

# 16 V Rail-to-Rail, Zero-Drift, Precision Instrumentation <u>Amplifier</u>

## AD8230

#### FEATURES

Resistor programmable gain range:  $10^1$  to 1000 Supply voltage range:  $\pm 4$  V to  $\pm 8$  V Rail-to-rail input and output Maintains performance over  $-40^{\circ}$ C to  $+125^{\circ}$ C Excellent ac and dc performance 110 dB minimum CMR @ 60 Hz, G = 10 to 1000 10  $\mu$ V maximum offset voltage (RTI,  $\pm 5$  V operation) 50 nV/°C maximum offset drift 20 ppm maximum gain nonlinearity

#### **APPLICATIONS**

Pressure measurements Temperature measurements Strain measurements Automotive diagnostics

### **GENERAL DESCRIPTION**

The AD8230 is a low drift, differential sampling, precision instrumentation amplifier. Auto-zeroing reduces offset voltage drift to less than 50 nV/°C. The AD8230 is well-suited for thermocouple and bridge transducer applications. The AD8230's high CMR of 110 dB (minimum) rejects line noise in measurements where the sensor is far from the instrumentation. The 16 V rail-to-rail, common-mode input range is useful for noisy environments where ground potentials vary by several volts. Low frequency noise is kept to a minimal 3  $\mu$ V p-p, making the AD8230 perfect for applications requiring the utmost dc precision. Moreover, the AD8230 maintains its high performance over the extended industrial temperature range of  $-40^{\circ}$ C to +125°C.

Two external resistors are used to program the gain. By using matched external resistors, the gain stability of the AD8230 is much higher than instrumentation amplifiers that use a single resistor to set the gain. In addition to allowing users to program the gain between  $10^1$  and 1000, users can adjust the output offset voltage.





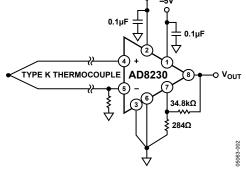



Figure 3. Thermocouple Measurement

The AD8230 is versatile yet simple to use. Its auto-zeroing topology significantly minimizes the input and output transients typical of commutating or chopper instrumentation amplifiers. The AD8230 operates on  $\pm 4$  V to  $\pm 8$  V (+8 V to +16 V) supplies and is available in an 8-lead SOIC.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2004–2007 Analog Devices, Inc. All rights reserved.

<sup>&</sup>lt;sup>1</sup> The AD8230 can be programmed for a gain as low as 2, but the maximum input voltage is limited to approximately 750 mV.

## TABLE OF CONTENTS

| Features                            |
|-------------------------------------|
| Applications1                       |
| General Description 1               |
| Connection Diagram 1                |
| Revision History                    |
| Specifications                      |
| Absolute Maximum Ratings 5          |
| Thermal Characteristics 5           |
| ESD Caution 5                       |
| Typical Performance Characteristics |
| Theory of Operation11               |
| Setting the Gain11                  |

# Level-Shifting the Output12Source Impedance and Input Settling Time12Input Voltage Range13Input Protection13Power Supply Bypassing13Power Supply Bypassing for Multiple Channel Systems13Layout14Applications15Ordering Guide15

### **REVISION HISTORY**

| 9/07—Rev. A to Rev. B                                    |    |
|----------------------------------------------------------|----|
| Changes to Features and Layout                           | 1  |
| Changes to Table 1                                       | 3  |
| Changes to Table 2                                       | 4  |
| Changes to Layout                                        |    |
| Inserted Figure 13, Figure 14, and Figure 15; Renumbered |    |
| Sequentially                                             | 7  |
| Changes to Figure 16 and Figure 19                       | 8  |
| Updated Outline Dimensions                               | 15 |

