETM $^{\text {TM }}$, Embedded Trace Macrocell ${ }^{\text {TM }}$ and Embedded Trace Buffer ${ }^{\text {TM }}$ are trademarks of ARM, Limited.
Synopsys ${ }^{\text {TM }}$ is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table of Contents

Table of Contents 5
About this Document 7
1 Summary of Features 8
1.1 Ordering Information 10
1.2 Device Types 11
1.3 Device Type Features 11
1.4 Definition of Feature Variants 12
1.5 Identification Registers 13
2 General Device Information 14
2.1 Logic Symbols 14
2.2 Pin Configuration and Definition 17
2.2.1 Package Pin Summary 20
2.2.2 Port I/O Functions 27
2.2.2.1 Port I/O Function Table 28
2.3 Power Connection Scheme 34
3 Electrical Parameters 36
3.1 General Parameters 36
3.1.1 Parameter Interpretation 36
3.1.2 Absolute Maximum Ratings 37
3.1.3 Pin Reliability in Overload 38
3.1.4 Pad Driver and Pad Classes Summary 41
3.1.5 Operating Conditions 42
3.2 DC Parameters 43
3.2.1 Input/Output Pins 43
3.2.2 Analog to Digital Converters (VADC) 49
3.2.3 Digital to Analog Converters (DAC) 53
3.2.4 Out-of-Range Comparator (ORC) 56
3.2.5 Die Temperature Sensor 58
3.2.6 USB OTG Interface DC Characteristics 59
3.2.7 Oscillator Pins 61
3.2.8 Power Supply Current 65
3.2.9 Flash Memory Parameters 68
3.3 AC Parameters 69
3.3.1 Testing Waveforms 69
3.3.2 Power-Up and Supply Monitoring 70
3.3.3 Power Sequencing 71
3.3.4 Phase Locked Loop (PLL) Characteristics 73
3.3.5 Internal Clock Source Characteristics 74
3.3.6 JTAG Interface Timing 76
3.3.7 Serial Wire Debug Port (SW-DP) Timing 78
3.3.8 Embedded Trace Macro Cell (ETM) Timing 79
3.3.9 Peripheral Timing 80
3.3.9.1 Delta-Sigma Demodulator Digital Interface Timing 80
3.3.9.2 Synchronous Serial Interface (USIC SSC) Timing 81
3.3.9.3 Inter-IC (IIC) Interface Timing 84
3.3.9.4 Inter-IC Sound (IIS) Interface Timing 86
3.3.9.5 SDMMC Interface Timing 88
3.3.10 EBU Timing 96
3.3.10.1 EBU Asynchronous Timing 96
3.3.10.2 EBU Burst Mode Access Timing 103
3.3.10.3 EBU Arbitration Signal Timing 105
3.3.10.4 EBU SDRAM Access Timing 106
3.3.11 USB Interface Characteristics 110
3.3.12 Ethernet Interface (ETH) Characteristics 111
3.3.12.1 ETH Measurement Reference Points 111
3.3.12.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) 112
3.3.12.3 ETH MII Parameters 113
3.3.12.4 ETH RMII Parameters 114
4 Package and Reliability 115
4.1 Package Parameters 115
4.1.1 Thermal Considerations 115
4.2 Package Outlines 117
4.3 Quality Declarations 122

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4500 series devices.
The document describes the characteristics of a superset of the XMC4500 series devices. For simplicity, the various device types are referred to by the collective term XMC4500 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
- decribes the functionality of the superset of devices.
- Data Sheets
- list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
- list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.
Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC4500 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense \& Control.

Figure $1 \quad$ System Block Diagram

CPU Subsystem

- CPU Core
- High Performance 32-bit ARM Cortex-M4 CPU
- 16-bit and 32-bit Thumb2 instruction set
- DSP/MAC instructions
- System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- Two General Purpose DMA with up-to 12 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests

XMC4500
XMC4000 Family
Summary of Features

- Flexible CRC Engine (FCE) for multiple bit error detection

On-Chip Memories

- 16 KB on-chip boot ROM
- 64 KB on-chip high-speed program memory
- 64 KB on-chip high speed data memory
- 32 KB on-chip high-speed communication
- 1024 KB on-chip Flash Memory with 4 KB instruction cache

Communication Peripherals

- Ethernet MAC module capable of $10 / 100 \mathrm{Mbit} / \mathrm{s}$ transfer rates
- Universal Serial Bus, USB 2.0 host, Full-Speed OTG, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with 3 nodes, 64 message objects (MO), data rate up to $1 \mathrm{MBit} / \mathrm{s}$
- Six Universal Serial Interface Channels (USIC),providing 6 serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface
- SD and Multi-Media Card interface (SDMMC) for data storage memory cards
- External Bus Interface Unit (EBU) enabling communication with external memories and off-chip peripherals

Analog Frontend Peripherals

- Four Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Delta Sigma Demodulator with four channels, digital input stage for A/D signal conversion
- Digital-Analogue Converter (DAC) with two channels of 12 -bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Two Position Interfaces (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- Various interfaces: ARM-JTAG, SWD, single wire trace

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC4<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
- E: LFBGA
- F: LQFP
- Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
- F: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- X: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- K: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- <FFFF> the Flash memory size.

For ordering codes for the XMC4500 please contact your sales representative or local distributor.
This document describes several derivatives of the XMC4500 series, some descriptions may not apply to a specific product.
For simplicity the term XMC4500 is used for all derivatives throughout this document.

XMC4500
XMC4000 Family
Summary of Features

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XMC4500 Device Types

Derivative $^{\mathbf{1})}$	Package	Flash Kbytes	SRAM Kbytes
XMC4500-E144×1024	PG-LFBGA-144	1024	160
XMC4500-F144×1024	PG-LQFP-144	1024	160
XMC4500-F100x1024	PG-LQFP-100	1024	160
XMC4500-F144x768	PG-LQFP-144	768	160
XMC4500-F100x768	PG-LQFP-100	768	160
XMC4502-F100x768	PG-LQFP-100	768	160
XMC4504-F144×512	PG-LQFP-144	512	128
XMC4504-F100×512	PG-LQFP-100	512	128

1) x is a placeholder for the supported temperature range.

1.3 Device Type Features

The following table lists the available features per device type.
Table 2 Features of XMC4500 Device Types

Derivative ${ }^{1)}$	LEDTS Intf.	SDMMC Intf.	$\begin{aligned} & \text { EBU } \\ & \text { Intf. } \end{aligned}$	$\begin{aligned} & \text { ETH } \\ & \text { Intf. } \\ & \text { 3) } \end{aligned}$	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4500-E144x1024	1	1	SDM	MR	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$
XMC4500-F144x1024	1	1	SDM	MR	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$
XMC4500-F100x1024	1	1	M16	R	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$
XMC4500-F144x768	1	1	SDM	MR	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$
XMC4500-F100x768	1	1	M16	R	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$
XMC4502-F100x768	1	1	M16	-	1	3×2	$\begin{aligned} & \text { N0, N1, N2 } \\ & \text { MO[0..63] } \end{aligned}$

XMC4500
XMC4000 Family
Summary of Features
Table 2 Features of XMC4500 Device Types (cont'd)

Derivative $^{\mathbf{1})}$	LEDTS Intf.	SDMMC Intf.	EBU Intf. $\left.{ }^{2}\right)$	ETH Intf. 3)	USB Intf.	USIC Chan.	MultiCAN Nodes, MO XMC4504-F144×512 XMC4504-F100×512 1 1

1) x is a placeholder for the supported temperature range.
2) Memory types supported S=SDRAM, D=DEMUX, M=MUX 16-bit and 32-bit, M16=MUX 16-bit
3) Supported interfaces, M=MII, R=RMII.

Table 3 Features of XMC4500 Device Types

Derivative $^{\mathbf{1}}$	ADC Chan.	DSD Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.
XMC4500-E144×1024	32	4	2	4×4	2×4	2
XMC4500-F144×1024	32	4	2	4×4	2×4	2
XMC4500-F100×1024	24	4	2	4×4	2×4	2
XMC4500-F144×768	32	4	2	4×4	2×4	2
XMC4500-F100×768	24	4	2	4×4	2×4	2
XMC4502-F100×768	24	4	2	4×4	2×4	2
XMC4504-F144×512	32	4	2	4×4	2×4	2
XMC4504-F100×512	24	4	2	4×4	2×4	2

1) x is a placeholder for the supported temperature range.

1.4 Definition of Feature Variants

The XMC4500 types are offered with several memory sizes and number of available VADC channels. Table 4 describes the location of the available Flash memory, Table 5 describes the location of the available SRAMs, Table 6 the available VADC channels.

Table 4 Flash Memory Ranges

Total Flash Size	Cached Range	Uncached Range
512 Kbytes	$0800 \mathrm{0000}_{\mathrm{H}^{-}}$ $0807 \mathrm{FFFF}_{\mathrm{H}}$	$0 \mathrm{CO0} 0000_{\mathrm{H}}-$ $0 \mathrm{OC07} \mathrm{FFFF}_{\mathrm{H}}$

XMC4500

Table $4 \quad$ Flash Memory Ranges (cont'd)

Total Flash Size	Cached Range	Uncached Range
768 Kbytes	$\begin{aligned} & 0800 \mathrm{OOOO}_{\mathrm{H}}- \\ & 080 \mathrm{BFFF} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 0 \mathrm{OCOO} 0000_{\mathrm{H}}- \\ & \text { 0COB FFFFF } \end{aligned}$
1,024 Kbytes	$\begin{aligned} & 08000000_{H}- \\ & 080 F \mathrm{FFFF}_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 0 \mathrm{OCOO} 000 \mathrm{H}_{\mathrm{H}}- \\ & \text { 0COF } \mathrm{FFFF}_{\mathrm{H}} \end{aligned}$

Table 5 SRAM Memory Ranges

Total SRAM Size	Program SRAM	System Data SRAM	Communication Data SRAM
128 Kbytes	$1000{0000_{H}-}^{1000 \mathrm{FFFF}_{\mathrm{H}}}$	$20000000_{\mathrm{H}}-$ $2000 \mathrm{FFFF}_{\mathrm{H}}$	-
160 Kbytes	$1000{0000_{\mathrm{H}}-}_{1000 \mathrm{FFFF}_{\mathrm{H}}}$	$20000000_{\mathrm{H}}-$	$3000 \mathrm{OFOOO}_{\mathrm{H}}-$
	$2000 \mathrm{FFFF}_{\mathrm{H}}$	$30007 \mathrm{FFF}_{\mathrm{H}}$	

Table $6 \quad$ ADC Channels ${ }^{1)}$

Package	VADC G0	VADC G1	VADC G2	VADC G3
PG-LQFP-144 PG-LFBGA-144	$\mathrm{CH} 0 . . \mathrm{CH} 7$			
PG-LQFP-100	$\mathrm{CH} 0 . . \mathrm{CH} 7$	$\mathrm{CH} 0 . . \mathrm{CH} 7$	$\mathrm{CH} 0 . . \mathrm{CH} 3$	$\mathrm{CH} 0 . . \mathrm{CH} 3$

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

$1.5 \quad$ Identification Registers

The identification registers allow software to identify the marking.
Table $7 \quad$ XMC4500 Identification Registers

Register Name	Value	Marking
SCU_IDCHIP	00045002_{H}	EES-AA, ES-AA
SCU_IDCHIP	00045003_{H}	ES-AB, AB
SCU_IDCHIP	00045004_{H}	AC
JTAG IDCODE	101D 8083_{H}	EES-AA, ES-AA
JTAG IDCODE	101D B083	
JTAG IDCODE	401D B083	ES-AB, AB

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure $2 \quad$ XMC4500 Logic Symbol PG-LQFP-144

General Device Information

Figure 3 XMC4500 Logic Symbol PG-LFBGA-144

General Device Information

Figure $4 \quad$ XMC4500 Logic Symbol PG-LQFP-100

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the four sides of the different packages.

Figure $5 \quad$ XMC4500 PG-LQFP-144 Pin Configuration (top view)

XMC4500 XMC4000 Family

General Device Information

A	1	2	3	4	5	6	7	8	9	10	11	12	
	VSS	VDDC	P0.2	P0.3	P 0.5	P0.6	P3.6	P0.8	P4.1	P 1.8	VDDP	VSS	A
B	VDDP	P3.1	P3.2	P0. 10	P 0.4	P3.5	P 0.7	P 4.0	P1.6	P 1.7	P1.9	VDDC	B
C	P3.0	P3. 13	P0.1	P0.0	P0. 13	P0. 15	P 4.4	P4.6	P4.7	P 1.4	P1.2	P1.3	C
D	USB_D M	P3. 12	P3. 11	P0.9	P0. 12	P3. 14	P3. 15	P4.5	P1.0	P 1.5	P111	P110	D
E	USB_D P	VBUS	P3.8	P3.7	P0.11	P0. 14	P3.4	P4.2	P1.1	P114	P112	P113	E
F	$\left\lvert\, \begin{gathered} \text { RTC_X } \\ \text { TAL2 } \end{gathered}\right.$	$\begin{gathered} \text { RTC_X } \\ \text { TAL1 } \end{gathered}$	$\begin{gathered} \text { HIB_I } \\ \mathrm{O}_{1} _1 \end{gathered}$	$\begin{gathered} \text { HIB_I } \\ \mathrm{O}_{-} \mathrm{O} \end{gathered}$	P3.9	P3. 10	P3.3	P4.3	P6.1	P6.4	P6.5	P6.6	F
G	VBAT	P15.3	P15.5	P 15.4	P 15.6	P 15.7	TMS	TCK	P6.3	P6.0	$\overline{\text { PORS }}$	P115	G
H	P15.2	P 14.15	P14.14	P 14.13	P5. 10	P 5.8	P 5.2	P5.1	P5.0	P6.2	XTAL1	XTAL2	H
J	P14.12	P14.7	P 14.6	P14.3	P5. 11	P2 15	P 5.7	P5.5	P2.6	P5.3	P2.0	vsso	J
K	P14.4	P14.5	P14.2	P 15.15	P 15.12	P 5.9	P2 14	P5.6	P2.7	P 5.4	P2.2	P2.1	K
L	VDDA	P14.1	P14.0	P 15.14	P14.9	P15.9	P212	P2 10	P2.8	P2.4	P2.3	VDDP	L
M	VSSA	vagnd	VAREF	P 15.13	P14.8	P15.8	P213	P2 11	P2.9	P2.5	VDDC	VSS	M
	1	2	3	4	$\begin{aligned} & 5 \\ & \mathrm{XM} \end{aligned}$	$\begin{gathered} 6 \\ 4500 \end{gathered}$	7 (top	$\begin{gathered} 8 \\ e w) \end{gathered}$	9	10	11	12	

Figure 6 XMC4500 PG-LFBGA-144 Pin Configuration (top view)

Figure $7 \quad$ XMC4500 PG-LQFP-100 Pin Configuration (top view)

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:
Table $8 \quad$ Package Pin Mapping Description

Function	Package A	Package B	\ldots	Pad Type	Notes
Name	N	Ax	\ldots	A2	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. $\overline{\text { PORST }}$) and supply pins.
The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.
The "Pad Type" indicates the employed pad type (A1, A1+, A2, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.
In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Table $9 \quad$ Package Pin Mapping

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P0.0	2	C4	2	A1+	
P0.1	1	C3	1	A1+	
P0.2	144	A3	100	A2	
P0.3	143	A4	99	A2	
P0.4	142	B5	98	A2	
P0.5	141	A5	97	A2	
P0.6	140	A6	96	A2	
P0.7	128	B7	89	A2	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	127	A8	88	A2	After a system reset, via HWSEL this pin selects the $\overline{\text { DB.TRST function, }}$ with a weak pull-down active.
P0.9	4	D4	4	A2	
P0.10	3	B4	3	A1+	

Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P0.11	139	E5	95	A1+	
P0.12	138	D5	94	A1+	
P0.13	137	C5	-	A1+	
P0.14	136	E6	-	A1+	
P0.15	135	C6	-	A1+	
P1.0	112	D9	79	A1+	
P1.1	111	E9	78	A1+	
P1.2	110	C11	77	A2	
P1.3	109	C12	76	A2	
P1.4	108	C10	75	A1+	
P1.5	107	D10	74	A1+	
P1.6	116	B9	83	A2	
P1.7	115	B10	82	A2	
P1.8	114	A10	81	A2	
P1.9	113	B11	80	A2	
P1.10	106	D12	73	A1+	
P1.11	105	D11	72	A1+	
P1.12	104	E11	71	A2	
P1.13	103	E12	70	A2	
P1.14	102	E10	69	A2	
P1.15	94	G12	68	A2	
P2.0	74	J11	52	A2	
P2.1	73	K12	51	A2	After a system reset, via HWSEL this pin selects the DB.TDO function.
P2.2	72	K11	50	A2	
P2.3	71	L11	49	A2	
P2.4	70	L10	48	A2	
P2.5	69	M10	47	A2	
P2.6	76	J9	54	A1+	
P2.7	75	K9	53	A1+	
P2.8	68	L9	46	A2	
P2.9	67	M9	45	A2	

Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P2.10	66	L8	44	A2	
P2.11	65	M8	-	A2	
P2.12	64	L7	-	A2	
P2.13	63	M7	-	A2	
P2.14	60	K7	41	A2	
P2.15	59	J6	40	A2	
P3.0	7	C1	7	A2	
P3.1	6	B2	6	A2	
P3.2	5	B3	5	A2	
P3.3	132	F7	93	A1+	
P3.4	131	E7	92	A1+	
P3.5	130	B6	91	A2	
P3.6	129	A7	90	A2	
P3.7	14	E4	-	A1+	
P3.8	13	E3	-	A1+	
P3.9	12	F5	-	A1+	
P3.10	11	F6	-	A1+	
P3.11	10	D3	-	A1+	
P3.12	9	D2	-	A2	
P3.13	8	C2	-	A2	
P3.14	134	D6	-	A1+	
P3.15	133	D7	-	A1+	
P4.0	124	B8	85	A2	
P4.1	123	A9	84	A2	
P4.2	122	E8	-	A1+	
P4.3	121	F8	-	A1+	
P4.4	120	C7	-	A1+	
P4.5	119	D8	-	A1+	
P4.6	118	C8	-	A1+	
P4.7	117	C9	-	A1+	
P5.0	84	H9	58	A1+	
P5.1	83	H8	57	A1+	
	H7	56	A1+		

Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P5.3	81	J10	-	A2	
P5.4	80	K10	-	A2	
P5.5	79	J8	-	A2	
P5.6	78	K8	-	A2	
P5.7	77	J7	55	A1+	
P5.8	58	H6	-	A2	
P5.9	57	K6	-	A2	
P5.10	56	H5	-	A1+	
P5.11	55	J5	-	A1+	
P6.0	101	G10	-	A2	
P6.1	100	F9	-	A2	
P6.2	99	H10	-	A2	
P6.3	98	G9	-	A1+	
P6.4	97	F10	-	A2	
P6.5	96	F11	-	A2	
P6.6	95	F12	-	A2	
P14.0	42	L3	31	AN/DIG_IN	
P14.1	41	L2	30	AN/DIG_IN	
P14.2	40	K3	29	AN/DIG_IN	
P14.3	39	J4	28	AN/DIG_IN	
P14.4	38	K1	27	AN/DIG_IN	
P14.5	37	K2	26	AN/DIG_IN	
P14.6	36	J3	25	AN/DIG_IN	
P14.7	35	J2	24	AN/DIG_IN	
P14.8	52	M5	37	AN/DAC/DI	
P14.9	51	L5	36	AN/DAC/DI	
P15.2	30	H1	19	AN/DIG_IN	
P14.12	34	J1	23	AN/DIG_IN	
P14.13	33	H4	22	AN/DIG_IN	
P14.14	32	H3	21	AN/DIG_IN	
P14.15	31	H2	20	AN/DIG_IN	

Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
P15.3	29	G2	18	AN/DIG_IN	
P15.4	28	G4	-	AN/DIG_IN	
P15.5	27	G3	-	AN/DIG_IN	
P15.6	26	G5	-	AN/DIG_IN	
P15.7	25	G6	-	AN/DIG_IN	
P15.8	54	M6	39	AN/DIG_IN	
P15.9	53	L6	38	AN/DIG_IN	
P15.12	50	K5	-	AN/DIG_IN	
P15.13	49	M4	-	AN/DIG_IN	
P15.14	44	L4	-	AN/DIG_IN	
P15.15	43	K4	-	AN/DIG_IN	
USB_DP	16	E1	9	special	
USB_DM	15	D1	8	special	
HIB_IO_0	21	F4	14	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as opendrain output and drives " 0 ". As output the medium driver mode is active.
HIB_IO_1	20	F3	13	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. As output the medium driver mode is active.
TCK	93	G8	67	A1	Weak pull-down active.
TMS	92	G7	66	A1+	Weak pull-up active. As output the strong-soft driver mode is active.
$\overline{\overline{\text { PORST }}}$	91	G11	65	special	Weak pull-up permanently active, strong pull-down controlled by EVR.
XTAL1	87	H11	61	clock_IN	
XTAL2	88	H12	62	clock_O	

Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
RTC_XTAL1	22	F2	15	clock_IN	
RTC_XTAL2	23	F1	16	clock_O	
VBAT	24	G1	17	Power	When VDDP is supplied VBAT has to be supplied as well.
VBUS	17	E2	10	special	
VAREF	46	M3	33	AN_Ref	
VAGND	45	M2	32	AN_Ref	
VDDA	48	L1	35	AN_Power	
VSSA	47	M1	34	AN_Power	
VDDC	19	-	12	Power	
VDDC	61	-	42	Power	
VDDC	90	-	64	Power	
VDDC	125	-	86	Power	
VDDC	-	A2	-	Power	
VDDC	-	B12	-	Power	
VDDC	-	M11	-	Power	
VDDP	18	-	11	Power	
VDDP	62	-	43	Power	
VDDP	86	-	60	Power	
VDDP	126	-	87	Power	
VDDP	-	A11	-	Power	
VDDP	-	B1	-	Power	
VDDP	-	L12	-	Power	
VSS	85	-	59	Power	
VSS	-	A1	-	Power	
VSS	-	A12	-	Power	
VSS	-	M12	-	Power	

General Device Information
Table $9 \quad$ Package Pin Mapping (cont'd)

Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes
VSSO	89	J12	63	Power	
VSS	Exp. Pad	-	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

2.2.2 Port I/O Functions

The following general scheme is used to describe each Port pin:

Table 10 Port I/O Function Description

Function	Outputs			Inputs		
	ALT1	ALTn	HWO0	HWI0	Input	Input
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA	
Pn.y	MODA.OUT				MODA.INA	MODC.INB

Figure 8 Simplified Port Structure
Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.
Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).
The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.
The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.
By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWIO, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.
Port I/O Function Table
Port I/O Functions (cont'd)

Function	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	HWOO	HWO1	HWIO	HWII	Input							
P1.5	${ }_{\|c\|}^{\text {CAN. }}$	voco. DOUTO	ccuso OUT23	ccusı. OUT10	voco. DOUT0		voco. HWINO		uoco. DXOA	CAN. NO_RXDA	$\begin{aligned} & \text { ERUO. } \\ & 2 A 0 \end{aligned}$	ERU1. OAO	ccu41. \|in1c	DS DIN2B		
P1.6		voco. SCLKOUT			SDMMC. DATA1_OUT	$\begin{array}{\|l\|l\|} \text { EBUU. } \\ \text { AD10 } \end{array}$	SDMMC. DATA1_IN	$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \text { D10 } \end{array}$	DSD. DIN2A							
P1.7		uoco. DOUTO	DSD. MCLK2		SDMMC. DATA2_OUT	$\left\lvert\, \begin{aligned} & \text { EBU, } \\ & \text { AD11 } \end{aligned}\right.$	SDMMC DATA2_IN	$\left\lvert\, \begin{aligned} & \text { EBU. } \\ & \text { D11 } \end{aligned}\right.$		DSD. MCLK2A						
P1.8		voco. SELOI	DSD. MCLK1		SDMMC. DATAA_OUT	Eвu. AD12	SDMMC DATA4_IN	$\left\lvert\, \begin{array}{\|l\|} \text { EBu. } \\ \text { D12 } \end{array}\right.$	CAN. N2_RXDA	DSD. MCLK1A						
P1.9		$\begin{aligned} & \text { CAN. } \\ & \text { N2_TXD } \end{aligned}$			SDMMC. DATA5_OUT	$\begin{array}{\|l\|} \hline \text { EBU, } \\ \text { AD13 } \end{array}$	SDMMC. DATA5_IN	$\left\lvert\, \begin{aligned} & \mathrm{EBU}, \\ & \mathrm{D} 13 \end{aligned}\right.$		DSD. MCLKOA						
P1.10	$\begin{aligned} & \text { ETHO. } \\ & \mathrm{MDC} \end{aligned}$	voco. sCLKOUT	$\begin{aligned} & \text { ccu81. } \\ & \text { ouT21 } \end{aligned}$				$\frac{\overline{\text { SDMMC. }}}{}$						$\left\lvert\, \begin{aligned} & \mathrm{c} C \mathrm{Cu1.} . \\ & \mathrm{N} 2 \mathrm{C} \end{aligned}\right.$			
P1.11		voco. SELOO	$\begin{aligned} & \text { CCUB1. } \\ & \text { ouT11 } \end{aligned}$		$\begin{aligned} & \text { ETHO. } \\ & \text { MDO } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { MDIC } \end{array}$						CCU41. \|in3C			
P1.12	$\begin{aligned} & \text { ETHO. } \\ & \text { TX_EN } \end{aligned}$	CAN. N1_TXD	ccus1. OUTO1		SDMMC. DATA6_OUT	$\begin{array}{\|l\|} \hline \text { EBU. } \\ \text { AD16 } \end{array}$	SDMMC. DATA6_IN	$\begin{array}{\|l\|l\|} \hline \text { EBU } \\ \text { DB } \end{array}$								
P1.13	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { TXDO } \end{array}$	$\begin{array}{\|l\|l} \hline \text { UOC1. } \\ \text { SELO3 } \end{array}$	$\begin{aligned} & \text { ccus1. } \\ & \text { ouT20 } \end{aligned}$		SDMMC. DATA7_OUT	$\left\lvert\, \begin{array}{\|l\|l\|} \text { ADDU } \end{array}\right.$	SDMMC. DATA7_IN	$\left\lvert\, \begin{aligned} & \mathrm{EBU} . \\ & \mathrm{D} 17 \end{aligned}\right.$	CAN. N1_RXDC							
P1.14	$\begin{array}{\|l\|l\|} \hline \text { ETHO, } \\ \text { TXD } \end{array}$	voci. SELO2	$\begin{aligned} & \text { ccus1. } \\ & \text { OUT10 } \end{aligned}$			$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \text { AD18 } \end{array}$		$\begin{array}{\|l\|l} \begin{array}{l} \text { EBu } \\ \text { D18 } \end{array} \end{array}$								
P1.15	SCU. EXTCLK	DSD. MCLK2	$\begin{aligned} & \text { ccus1. } \\ & \text { ouT00 } \end{aligned}$			$\begin{array}{\|l\|l\|} \hline \text { EBUU, } \\ \text { AD19 } \end{array}$		$\begin{array}{\|l\|l} \text { EBu, } \\ \text { D19 } \end{array}$		DSD. MCLK2B		ERU1. $1 \mathrm{~A} 0$				
P2.0		$\begin{aligned} & \text { ccu81. } \\ & \text { OUT21 } \end{aligned}$	DSD. CGPWMN	LEDTSO. COL1	$\begin{aligned} & \text { ЕTHO. } \\ & \text { MDO } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { EBU } \\ & \text { AD20 } \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { MDIB } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \hline \text { D20 } \\ \hline \end{array}$			$\begin{array}{\|l\|l\|} \hline \text { ERUO, } \\ \text { OB3 } \end{array}$		ccu40. \|iN1c			
P2.1		ccusı OUT11	DSD. CGPWMP	LEDTSO. COLO	DB.TDO/ TRACESWO	$\left.\right\|_{\text {AD21 }} ^{\text {EBU }}$		$\begin{array}{\|l\|} \hline \mathrm{EBU}, \\ \mathrm{D} 21 \\ \hline \end{array}$	ETHO. CLK_RMIIA			ERU1. OB0	ccu40. \|INOC			ETHO. CLKRXA
P2.2	VADC. EMUXOO	$\begin{aligned} & \text { ccu81. } \\ & \text { outo1 } \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \text { CCU41. } \\ \text { OUT3 } \end{array}$	LEDTSO. LINEO	$\begin{array}{\|l\|} \hline \text { LEDTSO. } \\ \text { EXTENDEDO } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \text { AD22 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { LEDTSOO. } \\ \text { TSINOA } \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{EBU} \\ & \mathrm{D} 22 \end{aligned}\right.$	$\begin{aligned} & \text { ETHO. } \\ & \text { RXDOA } \end{aligned}$	$\begin{array}{\|l\|l\|l} \hline \text { UOC1. } \\ \text { DXOA } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { ERUO. } \\ \text { 1B2 } \end{array}$		ccual. IN3A			
P2.3	VADC. EMUX01	voci. SELOO	$\begin{array}{l\|l} \hline \text { ccu41. } \\ \text { OUT2 } \end{array}$	LEDTSO. LINE1	LEDTSO. EXTENDED1	$\left\lvert\, \begin{aligned} & \text { EBU. } \\ & \text { AD23 } \end{aligned}\right.$	LEDTSO. TSIN1A	$\left\lvert\, \begin{aligned} & \text { EBU } \\ & \text { D23 } \end{aligned}\right.$	ETHO. RXD1A	voci. DX2A	$\begin{array}{\|l\|l\|} \hline \text { ERUO. } \\ \text { 1A2 } \end{array}$	POSIF1 IN2A	ccu41. IN2A			
P2.4	vadc. EMUX02	vocl. SCLKOUT	$\begin{array}{\|l} \text { ccu41. } \\ \text { out1 } \end{array}$	LEDTSO. LINE2	LEDTSO. EXTENDED2	$\begin{array}{\|l\|} \text { EBU } \\ \text { AD24 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { LEDTSO } \\ \hline \text { TSIN2A } \end{array}$	$\left\lvert\, \begin{aligned} & \text { EBU } \\ & \text { D24 } \end{aligned}\right.$	ETHO. RXERA	voci DX1A	$\left\lvert\, \begin{aligned} & \text { ERUO. } \\ & \text { OB2 } \end{aligned}\right.$	POSIF1.	ccu41. IN1A			
P2.5	$\begin{array}{\|l\|} \hline \text { ETHO. } \\ \text { TX_EN } \\ \hline \end{array}$	$\begin{aligned} & \text { UOCLI. } \\ & \text { DOUTO } \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l} \text { cCU41. } \\ \text { OUT0 } \end{array}$	LEDTSO. LINE3	$\begin{array}{\|l\|} \hline \text { LEDTSO. } \\ \text { EXTENDED3 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EBU, } \\ \text { AD25 } \\ \hline \end{array}$	$\begin{aligned} & \text { LEDTSO. } \\ & \text { TSIN3A } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \hline \text { D25 } \\ \hline \end{array}$	$\begin{aligned} & \text { ETHO. } \\ & \text { RXDVA } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{UOC1} \\ \mathrm{DXOB} \\ \hline \end{array}$	$\begin{array}{\|l\|} \text { ERUO. } \\ \text { OA2 } 2 \end{array}$	$\begin{aligned} & \text { POSAFI } \\ & \text { INOA } \end{aligned}$	$\begin{aligned} & \text { CCUA1. } \\ & \text { INOA } \end{aligned}$			$\begin{array}{\|l\|} \hline \text { ETHO. } \\ \text { CRS_DVA } \\ \hline \end{array}$
P2.6	$\begin{array}{\|l\|l} \text { U2C0. } \\ \text { SELO4 } \end{array}$			$\begin{array}{\|l\|l} \text { LEDTSO. } \\ \text { COL3 } \end{array}$	$\begin{array}{\|l\|l} \hline \text { U2C0. } \\ \text { DOUT3 } \\ \hline \end{array}$		$\begin{aligned} & \text { U2Co. } \\ & \text { HWIN3 } \end{aligned}$		$\begin{array}{\|l\|l} \hline \text { DSD. } \\ \text { DIN1B } \end{array}$	CAN. N1_RXDA	$\begin{array}{\|l\|l\|} \hline \text { ERUO. } \\ \text { 1B3 } \end{array}$		$\begin{array}{\|l\|l\|l\|} \hline \text { ccu40. } \\ \text { in3C } \end{array}$			
P2.7	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { MDC } \end{array}$	$\left\lvert\, \begin{aligned} & \text { CAN } \\ & \text { N1_TXD } \end{aligned}\right.$	$\begin{aligned} & \text { ccuso. } \\ & \text { OUT03 } \end{aligned}$	LEDTSO. COL2					DSD. DINOB			$\begin{array}{\|l\|l} \text { ERU1. } \\ \text { 1B0 } \end{array}$	$\begin{aligned} & \text { CCU40. } \\ & \text { IN2C } \end{aligned}$			
P2.8	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { TXDO } \end{array}$		$\begin{array}{\|l\|l} \text { ccuso. } \\ \text { ouT32 } \end{array}$	LEDTSO. LINE4	LEDTSO EXTENDED4	$\begin{array}{\|l\|l} \text { EBU. } \\ \text { AD26 } \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { EBU, } \\ \mathrm{D} 26 \\ \hline \end{array}$	dac. TRIGGER5				$\begin{array}{\|l\|l} \hline \text { CCU40. } \\ \text { INOB } \end{array}$	$\begin{aligned} & \text { cCu40. } \\ & \text { IN1B } \end{aligned}$	$\begin{aligned} & \text { CCu40. } \\ & \text { IN2B } \end{aligned}$	$\begin{aligned} & \text { ccu40. } \\ & \text { in } 3 \mathrm{~B} \end{aligned}$
P2.9	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \hline \text { TXD1 } \end{array}$		$\begin{array}{\|l\|l} \hline \text { ccuso, } \\ \text { ouT22 } \end{array}$	LEDTSO. LINE5	$\begin{array}{\|l\|} \hline \text { LEDTSO. } \\ \text { EXTENDED5 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \text { AD27 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { LEDTSO } \\ \hline \text { TSIN5A } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{EBU} . \\ \mathrm{D} 27 \\ \hline \end{array}$	DAC. TRIGGER4				$\begin{array}{\|l} \hline \text { ccu41. } \\ \text { inOB } \end{array}$	$\begin{array}{\|l\|l} \hline \text { cCU41. } \\ \text { iN1B } \end{array}$	$\begin{aligned} & \text { ccual. } \\ & \text { IN2B } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { ccua1. } \\ \text { in } 3 \mathrm{~B} \end{array}$
P2.10	VADC. EMUX10				$\begin{aligned} & \text { DB. } \\ & \text { ETM_TRACEDA } \\ & \text { TA3 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { EBU } \\ & \text { AD28 } \end{aligned}\right.$		$\begin{array}{\|l\|} \hline \text { EBU. } \\ \text { D28 } \end{array}$								
P2.11	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { TXER } \end{array}$		$\begin{aligned} & \text { ccuso. } \\ & \text { out22 } \end{aligned}$		$\begin{aligned} & \text { DB. } \\ & \text { ETA_TRACEDA } \\ & \text { TA2 } \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { EBUU } \\ \text { AD29 } \end{array}\right.$		$\begin{array}{\|l\|l\|} \hline \text { EBU. } \\ \text { D29 } \end{array}$								