#### 7/05—Rev. 0 to Rev. A

| Changes to Excellent AC and DC Performance1                  |
|--------------------------------------------------------------|
| Changes to Table 1                                           |
| Changes to Table 24                                          |
| Changes to Figure 7 and Figure 86                            |
| Changes to Figure 10 and Figure 117                          |
| Changes to Level-Shifting the Output Section                 |
| Changes to Figure 31 11                                      |
| Inserted Figure 32 and Figure 33; Renumbered Sequentially 11 |
| Changes to Source Impedance and Input Settling Time Section, |
| Input Protection Section and Power Supply Bypassing for      |
| Multiple Channel Systems Section 12                          |
| Changes to Figure 36 13                                      |
| Changes to Applications Section 13                           |
|                                                              |

10/04—Revision 0: Initial Version

## **SPECIFICATIONS**

 $V_{\text{S}}=\pm5\text{ V}, V_{\text{REF}}=0\text{ V}, R_{\text{F}}=100\text{ k}\Omega, R_{\text{G}}=1\text{ k}\Omega \text{ (@ }T_{\text{A}}=25^{\circ}\text{C}, \text{G}=202, R_{\text{L}}=10\text{ k}\Omega, \text{unless otherwise noted)}.$ 

#### Table 1.

| Parameter                                       | Conditions                                     | Min             | Тур  | Max            | Unit   |
|-------------------------------------------------|------------------------------------------------|-----------------|------|----------------|--------|
| VOLTAGE OFFSET                                  |                                                |                 |      |                |        |
| RTI Offset, Vosi                                | $V_{+IN} = V_{-IN} = 0 V$                      |                 |      | 10             | μV     |
| Offset Drift                                    | $V_{+IN} = V_{-IN} = 0 V,$                     |                 |      | 50             | nV/°C  |
|                                                 | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ |                 |      |                |        |
| COMMON-MODE REJECTION (CMR)                     |                                                |                 |      |                |        |
| CMR to 60 Hz with 1 k $\Omega$ Source Imbalance | $V_{CM} = -5 V \text{ to } +5 V$               | 110             | 120  |                | dB     |
| VOLTAGE OFFSET RTI vs. SUPPLY (PSR)             |                                                |                 |      |                |        |
| G = 2                                           |                                                | 120             | 120  |                | dB     |
| G = 202                                         |                                                | 120             | 140  |                | dB     |
| GAIN                                            | $G = 2(1 + R_F/R_G)$                           |                 |      |                |        |
| Gain Range                                      |                                                | 10 <sup>1</sup> |      | 1000           | V/V    |
| Gain Error <sup>2</sup>                         |                                                |                 |      |                |        |
| G = 2                                           |                                                |                 | 0.01 | 0.04           | %      |
| G = 10                                          |                                                |                 | 0.01 | 0.04           | %      |
| G = 100                                         |                                                |                 | 0.01 | 0.04           | %      |
| G = 1000                                        |                                                |                 | 0.02 | 0.05           | %      |
| Gain Nonlinearity                               |                                                |                 |      | 20             | ppm    |
| Gain Drift                                      |                                                |                 |      |                |        |
| G = 2, 10, 102                                  |                                                |                 |      | 14             | ppm/°C |
| G = 1002                                        |                                                |                 |      | 60             | ppm/°C |
| INPUT                                           |                                                |                 |      |                |        |
| Input Common-Mode Operating Voltage Range       |                                                | -Vs             |      | +Vs            | V      |
| Over Temperature                                | $T = -40^{\circ}C \text{ to } +125^{\circ}C$   | -Vs             |      | +Vs            | V      |
| Input Differential Operating Voltage Range      |                                                |                 | 750  |                | mV     |
| Average Input Offset Current <sup>3</sup>       | $V_{CM} = 0 V$                                 |                 | 33   | 300            | pА     |
| Average Input Bias Current <sup>3</sup>         | $V_{CM} = 0 V$                                 |                 | 0.15 | 1              | nA     |
| OUTPUT                                          |                                                |                 |      |                |        |
| Output Swing                                    |                                                | $-V_{s} + 0.1$  |      | $+V_{s} - 0.2$ | V      |
| Over Temperature                                | $T = -40^{\circ}C \text{ to } +125^{\circ}C$   | $-V_{s} + 0.1$  |      | $+V_{s} - 0.2$ | V      |
| Short-Circuit Current                           |                                                |                 | 15   |                | mA     |
| REFERENCE INPUT                                 |                                                |                 |      |                |        |
| Voltage Range⁴                                  |                                                | $-V_{s} + 3.5$  |      | +Vs - 2.5      | V      |
| NOISE                                           |                                                |                 |      |                |        |
| Voltage Noise Density, 1 kHz, RTI               | $V_{IN+}, V_{IN-}, V_{REF} = 0 V$              |                 | 240  |                | nV/√Hz |
| Voltage Noise                                   | f = 0.1 Hz to 10 Hz                            |                 | 3    |                | μV p-p |
| SLEW RATE                                       | V <sub>IN</sub> = 500 mV, G = 10               |                 | 2    |                | V/μs   |
| INTERNAL SAMPLE RATE                            | · · ·                                          |                 | 6    |                | kHz    |
| POWER SUPPLY                                    |                                                |                 |      |                |        |
| Operating Range (Dual Supplies)                 |                                                | ±4              |      | ±8             | v      |
| Operating Range (Single Supply)                 |                                                | 8               |      | 16             | v      |
| Quiescent Current                               | T = -40°C to +125°C                            | -               | 2.7  | 3.5            | mA     |
| TEMPERATURE RANGE                               |                                                |                 |      |                |        |
| Specified Performance                           |                                                | -40             |      | +125           | °C     |