Port I／O Functions（cont＇d）

	$\begin{array}{\|l\|l} \underline{\underline{⿳ 亠 口 口 口 口 ~}} \\ \hline \underline{I} \\ \hline \end{array}$		$\begin{aligned} & \text { 管 } \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 尋 } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { oid } \\ & \text { Bub } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 篅至 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 符㯡 } \\ & \hline \end{aligned}$	管鬲亳								$\begin{aligned} & \text { 管芑 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 符 } \\ & \text { 㒸 } \\ & \hline \end{aligned}$			管克呈
	$\begin{aligned} & \underline{⿳ 亠 丷 厂 彡} \\ & \underline{\underline{a}} \\ & \hline \end{aligned}$																							－
	$\begin{aligned} & \underline{\underline{⿳ 亠 二 口 匕}} \\ & \underline{\underline{I}} \\ & \hline \end{aligned}$											－										遃動		
	$\begin{aligned} & \underline{\underline{⿳ 亠 二 口 匕}} \\ & \underline{\underline{I}} \\ & \hline \end{aligned}$				\％				合言									ずす			－	羂	㗢	
	$\begin{array}{\|l\|l} \underline{⿳ 亠 口 冋} \\ \underline{\underline{I}} \\ \hline \end{array}$				$\begin{array}{\|l\|l\|} \hline \text { 운 } \\ \hline \end{array}$	¢ ${ }_{\text {¢ }}^{\text {¢ }}$	遃			发产	遃䞨	迮菏	$\begin{aligned} & \text { Bisive } \\ & \hline \end{aligned}$									景	或落	或落
	\sum_{3}^{2}	离吕	旁吕						詯烤	｜適言	要す	嵒吕										离吕	触吕	
	$\begin{array}{\|l\|l\|} \hline 0 \\ 3 \\ \hline \end{array}$																$\begin{aligned} & \text { din } \\ & \text { 䇪 } \\ & \hline \end{aligned}$	药童	遏毫	这至	$\begin{aligned} & \text { 道至 } \end{aligned}$			
	$\begin{aligned} & \text { IT } \\ & \mathbf{3} \\ & \text { x } \\ & \hline \end{aligned}$	画免	部营	｜${ }^{\text {｜}}$	｜脳滛	｜		｜${ }_{\text {友㻤 }}$			念荌	要号										岦号	詅号	
	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{3} \\ & \hline \end{aligned}$								$\begin{array}{\|l\|l\|} \hline \\ \hline \text { 音 } \\ \hline \end{array}$									U		$\begin{aligned} & 0 \\ & \hline 5015 \\ & \hline \end{aligned}$	$\begin{array}{\|} 40 \\ 505 \\ 50 \\ \hline \end{array}$			

n	$\stackrel{\rightharpoonup}{J}$	운춘						$\begin{aligned} & \dot{0} 8 \\ & \stackrel{y}{4} \text { 品 } \\ & \hline \end{aligned}$		8	ig													
	$\stackrel{\stackrel{n}{4}}{\boxed{4}}$			$\begin{aligned} & \text { ig id } \\ & \text { But } \\ & \hline 0 \end{aligned}$		管号			管爰	管令	答志合			烒管	$\begin{aligned} & \text { İ } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { İ } \\ & 805 \\ & \hline \end{aligned}$		苞管	筞霉			oig	埌	
	$\stackrel{N}{\sqrt{4}}$			$$									$\begin{aligned} & 0 \\ & \substack { 0 \\ \begin{subarray}{c}{x \\ 0 \\ 0{ 0 \\ \begin{subarray} { c } { x \\ 0 \\ 0 } } \\ {\hline} \\ & \hline \end{aligned}$	تذ	$\begin{aligned} & 0 \\ & \substack { x_{1} \\ \begin{subarray}{c}{2 \\ \hline{ x _ { 1 } \\ \begin{subarray} { c } { 2 \\ \hline } } \\ {\hline} \end{aligned}$				迺					$\square^{\circ}{ }^{\circ}$
	$\stackrel{\rightharpoonup}{\sqrt{4}}$					ت巳寸 io				$\begin{aligned} 5 \\ 0 \\ 0 \\ 9 \end{aligned}$	$\begin{aligned} & \text { むiti } \\ & \hline \text { Sig } \\ & \hline \end{aligned}$			Bisi			dis						烒䢭	
$\begin{aligned} & \text { EU } \\ & \stackrel{E}{5} \\ & \stackrel{1}{4} \end{aligned}$		\＃	$\stackrel{\sim}{\sim}$	蜽	$\stackrel{\square}{\sim}$	\％\％	㞕	\％	\％	范	0	\％\％	䄳	®	\％	${ }_{0}^{\text {ci }}$	霛	管	䠃	๕゙2	咢	물		告

Port I/O Functions (cont'd)

Function	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	HWOO	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P4.3	U2C1. SELO2	voco. SELO5	CCU43. OUT3										CCU43. IN3A			
P4.4		voco. SELO4	CCU43. OUT2		U2C1. DOUT3		U2C1. HWIN3						CCU43. IN2A			
P4.5		voco. SELO3	CCU43. OUT1		U2C1. DOUT2		U2C1. HWIN2						CCU43. INIA			
P4.6		voco. SELO2	ccu43. оито		U2C1. DOUT1		U2C1. HWIN1		CAN. N2_RXDC				CCU43. INOA			
P4.7		$\begin{aligned} & \text { CAN } \\ & \text { N2_TXD } \end{aligned}$			$\begin{aligned} & \text { U2C1. } \\ & \text { DOUTO } \end{aligned}$		U2C1. HWINO		$\left\lvert\, \begin{aligned} & \text { uoco. } \\ & \text { Dxoc } \end{aligned}\right.$				$\begin{aligned} & \mathrm{CCU43.} \\ & \text { INOC } \end{aligned}$			
P5.0	U2CO. DOUTO	DSD. CGPWMN	$\begin{array}{\|l} \hline \text { ccu81. } \\ \text { out33 } \end{array}$		U2CO. DOUTO		U2CO. HWINO		U2co. Dxob	ETHO. RXDOD	voco. DXOD		ccu81 INOA	ccu81. IN1A	ccu81. IN2A	ccu81. IN3A
P5.1	voco. DOUT0	DSD. CGPWMP	$\begin{aligned} & \text { ccus1. } \\ & \text { out } 32 \end{aligned}$		U2CO. DOUT1		U2CO. HWIN1		$\begin{array}{\|l\|l\|} \hline \mathrm{U2C0} \\ \mathrm{DXOA} \end{array}$	ETHO. RXD1D			$\begin{array}{\|l\|l\|} \hline \text { ccus1. } \\ \text { inoo } \end{array}$			
P5.2	U2CO. SCLKOUT		$\begin{aligned} & \text { ccus1. } \\ & \text { ouT23 } \end{aligned}$						$\begin{array}{\|l\|l\|} \hline \text { U2CO. } \\ \mathrm{DX1A} \end{array}$	ETHO. CRS_DVD			ccusi. IN1B			ETHO. RXDVD
P5.3	u2co. SELOO		ccus1. OUT22		$\begin{aligned} & \mathrm{EBU}, \\ & \mathrm{CKE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EBU } \\ & \text { A20 } \end{aligned}$			U2co. DX2A	ETHO. RXERD			ccus1. IN2B			
P5.4			$\begin{aligned} & \text { ccus1. } \\ & \text { OUT13 } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \frac{\mathrm{EBU}}{\mathrm{RAS}} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \text { EBU } \\ \text { A. } \end{array}$				$\begin{aligned} & \text { ETHO. } \\ & \text { CRSD } \end{aligned}$			$\begin{aligned} & \text { Ccu81. } \\ & \text { IN3B } \\ & \hline \end{aligned}$			
P5.5	$\left\lvert\, \begin{aligned} & \text { U2CO. } \\ & \text { SELOO } \end{aligned}\right.$		$\begin{aligned} & \text { ccus1. } \\ & \text { OUT12. } \end{aligned}$		$\frac{\text { EBU. }}{\mathrm{CBUS}}$	${ }_{\text {AR22 }}^{\text {EBU. }}$				$\begin{aligned} & \text { ETHO, } \\ & \text { COLD } \end{aligned}$						
P5.6	U2CO. SELO		ccus1. Оит03		EBU BFCLKO	$\begin{array}{\|l\|} \text { EBU } \\ \text { A23 } \end{array}$			EBu. BFCLKI							
P5.7			ccusi. OUT02	LEDTSO COLA	U2CO. DOUT2		U2CO. HWIN2									
P5.8		U1co. SCLKOUT	$\begin{aligned} & \text { ccuso. } \\ & \text { OUTO1 } \end{aligned}$		EBU. SDCLKO	$\frac{\mathrm{EBU}}{\mathrm{CS2}}$			ETHO.	U1c0. DX1B						
P5.9		U1co. SELOO	$\begin{aligned} & \text { ccuso. } \\ & \text { OUT20 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { TX_EN } \end{array}$	EBu. BFCLKO	$\frac{\text { EBU }}{\text { CS3 }}$			ETHO. RXD3A	$\left\lvert\, \begin{aligned} & u_{0 \times 2} 10, \\ & 0 \times 2, \end{aligned}\right.$						
P5.10		U1co. MCLKOUT	ccuso. OUT10	LEDTSO LINE7	LEDTSO EXTENDED7		LEDTSO. TSIN7A		ETHO CLK_TXA							
P5.11		U1CO. SELO1	$\begin{aligned} & \text { ccuso. } \\ & \text { outoo } \end{aligned}$						ETHO CRSA							
P6.0	$\begin{aligned} & \text { ETHO. } \\ & \text { TXO2 } \end{aligned}$	voct. SELO1	$\begin{aligned} & \text { ccu81. } \\ & \text { OUT31 } \end{aligned}$		DB. ETM_TRACECLK	ABU.										
P6.1	$\begin{array}{\|l\|l\|} \text { ETHOO. } \\ \hline \text { TXD } \end{array}$	voct. SELOO	$\begin{aligned} & \text { ccus1. } \\ & \text { OUT30 } \end{aligned}$		$\begin{aligned} & \text { DB. } \\ & \text { ETM_TRACEDA } \\ & \text { TA3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { EBU. } \\ \text { A17 } \end{array}$			DX2C Uoc1.							
P6.2	$\begin{array}{\|l\|l\|} \hline \text { ETHO. } \\ \text { TXXER } \end{array}$	voct. SCLKOUT	$\begin{aligned} & \text { ccu43. } \\ & \text { OUT3 } \end{aligned}$		$\begin{aligned} & \text { DB. } \\ & \text { ETM_TRACEDA } \\ & \text { TA2 } \end{aligned}$	${ }_{\text {ABU }}^{\text {ABU }}$			U0C1. DX1C							
P6.3			CCU43. OUT2						voci. DXOC	ETHO RXD3B						
P6.4		voci. DOUTO	$\begin{aligned} & \text { cCu43. } \\ & \text { OUT1 } \end{aligned}$		EBU. SDCLKO	$\begin{array}{\|l\|l\|} \text { EBU. } \\ \text { A. } \end{array}$			EBu. SDCLKI	ETHO. RXD2B						
P6.5		voci. MCLKOUT	CCU43. OUTO		$\begin{aligned} & \text { DB. } \\ & \text { ETM_TRACEDA } \\ & \text { TA1 } \end{aligned}$	$\frac{\overline{\mathrm{EBU}}}{\mathrm{BC2}}$			DSD. DIN3A	ETHO CLK_RMIID						ETHO. CLKRXD

Port I/O Functions (cont'd)

Port I/O Functions (cont'd)

Function	Outputs						Inputs									
	ALT1	ALT2	ALT3	ALT4	HWOO	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P15.12												VADC. G3CH4				
P15.13												vadc. G3CH5				
P15.14												vadc. G3CH6				
P15.15												vadc. G3CH7				
USB_DP																
USB_DM																
HIB_IO_O	Hibout	wWDT SERVICE_OUT							WAKEUPA							
HIB_IO_1	Hibout	WWDT. SERVICE_OUT							WAKEUPB							
TCK							DB.TCK/ SWCLK									
TMS					$\begin{aligned} & \text { DB.TMS/ } \\ & \text { swDIO } \end{aligned}$											
$\overline{\text { PORST }}$																
XTAL1									$\begin{array}{\|l\|l\|} \hline \text { Uoco. } \\ \text { DXOF } \end{array}$	$\begin{array}{\|l\|l} \hline \text { UOC1. } \\ \text { DXOF } \end{array}$	U1co. DXOF	$\begin{array}{\|l\|l\|} \hline \text { U1C1. } \\ \text { DX0F } \end{array}$	$\begin{aligned} & \mathrm{U} 2 \mathrm{CO} . \\ & \mathrm{DXOF} \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { U2C1. } \\ \text { DXOF } \end{array}$		
XTAL2																
RTC_XTAL1											ERUO. 1B1					
RTC_XTAL2																

2.3 Power Connection Scheme

Figure 9. shows a reference power connection scheme for the XMC4500.

Figure 9 Power Connection Scheme
Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\text {DDP }}$ pins must be connected externally to one V_{DDP} net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\text {SS }}$. An additional $10 \mu \mathrm{~F}$ capacitor is connected to the V_{DDP} nets and an additional 10 uF capacitor to the V_{DDC} nets.

The XMC4500 has a common ground concept, all $V_{\mathrm{SS}}, V_{\mathrm{SSA}}$ and V_{SSO} pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.
$V_{\text {AGND }}$ is the low potential to the analog reference $V_{\text {AREF }}$. Depending on the application it can share the common ground or have a different potential.
When $V_{\text {DDP }}$ is supplied, $V_{\text {BAT }}$ must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT}, the $V_{\text {BAT }}$ pin can also be connected directly to V_{DDP}.

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4500 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with a two-letter abbreviation in column "Symbol":

- CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4500 and must be regarded for system design.

- SR

Such parameters indicate System Requirements, which must be provided by the application system in which the XMC4500 is designed in.

XMC4500
XMC4000 Family
Electrical Parameters

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 12 Absolute Maximum Rating Parameters

Parameter	Symbol	Values			Unit	Note I Test Con dition	
		$T_{\text {ST }}$	SR	-65		150	${ }^{\circ} \mathrm{C}$

1) The port groups are defined in Table 16.

Figure 10 explains the input voltage ranges of $V_{\text {IN }}$ and $V_{\text {AIN }}$ and its dependency to the supply level of V_{DDP}. The input voltage must not exceed 4.3 V , and it must not be more than 1.0 V above V_{DDP}. For the range up to $V_{\mathrm{DDP}}+1.0 \mathrm{~V}$ also see the definition of the overload conditions in Section 3.1.3.

 (A) Abs. max. input voltage $V_{I N}$ with $V_{D D P}>3.3 V$ (B) Abs. max. input voltage $\boldsymbol{V}_{I N}$ with $V_{D D P} \leq 3.3 V$

Figure 10 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.
Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
- pad supply levels ($V_{\text {DDP }}$ or $V_{\text {DDA }}$)
- temperature

If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.
Note: An overload condition on one or more pins does not require a reset.
Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

XMC4500
XMC4000 Family
Electrical Parameters

Table 13 Overload Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Input current on any port pin during overload condition		-5	-	5	mA	
Absolute sum of all input circuit currents for one port group during overload condition						

1) The port groups are defined in Table 16.

Figure 11 shows the path of the input currents during overload via the ESD protection structures. The diodes against $V_{\text {DDP }}$ and ground are a simplified representation of these ESD protection structures.

Figure 11 Input Overload Current via ESD structures
Table 14 and Table 15 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

Electrical Parameters

Table 14 PN-Junction Characterisitics for positive Overload

Pad Type	$\boldsymbol{I}_{\mathrm{OV}}=\mathbf{5} \mathbf{~ m A}, \boldsymbol{T}_{\mathbf{J}}=\mathbf{- 4 0}{ }^{\circ} \mathrm{C}$	$\boldsymbol{I}_{\mathbf{O V}}=\mathbf{5} \mathbf{~ m A}, \boldsymbol{T}_{\mathbf{J}}=\mathbf{1 5 0}{ }^{\circ} \mathrm{C}$
A1 $/ \mathrm{A} 1+$	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+1.0 \mathrm{~V}$	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+0.75 \mathrm{~V}$
A2	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+0.7 \mathrm{~V}$	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+0.6 \mathrm{~V}$
AN/DIG_IN	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+1.0 \mathrm{~V}$	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+0.75 \mathrm{~V}$

Table 15 PN-Junction Characterisitics for negative Overload

Pad Type	$\boldsymbol{I}_{\mathrm{OV}}=\mathbf{5} \mathbf{~ m A}, \boldsymbol{T}_{\mathbf{J}}=\mathbf{- 4 0}{ }^{\circ} \mathbf{C}$	$\boldsymbol{I}_{\mathrm{OV}}=\mathbf{5} \mathbf{~ m A}, \boldsymbol{T}_{\mathbf{J}}=\mathbf{1 5 0}{ }^{\circ} \mathrm{C}$
A1 / A1+	$V_{\mathrm{IN}}=V_{\mathrm{SS}}-1.0 \mathrm{~V}$	$V_{\mathrm{IN}}=V_{\mathrm{SS}}-0.75 \mathrm{~V}$
A2	$V_{\mathrm{IN}}=V_{\mathrm{SS}}-0.7 \mathrm{~V}$	$V_{\mathrm{IN}}=V_{\mathrm{SS}}-0.6 \mathrm{~V}$
AN/DIG_IN	$V_{\text {IN }}=V_{\mathrm{DDP}}-1.0 \mathrm{~V}$	$V_{\text {IN }}=V_{\mathrm{DDP}}-0.75 \mathrm{~V}$

Table 16 Port Groups for Overload and Short-Circuit Current Sum Parameters

Group	Pins
1	P0.[15:0], P3.[15:0]
2	P14.[15:0], P15.[15:0]
3	P2.[15:0], P5.[11:0]
4	P1.[15:0], P4.[7:0], P6.[6:0]

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and their basic characteristics.