<sup>1</sup> The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not make use of the full output voltage range. <sup>2</sup> Gain drift is determined by the TC match of the external gain setting resistors. <sup>3</sup> Differential source resistance less than 10 k $\Omega$  does not result in voltage offset due to input bias current or mismatched series resistors.

 $^4$  For G < 10, the reference voltage range is limited to  $-V_{\text{S}}$  + 4.24 V to +V\_{\text{S}} – 2.75 V.

 $V_S = \pm 8 \text{ V}, V_{REF} = 0 \text{ V}, R_F = 100 \text{ k}\Omega, R_G = 1 \text{ k}\Omega \text{ (} @ T_A = 25^{\circ}\text{C}, G = 202, R_L = 10 \text{ k}\Omega, \text{ unless otherwise noted}\text{)}.$ 

#### Table 2.

| Offset Drift $V_{+IN}$<br>T = -COMMON-MODE REJECTION (CMR)VCMR to 60 Hz with 1 k $\Omega$ Source ImbalanceVVOLTAGE OFFSET RTI vs. SUPPLY (PSR)GG = 2G = 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= V_{-IN} = 0 V$<br>= V_{-IN} = 0 V,<br>-40°C to +125°C<br>= -8 V to +8 V<br>2(1 + R <sub>F</sub> /R <sub>G</sub> ) | 110<br>120<br>120<br>10 <sup>1</sup> | 120<br>120<br>140<br>0.01<br>0.01<br>0.02 | 20<br>50<br>1000<br>0.04<br>0.04<br>0.04<br>0.05<br>20 | μV<br>nV/°C<br>dB<br>dB<br>dB<br>V/V<br>%<br>%<br>%<br>%<br>%<br>9%                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Offset Drift $V_{+N}$<br>T = -COMMON-MODE REJECTION (CMR)TCMR to 60 Hz with 1 k $\Omega$ Source Imbalance $V_{CM}$ VOLTAGE OFFSET RTI vs. SUPPLY (PSR)GG = 2GG = 202Gain RangeGain RangeGain Error <sup>2</sup> G = 2G = 100G = 100G = 1000Gain NonlinearityGain DriftG = 2, 10, 102Gain Carlot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= V_{-IN} = 0 V,$<br>-40°C to +125°C<br>= -8 V to +8 V                                                              | 120<br>120                           | 120<br>140<br>0.01<br>0.01<br>0.01        | 50<br>1000<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05     | nV/°C       dB       dB       dB       V/V       %       %       %                         |
| T = - COMMON-MODE REJECTION (CMR) CMR to 60 Hz with 1 kΩ Source Imbalance VotTAGE OFFSET RTI vs. SUPPLY (PSR) $G = 2$ $G = 202$ GAIN Gain Range Gain Error <sup>2</sup> $G = 2$ $G = 10$ $G = 100$ $G = 1000$ Gain Nonlinearity Gain Drift $G = 2, 10, 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -40°C to +125°C<br>= −8 V to +8 V                                                                                    | 120<br>120                           | 120<br>140<br>0.01<br>0.01<br>0.01        | 1000<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05           | dB           dB           dB           V/V           %           %           %           % |
| COMMON-MODE REJECTION (CMR)<br>CMR to 60 Hz with 1 kΩ Source Imbalance $V_{CM}$ VOLTAGE OFFSET RTI vs. SUPPLY (PSR)<br>G = 2<br>G = 202GGAIN<br>Gain Range<br>Gain Error²<br>G = 2<br>G = 10<br>G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = -8 V to +8 V                                                                                                       | 120<br>120                           | 120<br>140<br>0.01<br>0.01<br>0.01        | 0.04<br>0.04<br>0.04<br>0.05                           | dB<br>dB<br>V/V<br>%<br>%<br>%                                                             |
| $\begin{array}{c} \mbox{CMR to 60 Hz with 1 k\Omega Source Imbalance} & V_{CM} \\ \hline \mbox{VOLTAGE OFFSET RTI vs. SUPPLY (PSR)} & G = 2 \\ \hline \mbox{G} = 202 & G \\ \hline \mbox{Gain Range} & G \\ \hline \mbox{Gain Range} & G \\ \hline \mbox{Gain Error}^2 & G = 2 \\ \hline \mbox{G} = 100 & G \\ \hline \mbox{G} = 100 & G \\ \hline \mbox{G} = 1000 & G \\ \hline \mbox{Gain Nonlinearity} & G \\ \hline \mbox{Gain Drift} & G = 2, 10, 102 & G \\ \hline \mbox{With 1 k} & \Omega \\ \hline \mbox{CM to CM} & \Omega \\ \hline \mbox{CM to CM}$ |                                                                                                                      | 120<br>120                           | 120<br>140<br>0.01<br>0.01<br>0.01        | 0.04<br>0.04<br>0.04<br>0.05                           | dB<br>dB<br>V/V<br>%<br>%<br>%                                                             |
| VOLTAGE OFFSET RTI vs. SUPPLY (PSR)<br>$G = 2$<br>$G = 202$ $G = 2$ GAIN $G = 10$ Gain Range<br>Gain Error <sup>2</sup><br>$G = 2$<br>$G = 10$<br>$G = 100$<br>$G = 1000$<br>$G = 1000$<br>Gain Nonlinearity<br>Gain Drift<br>$G = 2, 10, 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      | 120<br>120                           | 120<br>140<br>0.01<br>0.01<br>0.01        | 0.04<br>0.04<br>0.04<br>0.05                           | dB<br>dB<br>V/V<br>%<br>%<br>%                                                             |
| $G = 2$ $G = 202$ GAIN $G = 2$ Gain Range $Gain Error^2$ $G = 2$ $G = 10$ $G = 100$ $G = 100$ $G = 1000$ $Gain Nonlinearity$ Gain Drift $G = 2, 10, 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(1 + R⊧/R <sub>G</sub> )                                                                                            | 120                                  | 140<br>0.01<br>0.01<br>0.01               | 0.04<br>0.04<br>0.04<br>0.05                           | dB<br>V/V<br>%<br>%<br>%<br>%                                                              |
| $G = 202$ $G = 2$ Gain Range $Gain Error^2$ $G = 2$ $G = 10$ $G = 100$ $G = 1000$ $G = 1000$ $Gain Nonlinearity$ $Gain Drift$ $G = 2, 10, 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(1 + R <sub>F</sub> /R <sub>G</sub> )                                                                               | 120                                  | 140<br>0.01<br>0.01<br>0.01               | 0.04<br>0.04<br>0.04<br>0.05                           | dB<br>V/V<br>%<br>%<br>%<br>%                                                              |
| GAIN $G = 1$ Gain RangeGain Error <sup>2</sup> G = 2G = 10G = 100G = 1000G = 1000Gain NonlinearityGain DriftG = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(1 + R <sub>F</sub> /R <sub>G</sub> )                                                                               |                                      | 0.01<br>0.01<br>0.01                      | 0.04<br>0.04<br>0.04<br>0.05                           | V/V<br>%<br>%<br>%                                                                         |
| Gain Range<br>Gain Error <sup>2</sup><br>G = 2<br>G = 10<br>G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(1 + R⊧/R <sub>6</sub> )                                                                                            | 101                                  | 0.01<br>0.01                              | 0.04<br>0.04<br>0.04<br>0.05                           | %<br>%<br>%<br>%                                                                           |
| Gain Error <sup>2</sup><br>G = 2<br>G = 10<br>G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      | 101                                  | 0.01<br>0.01                              | 0.04<br>0.04<br>0.04<br>0.05                           | %<br>%<br>%<br>%                                                                           |
| G = 2<br>G = 10<br>G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                      | 0.01<br>0.01                              | 0.04<br>0.04<br>0.05                                   | %<br>%<br>%                                                                                |
| G = 10<br>G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      |                                      | 0.01<br>0.01                              | 0.04<br>0.04<br>0.05                                   | %<br>%<br>%                                                                                |
| G = 100<br>G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      |                                      | 0.01                                      | 0.04<br>0.05                                           | %<br>%                                                                                     |
| G = 1000<br>Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                      |                                           | 0.05                                                   | %                                                                                          |
| Gain Nonlinearity<br>Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      |                                      | 0.02                                      |                                                        |                                                                                            |
| Gain Drift<br>G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                      |                                           | 20                                                     | ppm                                                                                        |
| G = 2, 10, 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |                                      |                                           |                                                        |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                      |                                           |                                                        |                                                                                            |
| G=1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                      |                                           | 14                                                     | ppm/°C                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                      |                                           | 60                                                     | ppm/°C                                                                                     |
| INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                      |                                           |                                                        |                                                                                            |