Table 17 Pad Driver and Pad Classes Overview

Class	Power Supply	Type	Sub-Class	Speed Grade	Load	Termination
A	3.3 V	LVTTL I/O	A1 (e.g. GPIO)	6 MHz	100 pF	No
		A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended	
		A2 (e.g. ext. Bus)	80 MHz	15 pF	Series termination recommended	

Figure 12 Output Slopes with different Pad Driver Modes
Figure 12 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

XMC4500
XMC4000 Family
Electrical Parameters

3.1.5 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC4500. All parameters specified in the following sections refer to these operating conditions, unless noted otherwise.

Table 18 Operating Conditions Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		$T_{\mathrm{A}} \mathrm{SR}$	-40	-		${ }^{\circ} \mathrm{C}$

1) See also the Supply Monitoring thresholds, Section 3.3.2
2) Voltage overshoot to 4.0 V is permissible at Power-Up and $\overline{\text { PORST }}$ low, provided the pulse duration is less than $100 \mu \mathrm{~s}$ and the cumulated sum of the pulses does not exceed 1 h over lifetime.
3) To start the hibernate domain it is required that $V_{B A T} \geq 2.1 \mathrm{~V}$, for a reliable start of the oscillation of RTC_XTAL in crystal mode it is required that $V_{\mathrm{BAT}} \geq 3.0 \mathrm{~V}$.
4) The port groups are defined in Table 16.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.
The Pull-up on the PORST pin is identical to the Pull-up on the standard digital input/output pins.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19 Standard Pad Parameters

Parameter	Symbol	Values		Unit	Note / Test Condition
		Min.	Max.		
Pin capacitance (digital inputs/outputs)	$C_{10} \mathrm{CC}$	-	10	pF	
Pull-down current	$\begin{aligned} & \left\|I_{\mathrm{PDLL}}\right\| \\ & \mathrm{CC} \end{aligned}$	150	-	$\mu \mathrm{A}$	${ }^{1)} V_{\text {IN }} \geq 0.6 \times V_{\text {DDP }}$
		-	10	$\mu \mathrm{A}$	${ }^{2)} V_{\text {IN }} \leq 0.36 \times V_{\text {DDP }}$
Pull-Up current	$\begin{aligned} & \left\|I_{\text {PUH }}\right\| \\ & \text { CC } \end{aligned}$	-	10	$\mu \mathrm{A}$	${ }^{2)} V_{\text {IN }} \geq 0.6 \times V_{\text {DDP }}$
		100	-	$\mu \mathrm{A}$	${ }^{1)} V_{\text {IN }} \leq 0.36 \times V_{\text {DDP }}$
Input Hysteresis for pads of all A classes ${ }^{3)}$	$\begin{aligned} & \text { HYSA } \\ & \text { CC } \end{aligned}$	$\begin{aligned} & 0.1 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	-	V	
PORST spike filter always blocked pulse duration	$t_{\mathrm{SF} 1} \mathrm{CC}$	-	10	ns	
PORST spike filter pass-through pulse duration	$t_{\text {SF2 }} \mathrm{CC}$	100	-	ns	
PORST pull-down current	$\begin{aligned} & \left\|I_{\text {PPD }}\right\| \\ & \text { CC } \end{aligned}$	13	-	mA	$V_{\text {IN }}=1.0 \mathrm{~V}$

1) Current required to override the pull device with the opposite logic level ("force current"). With active pull device, at load currents between force and keep current the input state is undefined.
2) Load current at which the pull device still maintains the valid logic level ("keep current").

With active pull device, at load currents between force and keep current the input state is undefined.
3) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

Figure 13 Pull Device Input Characteristics
Figure 13 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases " B " the internal pull device defines the input logical state against a weak external load.

Table 20 Standard Pads Class_A1

Parameter	Symbol	Values		Unit	Note I Test Condition
		Min.	Max.		
Input leakage current	$I_{\text {OZA1 }} \mathrm{CC}$	-500	500	nA	$0 \mathrm{~V} \leq V_{\text {IN }} \leq V_{\text {DDP }}$
Input high voltage	$V_{\text {IHA1 }} \mathrm{SR}$	$0.6 \times V_{\text {DDP }}$	$V_{\text {DDP }}+0.3$	V	max. 3.6 V
Input low voltage	$V_{\text {ILA1 }} \mathrm{SR}$	-0.3	$0.36 \times V_{\text {DDP }}$	V	
Output high voltage, $\mathrm{POD}^{1)}=$ weak	$V_{\text {OHA1 }}$ CC	$V_{\text {DDP }}-0.4$	-	V	$I_{\text {OH }} \geq-400 \mu \mathrm{~A}$
		2.4	-	V	$I_{\text {OH }} \geq-500 \mu \mathrm{~A}$
Output high voltage, $P O D^{1)}=$ medium		$V_{\text {DDP }}-0.4$	-	V	$I_{\text {OH }} \geq-1.4 \mathrm{~mA}$
		2.4	-	V	$I_{\mathrm{OH}} \geq-2 \mathrm{~mA}$
Output low voltage	$\begin{aligned} & V_{\text {OLA1 }} \\ & \text { CC } \end{aligned}$	-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}} \leq 500 \mu \mathrm{~A} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}} \leq 2 \mathrm{~mA} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$
Fall time	$t_{\text {FA1 }} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$
Rise time	$t_{\mathrm{RA} 1} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$

1) $P O D=$ Pin Out Driver

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Values		Unit	Note I Test Condition
		Min.	Max.		
Input leakage current	$I_{\mathrm{OZA} 1+} \mathrm{CC}$	-1	1	$\mu \mathrm{~A}$	$0 \mathrm{~V} \leq V_{\mathrm{IN}} \leq V_{\mathrm{DDP}}$
Input high voltage	$V_{\mathrm{IHA}++} \mathrm{SR}$	$0.6 \times V_{\mathrm{DDP}}$	$V_{\mathrm{DDP}}+0.3$	V	$\max .3 .6 \mathrm{~V}$
Input low voltage	$V_{\mathrm{ILA}++} \mathrm{SR}$	-0.3	$0.36 \times V_{\mathrm{DDP}}$	V	

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Values		Unit	Note I Test Condition
		Min.	Max.		
Output high voltage, POD ${ }^{1)}$ = weak	$\begin{aligned} & V_{\text {OHA1+ }} \\ & \mathrm{CC} \end{aligned}$	$V_{\text {DDP }}-0.4$	-	V	$I_{\text {OH }} \geq-400 \mu \mathrm{~A}$
		2.4	-	V	$I_{\text {OH }} \geq-500 \mu \mathrm{~A}$
Output high voltage, $\mathrm{POD}^{1)}=$ medium		$V_{\text {DDP }}-0.4$	-	V	$I_{\mathrm{OH}} \geq-1.4 \mathrm{~mA}$
		2.4	-	V	$I_{\mathrm{OH}} \geq-2 \mathrm{~mA}$
Output high voltage, $\mathrm{POD}^{1)}=$ strong		$V_{\text {DDP }}-0.4$	-	V	$I_{\mathrm{OH}} \geq-1.4 \mathrm{~mA}$
		2.4	-	V	$I_{\mathrm{OH}} \geq-2 \mathrm{~mA}$
Output low voltage	$V_{\text {OLA1+ }}$CC	-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}} \leq 500 \mu \mathrm{~A} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}} \leq 2 \mathrm{~mA} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$
		-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}} \leq 2 \mathrm{~mA} ; \\ & \mathrm{POD}^{1)}=\text { strong } \end{aligned}$
Fall time	$t_{\text {FA1+ }} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$
		-	28	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { strong; } \\ & \text { edge = slow } \end{aligned}$
		-	16	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { strong; } \\ & \text { edge = soft; } \end{aligned}$
Rise time	$t_{\text {RA1+ }} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { medium } \end{aligned}$
		-	28	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { strong; } \\ & \text { edge = slow } \end{aligned}$
		-	16	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}^{1)}=\text { strong; } \\ & \text { edge = soft } \end{aligned}$

[^0]Table 22 Standard Pads Class_A2

Parameter	Symbol	Values		Unit	Note I Test Condition
		Min.	Max.		
Input Leakage current	$\begin{aligned} & I_{\mathrm{OZA} 2} \\ & \mathrm{CC} \end{aligned}$	-6	6	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq V_{\mathrm{IN}}< \\ & 0.5^{\star} V_{\text {DDP }}-1 \mathrm{~V} ; \\ & 0.5^{\star} V_{\text {DDP }}+1 \mathrm{~V} \\ & <V_{\text {IN }} \leq V_{\text {DDP }} \end{aligned}$
		-3	3	$\mu \mathrm{A}$	$\begin{aligned} & 0.5^{\star} V_{\mathrm{DDP}}-1 \mathrm{~V}< \\ & V_{\mathrm{IN}}<0.5^{\star} V_{\mathrm{DDP}} \\ & +1 \mathrm{~V} \end{aligned}$
Input high voltage	$\begin{aligned} & V_{\text {IHA2 }} \\ & \mathrm{SR} \end{aligned}$	$0.6 \times V_{\text {DDP }}$	$V_{\text {DDP }}+0.3$	V	max. 3.6 V
Input low voltage	$V_{\text {ILA2 }} \mathrm{SR}$	-0.3	$\begin{aligned} & 0.36 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	V	
Output high voltage, POD = weak	$V_{\text {OHA2 }}$ CC	$V_{\text {DDP }}-0.4$	-	V	$I_{\mathrm{OH}} \geq-400 \mu \mathrm{~A}$
		2.4	-	V	$I_{\text {OH }} \geq-500 \mu \mathrm{~A}$
Output high voltage, POD = medium		$V_{\text {DDP }}-0.4$	-	V	$I_{\mathrm{OH}} \geq-1.4 \mathrm{~mA}$
		2.4	-	V	$I_{\mathrm{OH}} \geq-2 \mathrm{~mA}$
Output high voltage, POD = strong		$V_{\text {DDP }}-0.4$	-	V	$I_{\mathrm{OH}} \geq-1.4 \mathrm{~mA}$
		2.4	-	V	$I_{\mathrm{OH}} \geq-2 \mathrm{~mA}$
Output low voltage, POD = weak	$V_{\text {OLA2 }}$CC	-	0.4	V	$I_{\mathrm{OL}} \leq 500 \mu \mathrm{~A}$
Output low voltage, POD = medium		-	0.4	V	$I_{\mathrm{OL}} \leq 2 \mathrm{~mA}$
Output low voltage, POD = strong		-	0.4	V	$I_{\mathrm{OL}} \leq 2 \mathrm{~mA}$

Table 22 Standard Pads Class_A2

Parameter	Symbol	Values		Unit	Note I Test Condition
		Min.	Max.		
Fall time	$t_{\text {FA } 2} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { medium } \end{aligned}$
		-	3.7	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { strong; } \\ & \text { edge = sharp } \end{aligned}$
		-	7	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { strong; } \\ & \text { edge = medium } \end{aligned}$
		-	16	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \text { POD = strong; } \\ & \text { edge = soft } \end{aligned}$
Rise time	$t_{\mathrm{RA} 2} \mathrm{CC}$	-	150	ns	$\begin{aligned} & C_{\mathrm{L}}=20 \mathrm{pF} ; \\ & \mathrm{POD}=\text { weak } \end{aligned}$
		-	50	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { medium } \end{aligned}$
		-	3.7	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \text { POD = strong; } \\ & \text { edge = sharp } \end{aligned}$
		-	7.0	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { strong; } \\ & \text { edge = medium } \end{aligned}$
		-	16	ns	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{POD}=\text { strong; } \\ & \text { edge = soft } \end{aligned}$

3.2.2 Analog to Digital Converters (VADC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 23 VADC Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Analog reference voltage ${ }^{5}$	$\begin{aligned} & V_{\text {AREF }} \\ & \text { SR } \end{aligned}$	$\begin{aligned} & V_{\text {AGND }} \\ & +1 \end{aligned}$	-	$\begin{aligned} & V_{\mathrm{DDA}}+ \\ & 0.05^{1)} \end{aligned}$	V	
Analog reference ground ${ }^{5)}$	$\begin{aligned} & V_{\mathrm{AGND}} \\ & \mathrm{SR} \end{aligned}$	$\begin{aligned} & V_{\text {SSM }}- \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & V_{\text {AREF }}- \\ & 1 \end{aligned}$	V	
Analog reference voltage range ${ }^{2) 5}$	$\begin{aligned} & V_{\text {AREF }}- \\ & V_{\text {AGND }} \\ & \text { SR } \end{aligned}$	1	-	$\begin{aligned} & V_{\mathrm{DDA}}+ \\ & 0.1 \end{aligned}$	V	
Analog input voltage	$V_{\text {AIN }} \mathrm{SR}$	$V_{\text {AGND }}$	-	$V_{\text {DDA }}$	V	
Input leakage at analog inputs ${ }^{3)}$	$I_{\text {OZ1 }} \mathrm{CC}$	-100	-	200	nA	$\begin{aligned} & 0.03 \times V_{\mathrm{DDA}}< \\ & V_{\mathrm{AIN}}<0.97 \times V_{\mathrm{DDA}} \\ & \hline \end{aligned}$
		-500	-	100	nA	$\begin{aligned} & 0 \mathrm{~V} \leq V_{\mathrm{AIN}} \leq 0.03 \\ & \times V_{\mathrm{DDA}} \end{aligned}$
		-100	-	500	nA	$\begin{aligned} & 0.97 \times V_{\mathrm{DDA}} \\ & \leq V_{\mathrm{AIN}} \leq V_{\mathrm{DDA}} \end{aligned}$
Input leakage current at VAREF	$I_{\text {OZ2 }} \mathrm{CC}$	-1	-	1	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq V_{\mathrm{AREF}} \\ & \leq V_{\mathrm{DDA}} \end{aligned}$
Input leakage current at VAGND	$I_{\text {Oz3 }} \mathrm{CC}$	-1	-	1	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq V_{\mathrm{AGND}} \\ & \leq V_{\mathrm{DDA}} \end{aligned}$
Internal ADC clock	$f_{\text {ADCI }} \mathrm{CC}$	2	-	30	MHz	$V_{\text {DDA }}=3.3 \mathrm{~V}$
Switched capacitance at the analog voltage inputs ${ }^{4)}$	$\begin{aligned} & C_{\text {AINSW }} \\ & \text { CC } \end{aligned}$	-	7	20	pF	
Total capacitance of an analog input	$\begin{aligned} & C_{\text {AINTOT }} \\ & \text { CC } \end{aligned}$	-	25	30	pF	
Switched capacitance at the positive reference voltage input ${ }^{5) 6}$)	$\begin{aligned} & C_{\text {AREFSW }} \\ & \text { CC } \end{aligned}$	-	15	30	pF	
Total capacitance of the voltage reference inputs ${ }^{5)}$	$C_{\text {AREFtot }}$ CC	-	20	40	pF	

XMC4500
XMC4000 Family
Electrical Parameters
Table 23 VADC Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Total Unadjusted Error	TUE CC	-4	-	4	LSB	$\begin{aligned} & \text { 12-bit resolution; } \\ & V_{\text {DDA }}=3.3 \mathrm{~V} ; \\ & V_{\text {AREF }}=V_{\text {DDA }}{ }^{7} \end{aligned}$
Differential Non-Linearity Error ${ }^{8)}$	$\begin{aligned} & E A_{\mathrm{DNL}} \\ & \mathrm{CC} \end{aligned}$	-3	-	3	LSB	
Gain Error ${ }^{8)}$	$\begin{aligned} & E A_{\text {GAIN }} \\ & \mathrm{CC} \end{aligned}$	-4	-	4	LSB	
Integral Non-Linearity ${ }^{8)}$	$E A_{\text {INL }} \mathrm{CC}$	-3	-	3	LSB	
Offset Error ${ }^{\text {8 }}$	$\begin{aligned} & E A_{\text {OFF }} \\ & \text { CC } \end{aligned}$	-4	-	4	LSB	
Worst case ADC $V_{\text {DDA }}$ power supply current per active converter	$I_{\text {DDAA }}$ CC	-	1.5	2	mA	$\begin{aligned} & \text { during conversion } \\ & V_{\text {DDP }}=3.6 \mathrm{~V}, \\ & T_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Charge consumption on $V_{\text {AREF }}$ per conversion ${ }^{5}$	Q_{conv} CC	-	30	-	pC	$\begin{aligned} & 0 \mathrm{~V} \leq V_{\text {AREF }} \\ & \left.\leq V_{\text {DDA }}{ }^{9}\right)^{\prime} \end{aligned}$
ON resistance of the analog input path	$R_{\text {AIN }} \mathrm{CC}$	-	700	1700	Ohm	
ON resistance for the ADC test (pull down for AIN7)	$\begin{aligned} & R_{\mathrm{AINTT}} \\ & \mathrm{CC} \end{aligned}$	180	550	900	Ohm	
Resistance of the reference voltage input path	$\begin{aligned} & R_{\text {AREF }} \\ & \text { CC } \end{aligned}$	-	700	1700	Ohm	

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).
2) If the analog reference voltage is below $V_{D D A}$, then the ADC converter errors increase. If the reference voltage is reduced by the factor $k(k<1)$, TUE, DNL, INL, Gain, and Offset errors increase also by the factor $1 / k$.
3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 16).
4) The sampling capacity of the conversion C-network is pre-charged to $V_{\text {AREF }} / 2$ before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from $V_{\text {AREF }} / 2$.
5) Applies to AINx, when used as alternate reference input.
6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
7) For 10 -bit conversions, the errors are reduced to $1 / 4$; for 8 -bit conversions, the errors are reduced to $1 / 16$. Never less than ± 1 LSB.
8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.
9) The resulting current for a conversion can be calculated with $I_{\text {AREF }}=Q_{\text {CONV }} / t_{\mathrm{c}}$. The fastest 12-bit post-calibrated conversion of $t_{\mathrm{c}}=550 \mathrm{~ns}$ results in a typical average current of $I_{\text {AREF }}=54.5 \mu \mathrm{~A}$.

Figure 14 VADC Reference Voltage Range
The power-up calibration of the VADC requires a maximum number of $4352 f_{\text {ADCI }}$ cycles.

Analog_InpRefDiag
Figure 15 VADC Input Circuits

Figure 16 VADC Analog Input Leakage Current

Conversion Time

Table 24 Conversion Time (Operating Conditions apply)

Parameter	Symbol	Values	Unit	Note
Conversion	$t_{\mathrm{C}} \quad \mathrm{CC}$	$2 \times T_{\mathrm{ADC}}+$	$\mu \mathrm{S}$	$\mathrm{N}=8,10,12$ for
time		$(2+\mathrm{N}+\mathrm{STC}+\mathrm{PC}+\mathrm{DM}) \times T_{\mathrm{ADCI}}$		N -bit conversion
				$T_{\mathrm{ADC}}=1 / f_{\text {PERIPH }}$
			$T_{\mathrm{ADCI}}=1 / f_{\mathrm{ADCI}}$	

- STC defines additional clock cycles to extend the sample time
- PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions:
$f_{\mathrm{ADC}}=120 \mathrm{MHz}$ i.e. $t_{\mathrm{ADC}}=8.33 \mathrm{~ns}$, DIVA $=3, f_{\mathrm{ADCI}}=30 \mathrm{MHz}$ i.e. $t_{\mathrm{ADCI}}=33.3 \mathrm{~ns}$
According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):
12-bit post-calibrated conversion ($\mathrm{PC}=2$):
$t_{\mathrm{CN} 12 \mathrm{C}}=(2+12+2) \times t_{\mathrm{ADCI}}+2 \times t_{\mathrm{ADC}}=16 \times 33.3 \mathrm{~ns}+2 \times 8.33 \mathrm{~ns}=550 \mathrm{~ns}$
12-bit uncalibrated conversion:
$t_{\mathrm{CN} 12}=(2+12) \times t_{\mathrm{ADCI}}+2 \times t_{\mathrm{ADC}}=14 \times 33.3 \mathrm{~ns}+2 \times 8.33 \mathrm{~ns}=483 \mathrm{~ns}$
10-bit uncalibrated conversion:
$t_{\mathrm{CN} 10}=(2+10) \times t_{\mathrm{ADCI}}+2 \times t_{\mathrm{ADC}}=12 \times 33.3 \mathrm{~ns}+2 \times 8.33 \mathrm{~ns}=417 \mathrm{~ns}$
8 -bit uncalibrated:
$t_{\mathrm{CN} 8}=(2+8) \times t_{\mathrm{ADCI}}+2 \times t_{\mathrm{ADC}}=10 \times 33.3 \mathrm{~ns}+2 \times 8.33 \mathrm{~ns}=350 \mathrm{~ns}$

3.2.3 Digital to Analog Converters (DAC)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 25 DAC Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
RMS supply current	$I_{\text {DD }} \quad \mathrm{CC}$	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES CC	-	12	-	Bit	
Update rate	$f_{\text {URATE_A }}$ CC	-		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to \pm 1LSB accuracy
Update rate	$f_{\text {URATE_F }}$ CC	-		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	$t_{\text {SETtLE }} \mathrm{CC}$	-	1	2	$\mu \mathrm{S}$	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR CC	2	5	-	$\mathrm{V} / \mu \mathrm{S}$	
Minimum output voltage	$\begin{aligned} & V_{\text {OUT_MIN }} \\ & \text { CC } \end{aligned}$	-	0.3	-	V	code value unsigned: 000_{H}; signed: 800_{H}
Maximum output voltage	$V_{\text {OUT_MAX }}$ CC	-	2.5	-	V	code value unsigned: $\mathrm{FFF}_{\mathrm{H}}$; signed: $7 \mathrm{FF}_{\mathrm{H}}$
Integral non-linearity	INL CC	-4	± 2.5	4	LSB	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{kOhm}, \\ & \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF} \end{aligned}$
Differential nonlinearity	DNL CC	-2	± 1	2	LSB	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{kOhm}, \\ & \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF} \end{aligned}$

Table 25 DAC Parameters (Operating Conditions apply) (cont'd)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Offset error	$E D_{\text {OFF }} \mathrm{CC}$		± 20		mV	
Gain error	$E D_{\text {G_IN }} \mathrm{CC}$	-6.5	-1.5	3	\%	
Startup time	$t_{\text {STARTUP }} \mathrm{CC}$	-	15	30	$\mu \mathrm{s}$	time from output enabling till code valid ± 16 LSB
3dB Bandwidth of Output Buffer	$f_{\mathrm{C} 1} \quad \mathrm{CC}$	2.5	5	-	MHz	verified by design
Output sourcing current	IOUT_SOURCE CC	-	-30	-	mA	
Output sinking current	$\begin{aligned} & I_{\text {OUT_SINK }} \\ & \text { CC } \end{aligned}$	-	0.6	-	mA	
Output resistance	$R_{\text {OUT }}$ CC	-	50	-	Ohm	
Load resistance	$R_{\mathrm{L}} \quad \mathrm{SR}$	5	-	-	kOhm	
Load capacitance	$C_{\mathrm{L}} \quad \mathrm{SR}$	-	-	50	pF	
Signal-to-Noise Ratio	SNR CC	-	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD CC	-	70	-	dB	examination bandwidth $<25 \mathrm{kHz}$
Power Supply Rejection Ratio	PSRR CC	-	56	-	dB	to $V_{\text {DDA }}$ verified by design

Conversion Calculation

Unsigned:
DACxDATA $=4095 \times\left(V_{\text {OUT }}-V_{\text {OUT_MIN }}\right) /\left(V_{\text {OUT_MAX }}-V_{\text {OUT_MIN }}\right)$
Signed:
DACxDATA $=4095 \times\left(V_{\text {OUT }}-V_{\text {OUT_MIN }}\right) /\left(V_{\text {OUT_MAX }}-V_{\text {OUT_MIN }}\right)-2048$

Figure 17 DAC Conversion Examples

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages ($V_{\text {AIN }}$) above the analog reference ${ }^{1)}$ ($V_{\text {AREF }}$) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).
Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 26 apply for the maximum reference voltage $V_{\text {AREF }}=V_{\mathrm{DDA}}+50 \mathrm{mV}$.

Table 26 ORC Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
DC Switching Level	$V_{\mathrm{ODC}} \mathrm{CC}$	100	125	200	mV	$V_{\text {AIN }} \geq V_{\text {AREF }}+V_{\text {ODC }}$
Hysteresis	$V_{\text {OHYS }} \mathrm{CC}$	50	-	$V_{\text {ODC }}$	mV	
Detection Delay of a persistent Overvoltage	$t_{\text {ODD }} \mathrm{CC}$	55	-	450	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+200 \mathrm{mV}$
		45	-	105	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+400 \mathrm{mV}$
Always detected Overvoltage Pulse	$t_{\text {OPDD }} \mathrm{CC}$	440	-	-	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+200 \mathrm{mV}$
		90	-	-	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+400 \mathrm{mV}$
Never detected Overvoltage Pulse	$t_{\text {OPDN }} \mathrm{CC}$	-	-	49	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+200 \mathrm{mV}$
		-	-	30	ns	$V_{\text {AIN }} \geq V_{\text {AREF }}+400 \mathrm{mV}$
Release Delay	$t_{\text {ORD }} \mathrm{CC}$	65	-	105	ns	$V_{\text {AIN }} \leq V_{\text {AREF }}$
Enable Delay	$t_{\text {OED }} \mathrm{CC}$	-	100	200	ns	

1) Always the standard VADC reference, alternate references do not apply to the ORC.

XMC4500
XMC4000 Family
Electrical Parameters

Figure 18 GxORCOUTy Trigger Generation

Figure 19 ORC Detection Ranges

3.2.5 Die Temperature Sensor

The Die Temperature Sensor (DTS) measures the junction temperature T_{J}.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 27 Die Temperature Sensor Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Temperature sensor range	$T_{\mathrm{SR}} \quad \mathrm{SR}$	-40	-	150	${ }^{\circ} \mathrm{C}$	
Linearity Error (to the below defined formula)	$\Delta T_{\mathrm{LE}} \mathrm{CC}$	-	± 1	-	${ }^{\circ} \mathrm{C}$	per $\Delta T_{J} \leq 30^{\circ} \mathrm{C}$
Offset Error	$\Delta T_{\mathrm{OE}} \mathrm{CC}$	-	± 6	-	${ }^{\circ} \mathrm{C}$	$\Delta T_{\mathrm{OE}}=T_{J}-T_{\mathrm{DTS}}$ $V_{\mathrm{DDP}} \leq 3.3 \mathrm{~V}^{1)}$
Measurement time	$t_{\mathrm{M}} \quad \mathrm{CC}$	-	-	100	$\mu \mathrm{~S}$	
Start-up time after reset inactive	$t_{\mathrm{TSST}} \mathrm{SR}$	-	-	10	$\mu \mathrm{~S}$	

1) At $V_{\text {DDP_max }}=3.63 \mathrm{~V}$ the typical offset error increases by an additional $\Delta T_{\text {OE }}= \pm 1^{\circ} \mathrm{C}$.

The following formula calculates the temperature measured by the DTS in $\left[{ }^{\circ} \mathrm{C}\right]$ from the RESULT bit field of the DTSSTAT register.

Temperature $T_{\text {DTS }}=($ RESULT -605$) / 2.05\left[{ }^{\circ} \mathrm{C}\right]$

This formula and the values defined in Table 27 apply with the following calibration values:

- DTSCON.BGTRIM $=8_{\text {H }}$
- DTSCON.REFTRIM $=4_{H}$

3.2.6 USB OTG Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 28 USB OTG VBUS and ID Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
VBUS input voltage range	$V_{\mathrm{IN}} \mathrm{CC}$	0.0	-	5.25	V	
A-device VBUS valid threshold	$V_{\mathrm{B} 1} \mathrm{CC}$	4.4	-	-	V	
A-device session valid threshold	$V_{\mathrm{B} 2} \mathrm{CC}$	0.8	-	2.0	V	
B-device session valid threshold	$V_{\mathrm{B} 3} \mathrm{CC}$	0.8	-	4.0	V	
B-device session end threshold	$V_{\mathrm{B} 4} \mathrm{CC}$	0.2	-	0.8	V	
VBUS input resistance to ground	$\begin{aligned} & R_{\text {VBus_IN }} \\ & \text { CC } \end{aligned}$	40	-	100	kOhm	
B-device VBUS pullup resistor	$\begin{aligned} & R_{\text {VBus_PU }} \\ & \mathrm{CC} \end{aligned}$	281	-	-	Ohm	$\begin{aligned} & \text { Pull-up voltage = } \\ & 3.0 \mathrm{~V} \end{aligned}$
B-device VBUS pulldown resistor	$\begin{aligned} & R_{\text {VBUS_PD }} \\ & \mathrm{CC} \end{aligned}$	656	-	-	Ohm	
USB.ID pull-up resistor	$\begin{aligned} & R_{\mathrm{UID} _\mathrm{PU}} \\ & \mathrm{CC} \end{aligned}$	14	-	25	kOhm	
VBUS input current	IVBUS_IN CC	-	-	150	$\mu \mathrm{A}$	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.25 \mathrm{~V}: \\ & \mathrm{T}_{\mathrm{AVG}}=1 \mathrm{~ms} \end{aligned}$

Table 29 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Input low voltage	$V_{\mathrm{IL}} \quad \mathrm{SR}$	-	-	0.8	V	
Input high voltage (driven)	$V_{\text {IH }} \quad$ SR	2.0	-	-	V	
Input high voltage (floating) ${ }^{1)}$	$V_{\mathrm{IHZ}} \mathrm{SR}$	2.7	-	3.6	V	
Differential input sensitivity	$V_{\text {DIS }} \mathrm{CC}$	0.2	-	-	V	
Differential common mode range	$V_{\text {См }} \mathrm{CC}$	0.8	-	2.5	V	
Output low voltage	$V_{\mathrm{OL}} \quad \mathrm{CC}$	0.0	-	0.3	V	1.5 kOhm pullup to 3.6 V
Output high voltage	$V_{\mathrm{OH}} \mathrm{CC}$	2.8	-	3.6	V	15 kOhm pulldown to 0 V
DP pull-up resistor (idle bus)	$R_{\text {PUI }} \mathrm{CC}$	900	-	1575	Ohm	
DP pull-up resistor (upstream port receiving)	$R_{\text {PUA }} \mathrm{CC}$	1425	-	3090	Ohm	
DP, DM pull-down resistor	$R_{\text {PD }}$ CC	14.25	-	24.8	kOhm	
Input impedance DP, DM	$Z_{\text {INP }} \mathrm{CC}$	300	-	-	kOhm	$0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}_{\mathrm{DDP}}$
Driver output resistance DP, DM	$Z_{\text {DRV }} \mathrm{CC}$	28	-	44	Ohm	

1) Measured at A-connector with $1.5 \mathrm{kOhm} \pm 5 \%$ to $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ connected to USB_DP or USB_DM and at Bconnector with $15 \mathrm{kOhm} \pm 5 \%$ to ground connected to USB_DP and USB_DM.

3.2.7 Oscillator Pins

Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 20) or in direct input mode (see Figure 21).

Figure 20 Oscillator in Crystal Mode

Figure 21 Oscillator in Direct Input Mode

XMC4500
XMC4000 Family
Electrical Parameters

Table 30 OSC_XTAL Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Input frequency	$f_{\text {osc }}$ SR	4	-	40	MHz	Direct Input Mode selected
		4	-	25	MHz	External Crystal Mode selected
Oscillator start-up time ${ }^{1 \text { 12) }}$	$\begin{aligned} & t_{\mathrm{OSCS}} \\ & \mathrm{CC} \end{aligned}$	-	-	10	ms	
Input voltage at XTAL1	$V_{\mathrm{IX}} \mathrm{SR}$	-0.5	-	$\begin{aligned} & V_{\mathrm{DDP}}+ \\ & 0.5 \end{aligned}$	V	
Input amplitude (peak-to-peak) at $\mathrm{XTAL1} 1^{2) 3}$	$V_{\text {PPX }} \mathrm{SR}$	$\begin{aligned} & 0.4 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	-	$\begin{aligned} & V_{\mathrm{DDP}}+ \\ & 1.0 \end{aligned}$	V	
Input high voltage at XTAL14)	$V_{\text {IHBX }} \mathrm{SR}$	1.0	-	$\begin{aligned} & V_{\mathrm{DDP}}+ \\ & 0.5 \end{aligned}$	V	
Input low voltage at XTAL14)	$V_{\text {ILBX }} \mathrm{SR}$	-0.5	-	0.4	V	
Input leakage current at XTAL1	$I_{\text {ILX } 1} \mathrm{CC}$	-100	-	100	nA	Oscillator power down $0 \mathrm{~V} \leq V_{\mathrm{IX}} \leq V_{\mathrm{DDP}}$

1) t_{OSCs} is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of $0.4 * V_{\text {DDP }}$.
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.
3) If the shaper unit is enabled and not bypassed.
4) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.

XMC4500
XMC4000 Family
Electrical Parameters

Table 31 RTC_XTAL Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Input frequency	$f_{\text {osc }}$ SR	-	32.768	-	kHz	
Oscillator start-up time ${ }^{12233)}$	t_{oscs} CC	-	-	5	s	
Input voltage at RTC_XTAL1	$V_{\text {IX }} \mathrm{SR}$	-0.3	-	$\begin{aligned} & V_{\mathrm{BAT}}+ \\ & 0.3 \end{aligned}$	V	
Input amplitude (peak-to-peak) at RTC_XTAL1 ${ }^{244)}$	$V_{\text {PPX }} \mathrm{SR}$	0.4	-	-	V	
Input high voltage at RTC_XTAL1 ${ }^{5}$)	$V_{\text {IHBX }} \mathrm{SR}$	$\begin{array}{\|l\|} \hline 0.6 \times \\ V_{\text {BAT }} \end{array}$	-	$\begin{aligned} & V_{\mathrm{BAT}}+ \\ & 0.3 \end{aligned}$	V	
Input low voltage at RTC_XTAL1 ${ }^{5}$)	$V_{\text {ILBX }} \mathrm{SR}$	-0.3	-	$\begin{aligned} & 0.36 \times \\ & V_{\text {BAT }} \\ & \hline \end{aligned}$	V	
Input Hysteresis for RTC_XTAL1 ${ }^{56)}$	$\begin{aligned} & V_{\mathrm{HYSX}} \\ & \mathrm{CC} \end{aligned}$	$\begin{aligned} & 0.1 \times \\ & V_{\mathrm{BAT}} \\ & \hline \end{aligned}$		-	V	$\begin{aligned} & 3.0 \mathrm{~V} \leq \\ & V_{\mathrm{BAT}}<3.6 \mathrm{~V} \end{aligned}$
		$\begin{aligned} & 0.03 \times \\ & V_{\text {BAT }} \end{aligned}$		-	V	$V_{\text {BAT }}<3.0 \mathrm{~V}$
Input leakage current at RTC_XTAL1	$I_{\text {ILX }} \mathrm{CC}$	-100	-	100	nA	Oscillator power down $0 V \leq V_{\mathrm{IX}} \leq V_{\mathrm{BAT}}$

1) $t_{\text {OSCS }}$ is defined from the moment the oscillator is enabled by the user with SCU_OSCULCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 400 mV .
2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.
3) For a reliable start of the oscillation in crystal mode it is required that $V_{\mathrm{BAT}} \geq 3.0 \mathrm{~V}$. A running oscillation is maintained across the full V_{BAT} voltage range.
4) If the shaper unit is enabled and not bypassed.
5) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.
6) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

XMC4500
XMC4000 Family
Electrical Parameters

3.2.8 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.
Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).
Note: These parameters are not subject to production test, but verified by design and/or characterization.

If not stated otherwise, the operating conditions for the parameters in the following table are:
$V_{\text {DDP }}=3.3 \mathrm{~V}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Table 32 Power Supply Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Active supply current ${ }^{\left.1)^{10}\right)}$ Peripherals enabled Frequency: $f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in MHz	$I_{\text {DDPA }} \mathrm{CC}$	-	122	-	mA	120 / 120 / 120
		-	110	-		120 / 60 / 60
		-	85	-		60 / 60 / 120
		-	65	-		24 / 24 / 24
		-	52	-		1 / 1 / 1
Active supply current Code execution from RAM Flash in Sleep mode	$I_{\text {DDPA }} \mathrm{CC}$	-	98	-	mA	120 / 120 / 120
		-	80	-		120 / 60 / 60
Active supply current ${ }^{2}$) Peripherals disabled Frequency: $f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in MHz	$I_{\text {DDPA }} \mathrm{CC}$	-	115	-	mA	120 / 120 / 120
		-	105	-		120 / 60 / 60
		-	80	-		60 / 60 / 120
		-	63	-		$24 / 24 / 24$
		-	50	-		1/1/1
Sleep supply current ${ }^{3)}$ Peripherals enabled Frequency: $f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in MHz	$I_{\text {DDPS }} \mathrm{CC}$	-	115	-	mA	120 / 120 / 120
		-	105	-		120 / 60 / 60
		-	83	-		60 / 60 / 120
		-	60	-		$24 / 24 / 24$
		-	48	-		1/1/1
$f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in kHz		-	46	-		100 / 100 / 100

Table 32 Power Supply Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Sleep supply current ${ }^{4}$ Peripherals disabled Frequency: $f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in MHz	$I_{\text {DDPS }} \mathrm{CC}$	-	110	-	mA	120 / 120 / 120
		-	100	-		120 / 60 / 60
		-	77	-		60 / 60 / 120
		-	59	-		24/24 / 24
		-	48	-		$1 / 1 / 1$
$f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in kHz		-	46	-		100 / 100 / 100
Deep Sleep supply current ${ }^{5}$ Flash in Sleep mode Frequency: $f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in MHz	$I_{\text {DDPD }} \mathrm{CC}$	-	20	-	mA	$24 / 24 / 24$
		-	12	-		4/4/4
		-	10	-		1/1/1
$f_{\text {CPU }} / f_{\text {PERIPH }} / f_{\text {CCU }}$ in kHz		-	6	-		6)
Hibernate supply current RTC on ${ }^{7)}$	$I_{\text {DDPH }} \mathrm{CC}$	-	10	-	$\mu \mathrm{A}$	$V_{\text {BAT }}=3.3 \mathrm{~V}$
		-	7.5	-		$V_{\text {BAT }}=2.4 \mathrm{~V}$
		-	6.2	-		$V_{\text {BAT }}=2.0 \mathrm{~V}$
Hibernate supply current RTC off ${ }^{8}$	$I_{\text {DDPH }} \mathrm{CC}$	-	9.2	-	$\mu \mathrm{A}$	$V_{\text {BAT }}=3.3 \mathrm{~V}$
		-	6.7	-		$V_{\text {BAT }}=2.4 \mathrm{~V}$
		-	5.6	-		$V_{\text {BAT }}=2.0 \mathrm{~V}$
Worst case active supply current ${ }^{9}$)	$I_{\text {DDPA }} \mathrm{CC}$	-	-	$\begin{array}{\|l\|} \hline 180 \\ 10) \end{array}$	mA	$\begin{aligned} & V_{\mathrm{DDP}}=3.6 \mathrm{~V}, \\ & T_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$
$V_{\text {DDA }}$ power supply current	$I_{\text {DDA }} \mathrm{CC}$	-	-	- ${ }^{11)}$	mA	
$I_{\text {DDP }}$ current at $\overline{\text { PORST }}$ Low	IDDP PORST CC	-	-	16	mA	$\begin{aligned} & V_{\mathrm{DDP}}=3.6 \mathrm{~V}, \\ & T_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$
Power Dissipation	$P_{\text {DISS }} \mathrm{CC}$	-	-	1	W	$\begin{array}{\|l} \hline V_{\mathrm{DDP}}=3.6 \mathrm{~V}, \\ T_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ \hline \end{array}$
Wake-up time from Sleep to Active mode	$t_{\text {SSA }} \quad \mathrm{CC}$	-	6	-	cycles	

XMC4500
XMC4000 Family
Electrical Parameters
Table 32 Power Supply Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Wake-up time from Deep Sleep to Active mode		-	-	-	ms	Defined by the wake-up of the Flash module, see Section 3.2.9
Wake-up time from Hibernate mode		-	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2

1) CPU executing code from Flash, all peripherals idle.
2) CPU executing code from Flash.
3) CPU in sleep, all peripherals idle, Flash in Active mode.
4) CPU in sleep, Flash in Active mode.
5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
6) To wake-up the Flash from its Sleep mode, $f_{\mathrm{CPU}} \geq 1 \mathrm{MHz}$ is required.
7) OSC_ULP operating with external crystal on RTC_XTAL
8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
9) Test Power Loop: $f_{\mathrm{SYS}}=120 \mathrm{MHz}, \mathrm{CPU}$ executing benchmark code from Flash, all CCUs in 100 kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500 kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.
The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.
10) $I_{\text {DDP }}$ decreases typically by approximately 6 mA when $f_{\text {SYS }}$ decreases by 10 MHz , at constant T_{J}
11) Sum of currents of all active converters (ADC and DAC)

3.2.9 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 33 Flash Memory Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Erase Time per 256 Kbyte Sector	$t_{\text {ERP }} \mathrm{CC}$	-	5	5.5	S	
Erase Time per 64 Kbyte Sector	$t_{\text {ERP }} \mathrm{CC}$	-	1.2	1.4	S	
Erase Time per 16 Kbyte Logical Sector	$t_{\text {ERP }} \mathrm{CC}$	-	0.3	0.4	S	
Program time per page ${ }^{1)}$	$t_{\text {PRP }} \mathrm{CC}$	-	5.5	11	ms	
Erase suspend delay	$\begin{aligned} & t_{\mathrm{FL} \text { _ErSusp }} \\ & \mathrm{CC} \end{aligned}$	-	-	15	ms	
Wait time after margin change	$t_{\text {FL_Margin }}$ Del CC	10	-	-	$\mu \mathrm{S}$	
Wake-up time	$t_{\text {wu }}$ CC	-	-	270	$\mu \mathrm{s}$	
Read access time	$t_{\mathrm{a}} \mathrm{CC}$	22	-	-	ns	For operation with $1 / f_{\text {CPU }}<t_{\mathrm{a}}$ waitstates must be configured ${ }^{2)}$
Data Retention Time, Physical Sector ${ }^{3) 4}$	$t_{\text {RET }} \mathrm{CC}$	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ${ }^{334)}$	$t_{\text {RETL }} \mathrm{CC}$	20	-	-	years	Max. 100 erase/program cycles
Data Retention Time, User Configuration Block (UCB) ${ }^{344)}$	$t_{\text {RTU }} \mathrm{CC}$	20	-	-	years	Max. 4 erase/program cycles per UCB

1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms .
2) The following formula applies to the wait state configuration: FCON.WSPFLASH $\times\left(1 / f_{\mathrm{CPU}}\right) \geq t_{\mathrm{a}}$.
3) Storage and inactive time included.
4) Values given are valid for an average weighted junction temperature of $T_{\mathrm{J}}=110^{\circ} \mathrm{C}$.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 22 Rise/Fall Time Parameters

Figure 23 Testing Waveform, Output Delay

AC_Highlmp.vsd
Figure 24 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring

$\overline{\text { PORST }}$ is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 25 PORST Circuit
Table 34 Supply Monitoring Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Digital supply voltage reset threshold	$V_{\text {POR }} \mathrm{CC}$	$2.79^{1)}$	-	3.05 ${ }^{\text {2) }}$	V	3)
Core supply voltage reset threshold	$V_{\text {PV }} \mathrm{CC}$	-	-	1.17	V	
$V_{\text {DDP }}$ voltage to ensure defined pad states	$\begin{aligned} & V_{\text {DDPPA }} \\ & \text { CC } \end{aligned}$	-	1.0	-	V	
$\overline{\text { PORST }}$ rise time	$t_{\text {PR }} \quad \mathrm{SR}$	-	-	2	$\mu \mathrm{S}$	4)
Startup time from power-on reset with code execution from Flash	$t_{\text {ssw }}$ CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\text {DDC }}$ ramp up time	$t_{\text {VCR }} \mathrm{CC}$	-	550	-	$\mu \mathrm{S}$	Ramp up after power-on or after a reset triggered by a violation of V_{POR} or V_{PV}

1) Minimum threshold for reset assertion.
2) Maximum threshold for reset deassertion.
3) The V_{DDP} monitoring has a typical hysteresis of $V_{\mathrm{PORHYS}}=180 \mathrm{mV}$.
4) If t_{PR} is not met, low spikes on $\overline{\text { PORST }}$ may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping V_{DDP}).

Figure 26 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\text {CPU }}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

XMC4500
XMC4000 Family
Electrical Parameters

Table 35 Power Sequencing Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Positive Load Step Current	$\Delta I_{\text {PLS }} \mathrm{SR}$	-	-	50	mA	Load increase on $V_{\text {DDP }}$ $\Delta t \leq 10 \mathrm{~ns}$
Negative Load Step Current	$\Delta I_{\text {NLS }} \mathrm{SR}$	-	-	150	mA	Load decrease on $V_{\text {DDP }}$ $\Delta t \leq 10$ ns
$V_{\text {DDC }}$ Voltage Over/ Undershoot from Load Step	$\Delta V_{\mathrm{LS}} \mathrm{CC}$	-	-	± 100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	$t_{\text {PLSS }} \mathrm{SR}$	50	-	-	$\mu \mathrm{s}$	
Negative Load Step Settling Time	$t_{\text {NLSS }} \mathrm{SR}$	100	-	-	$\mu \mathrm{S}$	
External Buffer Capacitor on V_{DDC}	$\mathrm{C}_{\text {EXt }} \mathrm{SR}$	-	10	-	$\mu \mathrm{F}$	In addition $C=100 \mathrm{nF}$ capacitor on each $V_{\text {DDC }}$ pin

Positive Load Step Examples

System assumptions:
$f_{\mathrm{CPU}}=f_{\mathrm{SYS}}$, target frequency $f_{\mathrm{CPU}}=120 \mathrm{MHz}$, main PLL $f_{\mathrm{VCO}}=480 \mathrm{MHz}$, stepping done by K2 divider, $t_{\text {PLss }}$ between individual steps:
$24 \mathrm{MHz}-48 \mathrm{MHz}-68 \mathrm{MHz}-96 \mathrm{MHz}-120 \mathrm{MHz}$ (K2 steps 20-10-7-5-4)
$24 \mathrm{MHz}-68 \mathrm{MHz}-96 \mathrm{MHz}-120 \mathrm{MHz}(\mathrm{K} 2$ steps 20-7-5-4)
$24 \mathrm{MHz}-68 \mathrm{MHz}-120 \mathrm{MHz}$ (K2 steps 20-7-4)

3.3.4 Phase Locked Loop (PLL) Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Main and USB PLL

Table 36 PLL Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		± 5
Accumulated Jitter	D_{P} CC	-	-	ns	accumulated over 300 cycles $f_{\text {SYS }}=120 \mathrm{MHz}$	
Duty Cycle $^{1)}$	$D_{\text {DC }}$ CC	46	50	54	$\%$	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	PPLLBASE CC	30	-	140	MHz	
VCO input frequency	$f_{\text {REF }}$ CC	4	-	16	MHz	
VCO frequency range	$f_{\text {VCO }}$ CC	260	-	520	MHz	
PLL lock-in time	$t_{\mathrm{L}} \mathrm{CC}$	-	-	400	$\mu \mathrm{~S}$	

1) 50% for even $K 2$ divider values, $50 \pm(10 / \mathrm{K} 2)$ for odd K 2 divider values.

XMC4500
XMC4000 Family

Electrical Parameters

3.3.5 Internal Clock Source Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Fast Internal Clock Source

Table 37 Fast Internal Clock Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Nominal frequency	$f_{\text {OFINC }}$ CC	-	36.5	-	MHz	not calibrated
		-	24	-	MHz	calibrated
Accuracy	$\begin{aligned} & \Delta f_{\mathrm{OFI}} \\ & \mathrm{CC} \end{aligned}$	-0.5	-	0.5	\%	automatic calibration ${ }^{12)}$
		-15	-	15	\%	factory calibration, $V_{\mathrm{DDP}}=3.3 \mathrm{~V}$
		-25	-	25	\%	no calibration, $V_{\mathrm{DDP}}=3.3 \mathrm{~V}$
		-7	-	7	\%	Variation over voltage range ${ }^{3)}$ $3.13 \mathrm{~V} \leq V_{\mathrm{DDP}} \leq$ $3.63 \mathrm{~V}$
Start-up time	$t_{\text {OFIS }} \mathrm{CC}$	-	50	-	$\mu \mathrm{S}$	

1) Error in addition to the accuracy of the reference clock.
2) Automatic calibration compensates variations of the temperature and in the $V_{\text {DDP }}$ supply voltage.
3) Deviations from the nominal $V_{\text {DDP }}$ voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

Slow Internal Clock Source

Table 38 Slow Internal Clock Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Nominal frequency	$f_{\text {osi }} \mathrm{CC}$	-	32.768	-	kHz	
Accuracy	$\begin{aligned} & \Delta f_{\mathrm{OSI}} \\ & \mathrm{CC} \end{aligned}$	-4	-	4	\%	$\begin{aligned} & V_{\mathrm{BAT}}=\text { const. } \\ & 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq \\ & 85^{\circ} \mathrm{C} \end{aligned}$
		-5	-	5	\%	$\begin{aligned} & V_{\text {BAT }}=\text { const. } \\ & T_{\mathrm{A}}<0^{\circ} \mathrm{C} \text { or } \\ & T_{\mathrm{A}}>85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
		-5	-	5	\%	$\begin{aligned} & 2.4 \mathrm{~V} \leq V_{\mathrm{BAT}}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
		-10	-	10	\%	$\begin{aligned} & 1.95 \mathrm{~V} \leq \\ & V_{\mathrm{BAT}}<2.4 \mathrm{~V}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Start-up time	$t_{\text {OSIS }} \mathrm{CC}$	-	50	-	$\mu \mathrm{S}$	

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.
Table 39 JTAG Interface Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
TCK clock period	$t_{1} \quad \mathrm{SR}$	25	-	-	ns	
TCK high time	$t_{2} \mathrm{SR}$	10	-	-	ns	
TCK low time	$t_{3} \mathrm{SR}$	10	-	-	ns	
TCK clock rise time	$t_{4} \quad \mathrm{SR}$	-	-	4	ns	
TCK clock fall time	$t_{5} \quad \mathrm{SR}$	-	-	4	ns	
TDI/TMS setup to TCK rising edge	$t_{6} \quad \mathrm{SR}$	6	-	-	ns	
TDI/TMS hold after TCK rising edge	$t_{7} \quad \mathrm{SR}$	6	-	-	ns	
TDO valid after TCK falling edge ${ }^{1)}$ (propagation delay)	$t_{8} \quad \mathrm{CC}$	-	-	13	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		3	-	-	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
TDO hold after TCK falling edge ${ }^{1)}$	$t_{18} \mathrm{CC}$	2	-	-	ns	
TDO high imped. to valid from TCK falling edge ${ }^{1) 2}$)	$t_{9} \quad \mathrm{CC}$	-	-	14	ns	$C_{L}=50 \mathrm{pF}$
TDO valid to high imped. from TCK falling edge ${ }^{1)}$	$t_{10} \mathrm{CC}$	-	-	13.5	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

1) The falling edge on TCK is used to generate the TDO timing.
2) The setup time for TDO is given implicitly by the TCK cycle time.

XMC4500 XMC4000 Family

Electrical Parameters

Figure 27 Test Clock Timing (TCK)

Figure 28 JTAG Timing

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 40 SWD Interface Timing Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
SWDCLK clock period	$t_{\text {Sc }} \mathrm{SR}$	25	-	-	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
		40	-	-	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
SWDCLK high time	$t_{1} \quad \mathrm{SR}$	10	-	500000	ns	
SWDCLK low time	$t_{2} \quad \mathrm{SR}$	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	$t_{3} \quad \mathrm{SR}$	6	-	-	ns	
SWDIO input hold after SWDCLK rising edge	$t_{4} \quad \mathrm{SR}$	6	-	-	ns	
SWDIO output valid time after SWDCLK rising edge	$t_{5} \quad \mathrm{CC}$	-	-	17	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
		-	-	13	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
SWDIO output hold time from SWDCLK rising edge	$t_{6} \quad \mathrm{CC}$	3	-	-	ns	

Figure 29 SWD Timing

3.3.8 Embedded Trace Macro Cell (ETM) Timing

The data timing refers to the active clock edge. The XMC4500 ETM uses the half-rate clocking mode. In this mode both, the rising and falling clock edges are active clock edges.
Note: These parameters are not subject to production test, but verified by design and/or characterization.
Note: Operating conditions apply, with $C_{L} \leq 15 \mathrm{pF}$.

Table 41 ETM Interface Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
			Min.	Typ.	Max.	
TRACECLK period	t_{1}	CC	16.7	-	-	ns
TRACECLK high time	t_{2}	CC	2	-	-	ns
TRACECLK low time	t_{3}	CC	2	-	-	ns
TRACECLK and TRACEDATA rise time	t_{4}	CC	-	-	3	ns
TRACECLK and TRACEDATA fall time	t_{5}	CC	-	-	-	
TRACEDATA output valid TRA	t_{6}	CC	-2	-	3	ns

Figure 30 ETM Clock Timing

Figure 31 ETM Data Timing

Electrical Parameters

3.3.9 Peripheral Timing

3.3.9.1 Delta-Sigma Demodulator Digital Interface Timing

The following parameters are applicable for the digital interface of the Delta-Sigma Demodulator (DSD).
The data timing is relative to the active clock edge. Depending on the operation mode of the connected modulator that can be the rising and falling clock edge.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 42 DSD Interface Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
MCLK period in master mode	$t_{1} \quad \mathrm{CC}$	33.3	-	-	ns	$t_{1} \geq 4 \times t_{\text {PERIPH }}{ }^{1)}$
MCLK high time in master mode	$t_{2} \quad \mathrm{CC}$	9	-	-	ns	$t_{2}>t_{\text {PERIPH }}{ }^{1)}$
MCLK low time in master mode	$t_{3} \mathrm{CC}$	9	-	-	ns	$t_{3}>t_{\text {PERIPH }}{ }^{1)}$
MCLK period in slave mode	$t_{1} \quad$ SR	33.3	-	-	ns	$t_{1} \geq 4 \times t_{\text {PERIPH }}{ }^{1)}$
MCLK high time in slave mode	$t_{2} \quad \mathrm{SR}$	$t_{\text {PERIPH }}$	-	-	ns	1)
MCLK low time in slave mode	$t_{3} \quad \mathrm{SR}$	$t_{\text {PERIPH }}$	-	-	ns	1)
DIN input setup time to the active clock edge	$t_{4} \quad \mathrm{SR}$	$\begin{aligned} & t_{\text {PERIPH }} \\ & +4 \end{aligned}$	-	-	ns	1)
DIN input hold time from the active clock edge	$t_{5} \quad \mathrm{SR}$	$\begin{aligned} & t_{\text {PERIPH }} \\ & +3 \end{aligned}$	-	-	ns	1)

1) $t_{\text {PERIPH }}=1 / f_{\text {PERIPH }}$

Figure 32 DSD Data Timing

3.3.9.2 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 43 USIC SSC Master Mode Timing

Parameter	Symbol	Values			Unit	Note I Test Condition	
SCLKOUT master clock period		33.3	-	-	Min.	Typ.	Max.

1) $t_{P B}=1 / f_{P B}$

Table $44 \quad$ USIC SSC Slave Mode Timing

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
DX1 slave clock period	$t_{\text {CLK }} \mathrm{SR}$	66.6	-	-	ns	
Select input DX2 setup to first clock input DX1 transmit edge ${ }^{1)}$	t_{10} SR	3	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ${ }^{1)}$	$t_{11} \quad \mathrm{SR}$	4	-	-	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ${ }^{1)}$	t_{12} SR	6	-	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ${ }^{1)}$	t_{13} SR	4	-	-	ns	
Data output DOUT[3:0] valid time	$t_{14} \quad \mathrm{CC}$	0	-	24	ns	

1) This input timing is valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN $=0$).

XMC4500
XMC4000 Family
Electrical Parameters

Figure 33 USIC - SSC Master/Slave Mode Timing
Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

3.3.9.3 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 45 USIC IIC Standard Mode Timing ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		ns

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at $100 \mathrm{kbit} / \mathrm{s}$, approximately 2 kOhm for operation at $400 \mathrm{kbit} / \mathrm{s}$.

Table 46 USIC IIC Fast Mode Timing ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Fall time of both SDA and SCL	$\begin{aligned} & t_{1} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	$\begin{aligned} & 20+ \\ & 0.1^{\star} \mathrm{C}_{\mathrm{b}} \\ & \text { 2) } \end{aligned}$	-	300	ns	
Rise time of both SDA and SCL	t_{2} CC/SR	$\begin{aligned} & 20+ \\ & 0.1_{2}^{*} \mathrm{C}_{\mathrm{b}} \\ & \hline \end{aligned}$	-	300	ns	
Data hold time	t_{3} CC/SR	0	-	-	$\mu \mathrm{s}$	
Data set-up time	$\begin{aligned} & t_{4} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	100	-	-	ns	
LOW period of SCL clock	t_{5} CC/SR	1.3	-	-	$\mu \mathrm{s}$	
HIGH period of SCL clock	t_{6} CC/SR	0.6	-	-	$\mu \mathrm{s}$	
Hold time for (repeated) START condition	$\begin{aligned} & t_{7} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	0.6	-	-	$\mu \mathrm{s}$	
Set-up time for repeated START condition	t_{8} CC/SR	0.6	-	-	$\mu \mathrm{s}$	
Set-up time for STOP condition	$\begin{aligned} & t_{9} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	0.6	-	-	$\mu \mathrm{s}$	
Bus free time between a STOP and START condition	$\begin{aligned} & t_{10} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	1.3	-	-	$\mu \mathrm{s}$	
Capacitive load for each bus line	$C_{\mathrm{b}} \mathrm{SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at $100 \mathrm{kbit} / \mathrm{s}$, approximately 2 kOhm for operation at $400 \mathrm{kbit} / \mathrm{s}$.
2) C_{b} refers to the total capacitance of one bus line in pF .

XMC4500
XMC4000 Family
Electrical Parameters

Figure 34 USIC IIC Stand and Fast Mode Timing

3.3.9.4 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 47 USIC IIS Master Transmitter Timing

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		ns
Clock period	$t_{1} \mathrm{CC}$	33.3	-	-	ns	
Clock high time	$t_{2} \mathrm{CC}$	0.35 x $t_{1 \text { min }}$	-	-	ns	
Clock low time	$t_{3} \mathrm{CC}$	0.35 x $t_{1 \text { min }}$	-	-	ns	
Hold time	$t_{4} \mathrm{CC}$	0	-	-	ns	
Clock rise time	$t_{5} \mathrm{CC}$	-	-	0.15 x $t_{1 \min }$	ns	

Figure 35 USIC IIS Master Transmitter Timing

Table 48 USIC IIS Slave Receiver Timing

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		ns
Clock period	$t_{6} \mathrm{SR}$	66.6	-	-	ns	
Clock high time	$t_{7} \mathrm{SR}$	$0.35 x$ $t_{6 \text { min }}$	-	-	ns	
Clock low time	$t_{8} \mathrm{SR}$	$0.35 x$ $t_{6 \text { min }}$	-	-	ns	
Set-up time	$t_{9} \mathrm{SR}$	$0.2 x$ $t_{6 \text { min }}$	-	-	ns	
Hold time	$t_{10} \mathrm{SR}$	0	-	-	ns	

Figure 36 USIC IIS Slave Receiver Timing

3.3.9.5 SDMMC Interface Timing

Note: These parameters are not subject to production test, but verified by design and/or characterization.
Note: Operating Conditions apply, total external capacitive load $C_{L}=40 \mathrm{pF}$.

AC Timing Specifications (Full-Speed Mode)

Table 49 SDMMC Timing for Full-Speed Mode

Parameter	Symbol	Values		Unit	Notel Test Condition
		Min.	Max.		
Clock frequency in full speed transfer mode ($1 / t_{\mathrm{pp}}$)	$f_{\mathrm{pp}} \quad \mathrm{CC}$	0	24	MHz	
Clock cycle in full speed transfer mode	$t_{\mathrm{pp}} \quad \mathrm{CC}$	40	-	ns	
Clock low time	$t_{\text {WL }} \quad \mathrm{CC}$	10	-	ns	
Clock high time	$t_{\text {WH }}$ CC	10	-	ns	
Clock rise time	$t_{\text {TLH }} \quad \mathrm{CC}$	-	10	ns	
Clock fall time	$t_{\text {THL }} \quad \mathrm{CC}$	-	10	ns	
Inputs setup to clock rising edge	$t_{\text {ISU_F }} \mathrm{SR}$	2	-	ns	
Inputs hold after clock rising edge	$t_{\text {IH_F }} \quad \mathrm{SR}$	2	-	ns	
Outputs valid time in full speed mode	$t_{\text {ODLY_F }} \mathrm{CC}$	-	10	ns	
Outputs hold time in full speed mode	$t_{\text {OH_F }} \mathrm{CC}$	0	-	ns	

Table 50 SD Card Bus Timing for Full-Speed Mode ${ }^{1)}$

Parameter	Symbol	Values		Unit	Note/ Test Condition
SD card input setup time		5	Max.		
SD card input hold time	t_{IH}	5	-	ns	

Table 50 SD Card Bus Timing for Full-Speed Mode ${ }^{1)}$ (cont'd)

Parameter	Symbol	Values		Unit	Notel Test Condition
		Min.	Max.		
SD card output valid time	t_{ODLY}	-	14	ns	
SD card output hold time	t_{OH}	0	-	ns	

1) Reference card timing values for calculation examples. Not subject to production test and not characterized.

Full-Speed Output Path (Write)

Figure 37 Full-Speed Output Path

Full-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ODLY} Y_{-} \mathrm{F}}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\mathrm{ISU}}<\mathrm{t}_{\mathrm{WL}} \tag{1}
\end{equation*}
$$

With clock delay:

$$
\begin{equation*}
\mathrm{t}_{\text {ODLY_F }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\mathrm{ISU}}<\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\text {CLK_DELAY }} \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\mathrm{WL}}<\mathrm{t}_{\text {Pp }}+\mathrm{t}_{\text {CLK_DELAY }}-\mathrm{t}_{\text {ISU }}-\mathrm{t}_{\text {ODLY_F }} \tag{3}\\
\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+20<40+\mathrm{t}_{\text {CLK_DELAY }}-5-10 \\
\mathrm{t}_{\text {DATA_DELAY }}<5+\mathrm{t}_{\text {CLK_DELAY }}-\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The data can be delayed versus clock up to 5 ns in ideal case of $t_{\mathrm{wL}}=20 \mathrm{~ns}$.

Full-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{gather*}
\mathrm{t}_{\mathrm{CLK} \text { _DELAY }}<\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{OH} _\mathrm{F}}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}-\mathrm{t}_{\mathrm{IH}} \tag{4}\\
\mathrm{t}_{\text {CLK_DELAY }}<20+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}-5 \\
\mathrm{t}_{\text {DATA_DELAY }}<15+\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The clock can be delayed versus data up to 18.2 ns (external delay line) in ideal case of $t_{\mathrm{WL}}=20 \mathrm{~ns}$, with maximum $t_{\text {TAP_DELAY }}=3.2 \mathrm{~ns}$ programmed.

Full-Speed Input Path (Read)

Figure 38 Full-Speed Input Path

Full-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{gather*}
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\text {ODLY }}+\mathrm{t}_{\text {ISU_F }}<0,5 \times \mathrm{t}_{\text {Pp }} \tag{5}\\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<0,5 \times \mathrm{t}_{\text {pp }}-\mathrm{t}_{\text {ODLY }}-\mathrm{t}_{\text {ISU_F }}-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<20-14-2-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<4-\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The data + clock delay can be up to 4 ns for a 40 ns clock cycle.

Full-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{align*}
& \mathrm{t}_{\mathrm{CLK} _ \text {DELAY }}+\mathrm{t}_{\mathrm{OH}}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}>\mathrm{t}_{\mathrm{IH} _\mathrm{F}} \tag{6}\\
& \mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}>\mathrm{t}_{\mathrm{IH} _\mathrm{F}}-\mathrm{t}_{\mathrm{OH}}-\mathrm{t}_{\text {TAP_DELAY }}
\end{align*}
$$

$$
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}>2-\mathrm{t}_{\text {TAP_DELAY }}
$$

The data + clock delay must be greater than 2 ns if $t_{\text {TAP_DELAY }}$ is not used.
If the $t_{\text {TAP_DELAY }}$ is programmed to at least 2 ns , the data + clock delay must be greater than 0 ns (or less). This is always fulfilled.

AC Timing Specifications (High-Speed Mode)

Table 51 SDMMC Timing for High-Speed Mode

Parameter	Symbol	Values		Unit	Notel Test Condition
		Min.	Max.		
Clock frequency in high speed transfer mode ($1 / /_{\text {pp }}$)	$f_{\mathrm{pp}} \quad \mathrm{CC}$	0	48	MHz	
Clock cycle in high speed transfer mode	$t_{\mathrm{pp}} \quad \mathrm{CC}$	20	-	ns	
Clock low time	$t_{\text {WL }} \quad \mathrm{CC}$	7	-	ns	
Clock high time	$t_{\text {WH }} \quad \mathrm{CC}$	7	-	ns	
Clock rise time	$t_{\text {TLH }} \quad \mathrm{CC}$	-	3	ns	
Clock fall time	$t_{\text {THL }} \quad \mathrm{CC}$	-	3	ns	
Inputs setup to clock rising edge	$t_{\text {ISU_H }} \mathrm{SR}$	2	-	ns	
Inputs hold after clock rising edge	$t_{1 \mathrm{H}_{-} \mathrm{H}} \quad \mathrm{SR}$	2	-	ns	
Outputs valid time in high speed mode	$t_{\text {ODLY_H }} \mathrm{CC}$	-	14	ns	
Outputs hold time in high speed mode	$t_{\text {OH_H }} \quad \mathrm{CC}$	2	-	ns	

Table 52 SD Card Bus Timing for High-Speed Mode ${ }^{1)}$

Parameter	Symbol	Values		Unit	Notel Test Condition
		Min.	Max.		
SD card input setup time	$t_{\text {ISU }}$	6	-	ns	
SD card input hold time	$t_{1 \mathrm{H}}$	2	-	ns	
SD card output valid time	$t_{\text {ODLY }}$	-	14	ns	
SD card output hold time	t_{OH}	2.5	-	ns	

1) Reference card timing values for calculation examples. Not subject to production test and not characterized.

High-Speed Output Path (Write)

Figure 39 High-Speed Output Path

High-Speed Write Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

No clock delay:

$$
\begin{equation*}
\mathrm{t}_{\text {ODLY_H }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\mathrm{ISU}}<\mathrm{t}_{\mathrm{WL}} \tag{7}
\end{equation*}
$$

With clock delay:

$$
\begin{align*}
& \mathrm{t}_{\text {ODLY_H }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\text {ISU }}<\mathrm{t}_{\text {WLL }}+\mathrm{t}_{\text {CLK_DELAY }} \tag{8}\\
& \mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}-\mathrm{t}_{\text {CLK_DELAY }}<\mathrm{t}_{\mathrm{WL}}-\mathrm{t}_{\text {ISU }}-\mathrm{t}_{\text {ODLY_H }} \tag{9}\\
& \mathrm{t}_{\text {DATA_DELAY }}-\mathrm{t}_{\text {CLK_DELAY }}<\mathrm{t}_{\text {WLL }}-\mathrm{t}_{\text {ISU }}-\mathrm{t}_{\text {ODLY_H }}-\mathrm{t}_{\text {TAP_DELAY }} \\
& \mathrm{t}_{\text {DATA_DELAY }}-\mathrm{t}_{\text {CLK_DELAY }}<10-6-14-\mathrm{t}_{\text {TAP_DELAY }} \\
& \mathrm{t}_{\text {DATA_DELAY }}-\mathrm{t}_{\text {CLK_DELAY }}<-10-\mathrm{t}_{\text {TAP_DELAY }}
\end{align*}
$$

The data delay is less than the clock delay by at least 10 ns in the ideal case where $t_{\mathrm{wL}}=$ 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{gather*}
\mathrm{t}_{\mathrm{CLK} \text { _DELAY }}<\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{OH} _\mathrm{H}}+\mathrm{t}_{\mathrm{DATA} _ \text {DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}-\mathrm{t}_{\mathrm{IH}} \tag{10}\\
\mathrm{t}_{\mathrm{CLK} \text { _DELAY }}-\mathrm{t}_{\text {DATA_DELAY }}<\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{OH} _\mathrm{H}}+\mathrm{t}_{\text {TAP_DELAY }}-\mathrm{t}_{\mathrm{IH}} \\
\mathrm{t}_{\text {CLK_DELAY }}-\mathrm{t}_{\text {DATA_DELAY }}<10+2+\mathrm{t}_{\text {TAP_DELAY }}-2 \\
\mathrm{t}_{\text {CLK_DELAY }}-\mathrm{t}_{\text {DATA_DELAY }}<10+\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of $t_{\mathrm{WL}}=10 \mathrm{~ns}$, with maximum $t_{\text {TAP_DELAY }}=3.2 \mathrm{~ns}$ programmed.

High-Speed Input Path (Read)

Figure 40 High-Speed Input Path

High-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{gather*}
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}+\mathrm{t}_{\text {ODLY }}+\mathrm{t}_{\text {ISU_H }}<\mathrm{t}_{\mathrm{pp}} \tag{11}\\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<\mathrm{t}_{\text {pp }}-\mathrm{t}_{\text {ODLY }}-\mathrm{t}_{\text {ISU_H }}-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<20-14-2-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}<4-\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The data + clock delay can be up to 4 ns for a 20 ns clock cycle.

XMC4500
XMC4000 Family
Electrical Parameters

High-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$
\begin{gather*}
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {OH }}+\mathrm{t}_{\text {DATA_DELAY }}+\mathrm{t}_{\text {TAP_DELAY }}>\mathrm{t}_{\text {IH_H }} \tag{12}\\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}>\mathrm{t}_{\text {IH_H }}-\mathrm{t}_{\text {OH }}-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}>2-2,5-\mathrm{t}_{\text {TAP_DELAY }} \\
\mathrm{t}_{\text {CLK_DELAY }}+\mathrm{t}_{\text {DATA_DELAY }}>-0,5-\mathrm{t}_{\text {TAP_DELAY }}
\end{gather*}
$$

The data + clock delay must be greater than -0.5 ns for a 20 ns clock cycle. This is always fulfilled.

3.3.10 EBU Timing

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating Conditions apply, with Class A2 pins and $C_{L}=16 \mathrm{pF}$.

3.3.10.1 EBU Asynchronous Timing

Note: For each timing, the accumulated PLL jitter must be added separately.

Table 53 Common Timing Parameters for all Asynchronous Timings

Parameter			Sym bol	Limit Values		Unit	Edge Setting	
			Min.	Max.				
Pulse width deviation from the ideal programmed width due to the A2 pad asymmetry, strong driver mode, rise delay - fall delay. $C_{\mathrm{L}}=16 \mathrm{pF}$.		CC		t_{a}	-1	1.5	ns	sharp
		-2	1		medium			
AD(24:16) output delay	to $\overline{\mathrm{ADV}}$ rising edge, multiplexed read / write		CC	t_{13}	-5.5	2		-
AD(24:16) output delay		CC	t_{14}	-5.5	2	-		

Read Timing

Table 54 Asynchronous Read Timing, Multiplexed and Demultiplexed

Parameter			Symbol	Limit Values		Unit
				Min.	Max.	
A(24:16) output delay	to $\overline{\mathrm{RD}}$ rising edge, deviation from the ideal programmed value.	CC	t_{0}	-2.5	2.5	ns
A(24:16) output delay		CC	t_{1}	-2.5	2.5	
$\overline{\mathrm{CS}}$ rising edge		CC	t_{2}	-2	2.5	
$\overline{\text { ADV rising edge }}$		CC	t_{3}	-1.5	4.5	
$\overline{\mathrm{BC}}$ rising edge		CC	t_{4}	-2.5	2.5	
$\overline{\text { WAIT }}$ input setup		SR	t_{5}	12	-	
$\overline{\text { WAIT input hold }}$		SR	t_{6}	0	-	
Data input setup		SR	t_{7}	12	-	
Data input hold		SR	t_{8}	0	-	
RD / $\overline{\mathrm{WR}}$ output delay		CC	t_{9}	-2.5	1.5	

Multiplexed Read Timing

Figure 41 Multiplexed Read Access

XMC4500
XMC4000 Family
Electrical Parameters
Demultiplexed Read Timing

Figure 42 Demultiplexed Read Access

Write Timing

Table 55 Asynchronous Write Timing, Multiplexed and Demultiplexed

Parameter			Symbol	Limit Values		Unit
				Min.	Max.	
A(24:0) output delay	to RD/ $\overline{\mathrm{WR}}$ rising edge, deviation from the ideal programmed value.	CC	t_{30}	-2.5	2.5	ns
A(24:0) output delay		CC	t_{31}	-2.5	2.5	
$\overline{\overline{C S}}$ rising edge		CC	t_{32}	-2	2	
$\overline{\overline{\text { ADV }} \text { rising edge }}$		CC	t_{33}	-2	4.5	
$\overline{\overline{B C}}$ rising edge		CC	t_{34}	-2.5	2	
$\overline{\text { WAIT }}$ input setup		SR	t_{35}	12	-	
$\overline{\text { WAIT }}$ input hold		SR	t_{36}	0	-	
Data output delay		CC	t_{37}	-5.5	2	
Data output delay		CC	t_{38}	-5.5	2	
RD / $\overline{\mathrm{WR}}$ output delay		CC	t_{39}	-2.5	1.5	

Multiplexed Write Timing

Figure 43 Multiplexed Write Access

Demultiplexed Write Timing

Figure 44 Demultiplexed Write Access

XMC4500
XMC4000 Family
Electrical Parameters

3.3.10.2 EBU Burst Mode Access Timing

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating Conditions apply, with Class A2 pins and $C_{L}=16 \mathrm{pF}$.

Table 56 EBU Burst Mode Read / Write Access Timing Parameters

Parameter	Symbol		Values			Unit	Note I Test Condition
			Min.	Typ.	Max.		
Output delay from BFCLKO rising edge	t_{10}	CC	-2	-	2	ns	-
$\overline{\mathrm{RD}}$ and RD/ $\overline{\mathrm{WR}}$ active/inactive after BFCLKO active edge ${ }^{1)}$	t_{12}	CC	-2	-	2	ns	-
$\overline{\overline{\mathrm{CS}}} \mathrm{x}$ output delay from BFCLKO active edge ${ }^{1)}$	t_{21}	CC	-2.5	-	1.5	ns	-
ADV active/inactive after BFCLKO active edge ${ }^{2)}$		CC	-2	-	2	ns	-
$\overline{\text { BAA }}$ active/inactive after BFCLKO active edge ${ }^{2)}$	t_{22}	CC	-2.5	-	1.5	ns	-
Data setup to BFCLKI rising edge ${ }^{3)}$	t_{23}	SR	3	-	-	ns	-
Data hold from BFCLKI rising edge ${ }^{3)}$	t_{24}	SR	0	-	-	ns	-
WAIT setup (low or high) to BFCLKI rising edge ${ }^{3 \text {) }}$	t_{25}	SR	3	-	-	ns	-
WAIT hold (low or high) from BFCLKI rising edge ${ }^{3)}$		SR	0	-	-	ns	-

1) An active edge can be a rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and the clock divider ratio.
Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is an oversampling not required for the internal bus transaction, and will be discarded.
2) This parameter is valid for BUSCONx.EBSE $=1$ and BUSAPx.EXTCLK $=00_{B}$.

For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by $1 / 2$ of the internal bus clock period $T_{\text {CPU }}=1 / f_{\text {CPU }}$.
For BUSCONx. EBSE $=0$ and BUSAPx.EXTCLK $=11_{B}$, add 2 internal bus clock periods.
For BUSCONx. EBSE $=0$ and other values of BUSAPx.EXTCLK, add 1 internal bus clock period.

XMC4500
XMC4000 Family

Electrical Parameters

3) If the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as for asynchronous access. Thus, $\mathrm{t}_{5}, \mathrm{t}_{6}, \mathrm{t}_{7}$ and t_{8} from the asynchronous timing apply.

Figure 45 EBU Burst Mode Read / Write Access Timing

3.3.10.3 EBU Arbitration Signal Timing

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 57 EBU Arbitration Signal Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Cond ition	
Output delay from BFCLKO rising edge	t_{1}	CC	-	-	16	ns	$C_{\mathrm{L}}=50 \mathrm{pF}$
Data setup to BFCLKO falling edge	t_{2}	SR	11	-	-	ns	-
Data hold from BFCLKO falling edge	t_{3}	SR	2	-	-	ns	-

Figure 46 EBU Arbitration Signal Timing

3.3.10.4 EBU SDRAM Access Timing

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating Conditions apply, with Class A2 pins and $C_{L}=16 \mathrm{pF}$.

Table 58 EBU SDRAM Access SDCLKO Signal Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Con dition	
			Min.	Typ.	Max.		
SDCLKO period	t_{1}	CC	12.5	-	-	ns	-
SDCLKO high time	t_{2}	SR	5.5	-	-	ns	-
SDCLKO low time	t_{3}	SR	3.75	-	-	ns	-
SDCLKO rise time	t_{4}	SR	-	-	3.0	ns	-
SDCLKO fall time	t_{5}	SR	-	-	3.0	ns	-

EBU_SDCLKO.vsd
Figure 47 EBU SDRAM Access CLKOUT Timing

Table 59 EBU SDRAM Access Signal Timing Parameters

Parameter			Symbol	Limit Values		Unit	
			Min.	Max.			
A(15:0) output valid	from SDCLKO low-to-high transition	CC		t_{6}	-	9	ns
A(15:0) output hold		CC	t_{7}	3	-		
$\overline{\overline{C S}(3: 0)}$ low		CC	t_{8}	-	9		
$\overline{\mathrm{CS}(3: 0)}$ high		CC	t_{9}	3	-		
RAS low		CC	t_{10}	-	9		
$\overline{\overline{R A S}}$ high		SR	t_{11}	3	-		
CAS low		SR	t_{12}	-	9		
$\overline{\text { CAS }}$ high		CC	t_{13}	3	-		
RD/VR low		CC	t_{14}	-	9		
RD/ $\overline{\text { WR }}$ high		CC	t_{15}	3	-		
BC(3:0) low		CC	t_{16}	-	9		
$\overline{\overline{B C}(3: 0)}$ high		CC	t_{17}	3	-		
D(15:0) output valid		CC	t_{18}	-	9		
D(15:0) output hold		CC	t_{19}	3	-		
CKE output valid ${ }^{1)}$		CC	t_{22}	-	7		
CKE output hold ${ }^{1)}$		CC	t_{23}	2	-		
$\mathrm{D}(15: 0)$ input hold		SR	t_{21}	3	-		
$D(15: 0)$ input setup to SDCLKO low-to-high transition		SR	t_{20}	4	-		

1) Not depicted in the read and write access timing figures below.

XMC4500
XMC4000 Family
Electrical Parameters

EBU_SDRAM-RD.vsd
Figure 48 EBU SDRAM Read Access Timing

XMC4500
XMC4000 Family
Electrical Parameters

Figure 49 EBU SDRAM Write Access Timing

3.3.11 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification and the OTG Specification Rev. 1.3. High-Speed Mode is not supported.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 60 USB Timing Parameters (operating conditions apply)

Parameter	Symbol		Values			Unit	Note I Test Condition
			Min.	Typ.	Max.		
Rise time	t_{R}	CC	4	-	20	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Fall time	t_{F}	CC	4	-	20	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Rise/Fall time matching	$t_{\mathrm{R}} / t_{\mathrm{F}}$	CC	90	-	111.11	$\%$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Crossover voltage	$\mathrm{V}_{\mathrm{CRS}}$	CC	1.3	-	2.0	V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Figure 50 USB Signal Timing

3.3.12 Ethernet Interface (ETH) Characteristics

For proper operation of the Ethernet Interface it is required that $f_{\mathrm{SYS}} \geq 100 \mathrm{MHz}$.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.12.1 ETH Measurement Reference Points

Figure 51 ETH Measurement Reference Points

3.3.12.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)

Table 61 ETH Management Signal Timing Parameters

Parameter	Symbol		Values			Unit	Note I Test Conditi on
			Min.	Typ.	Max.		
ETH_MDC period		CC	400	-	-	ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
ETH_MDC high time		CC	160	-	-	ns	
ETH_MDC low time		CC	160	-	-	ns	
ETH_MDIO setup time (output)		CC	10	-	-	ns	
ETH_MDIO hold time (output)		CC	10	-	-	ns	
ETH_MDIO data valid (input)		SR	0	-	300	ns	

ETH_MDIO sourced by STA:

ETH_MDIO sourced by PHY:
ETH_MDC

ETH_Timing-Mgmt.vsd
Figure 52 ETH Management Signal Timing

3.3.12.3 ETH MII Parameters

In the following, the parameters of the MII (Media Independent Interface) are described.

Table 62 ETH MII Signal Timing Parameters

Parameter	Symbol		Values			Unit	Note I Test Condition
			Min.	Typ.	Max.		
Clock period, 10 Mbps		SR	400	-	-	ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Clock high time, 10 Mbps		SR	140	-	260	ns	
Clock low time, 10 Mbps		SR	140	-	260	ns	
Clock period, 100 Mbps		SR	40	-	-	ns	
Clock high time, 100 Mbps		SR	14	-	26	ns	
Clock low time, 100 Mbps		SR	14	-	26	ns	
Input setup time			10	-	-	ns	
Input hold time			10	-	-	ns	
Output valid time			0	-	25	ns	

Figure 53 ETH MII Signal Timing

3.3.12.4 ETH RMII Parameters

In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.

Table 63 ETH RMII Signal Timing Parameters

Parameter	Symbol	Values			Unit	Note I Test Condit ion
		Min.	Typ.	Max.		
ETH_RMII_REF_CL clock period	$t_{13} \quad$ SR	20	-	-	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} ; \\ & 50 \mathrm{ppm} \end{aligned}$
ETH_RMII_REF_CL clock high time	$t_{14} \quad$ SR	7	-	13	ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
ETH_RMII_REF_CL clock low time	$t_{15} \quad$ SR	7	-	13	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS setup time	$t_{16} \quad$ SR	4	-	-	ns	
ETH_RMII_RXD[1:0], ETH_RMII_CRS hold time	$t_{17} \quad \mathrm{SR}$	2	-	-	ns	
ETH_RMII_TXD[1:0], ETH_RMII_TXEN data valid	$t_{18} \quad$ CC	4	-	15	ns	

Figure 54 ETH RMII Signal Timing

XMC4500
XMC4000 Family
Package and Reliability

$4 \quad$ Package and Reliability

The XMC4500 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.
Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.
If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 64 provides the thermal characteristics of the packages used in XMC4500.

Table 64 Thermal Characteristics of the Packages

Parameter	Symbol	Limit Values		Unit	Package Types
		Min.	Max.		
Exposed Die Pad Dimensions (including UGroove where applicable)	$\begin{aligned} & E x \times E y \\ & C C \end{aligned}$	-	6.5×6.5	mm	PG-LQFP-144-18
		-	6.5×6.5	mm	PG-LQFP-144-24
		-	7.0×7.0	mm	PG-LQFP-100-11
		-	7.0×7.0	mm	PG-LQFP-100-25
Thermal resistance Junction-Ambient$T_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$	$\begin{aligned} & R_{\text {©JA }} \\ & \mathrm{CC} \end{aligned}$	-	40.5	K/W	PG-LFBGA-144-10
		-	22.4	K/W	PG-LQFP-144-18 ${ }^{1)}$
		-	19.5	K/W	PG-LQFP-144-24 ${ }^{1)}$
		-	23.0	K/W	PG-LQFP-100-11 ${ }^{1)}$
		-	21.0	K/W	PG-LQFP-100-25 ${ }^{1)}$

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground $V_{S S}$, independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4500 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.
The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta J A}$ " quantifies these parameters. The

Package and Reliability

power dissipation must be limited so that the average junction temperature does not exceed $150^{\circ} \mathrm{C}$.

The difference between junction temperature and ambient temperature is determined by $\Delta \mathrm{T}=\left(P_{\text {INT }}+P_{\text {IOSTAT }}+P_{\text {IODYN }}\right) \times R_{\text {©JA }}$
The internal power consumption is defined as
$P_{\text {INT }}=V_{\mathrm{DDP}} \times I_{\mathrm{DDP}}$ (switching current and leakage current).
The static external power consumption caused by the output drivers is defined as
$P_{\text {IOSTAT }}=\Sigma\left(\left(V_{\mathrm{DDP}}-V_{\mathrm{OH}}\right) \times I_{\mathrm{OH}}\right)+\Sigma\left(V_{\mathrm{OL}} \times I_{\mathrm{OL}}\right)$
The dynamic external power consumption caused by the output drivers $\left(P_{\text {IODYN }}\right)$ depends on the capacitive load connected to the respective pins and their switching frequencies.
If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce $V_{\text {DDP }}$, if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

Table 65 Differences PG-LQFP-14-18 to PG-LQFP-144-24

Change	PG-LQFP-144-18	PG-LQFP-144-24
Thermal Resistance Junction Ambient $\left(R_{\Theta J A}\right)$	$22.4 \mathrm{~K} / \mathrm{W}$	$21.0 \mathrm{~K} / \mathrm{W}$
Lead Width	$0.22^{ \pm 0.05} \mathrm{~mm}$	$0.2^{+0.07}{ }_{-0.03} \mathrm{~mm}$
Lead Thickness	$0.15^{+0.05}{ }_{-0.06} \mathrm{~mm}$	$0.127^{+0.073}{ }_{-0.037} \mathrm{~mm}$
Exposed Die Pad outer dimensions	$6.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$	$6.5 \mathrm{~mm} \times 6.5 \mathrm{~mm}$
Exposed Die Pad U- Groove inner dimensions	n.a.	$5.7 \mathrm{~mm} \times 5.7 \mathrm{~mm}$

Figure 55 PG-LQFP-144-18 (Plastic Green Low Profile Quad Flat Package)

Figure 56 PG-LQFP-144-24 (Plastic Green Low Profile Quad Flat Package)

Package and Reliability

Table 66 Differences PG-LQFP-100-11 to PG-LQFP-100-24

Change	PG-LQFP-100-11	PG-LQFP-100-25
Thermal Resistance Junction Ambient $\left(R_{\Theta J A}\right)$	$23.0 \mathrm{~K} / \mathrm{W}$	$19.5 \mathrm{~K} / \mathrm{W}$
Lead Width	$0.22^{ \pm 0.05} \mathrm{~mm}$	$0.2^{+0.07}{ }_{-0.03} \mathrm{~mm}$
Lead Thickness	$0.15^{+0.05}{ }_{-0.06} \mathrm{~mm}$	$0.127^{+0.073}-0.037 \mathrm{~mm}$
Exposed Die Pad outer dimensions	$7.0 \mathrm{~mm} \times 7.0 \mathrm{~mm}$	$7.0 \mathrm{~mm} \times 7.0 \mathrm{~mm}$
Exposed Die Pad U- Groove inner dimensions	n.a.	$6.2 \mathrm{~mm} \times 6.2 \mathrm{~mm}$

1) Does not include plastic or metal protrusion of 0.25 max. per side

PG-LQFP-100-3,-4, -8,-11-PO V14
Figure 57 PG-LQFP-100-11 (Plastic Green Low Profile Quad Flat Package)

Bottom View

1) Does not include plastic or metal protrusion of 0.25 max. per side
2) Does not include dambar protrusion of 0.08 max. per side
3) Refer table for exposed pad dimension details

PG-LQFP-100-24,-25-PO V04
Figure 58 PG-LQFP-100-25 (Plastic Green Low Profile Quad Flat Package)

Figure 59 PG-LFBGA-144-10 (Plastic Green Low Profile Fine Pitch Ball Grid Array) All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

4.3 Quality Declarations

The qualification of the XMC4500 is executed according to the JEDEC standard JESD47H.
Note: For automotive applications refer to the Infineon automotive microcontrollers.
Table 67 Quality Parameters

Parameter	Symbol	Values			Unit	$\begin{array}{l}\text { Note I } \\ \text { Test Condition }\end{array}$
	OPP CC	20	-	-	a	$\begin{array}{l}\text { Typ. }\end{array}$
Operation lifetime	Max.					
device permanent						
on						

ww w.infineon.com

Published by Infineon Technologies AG

[^0]: 1) $\mathrm{POD}=\mathrm{Pin}$ Out Driver