| Input Common-Mode Operating Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | -Vs                                  |                                           | +Vs                                                    | V                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | –40°C to +125°C                                                                                                      | $-V_S$                               |                                           | +Vs                                                    | V                                                                                          |
| Input Differential Operating Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                              |                                      | 750                                       | 200                                                    | mV                                                                                         |
| 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 0 V                                                                                                                |                                      | 33                                        | 300                                                    | pA                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0 V                                                                                                                |                                      | 0.15                                      | 1                                                      | nA                                                                                         |
| OUTPUT<br>Output Suring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                      | N . 0.1                              |                                           |                                                        |                                                                                            |
| Output Swing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10°C to 125°C                                                                                                        | $-V_{s} + 0.1$                       |                                           | $+V_{s} - 0.2$                                         | V                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | –40°C to +125°C                                                                                                      | $-V_{s} + 0.1$                       | 15                                        | $+V_{s}-0.4$                                           | V                                                                                          |
| Short-Circuit Current REFERENCE INPUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                      | 15                                        |                                                        | mA                                                                                         |
| Voltage Range <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      | -Vs + 3.5                            |                                           | +Vs - 2.5                                              | v                                                                                          |
| NOISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | $-v_{5} + 3.3$                       |                                           | $+v_{S}-2.3$                                           |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{IN-}, V_{REF} = 0 V$                                                                                             |                                      | 240                                       |                                                        | nV/√Hz                                                                                     |
| <b>-</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1 Hz to 10 Hz                                                                                                      |                                      | 240<br>3                                  |                                                        | μV p-p                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 500 mV, G = 10                                                                                                     |                                      |                                           |                                                        |                                                                                            |
| INTERNAL SAMPLE RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 500 mv, G = 10                                                                                                     |                                      | 2                                         |                                                        | V/µs<br>kHz                                                                                |
| POWER SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                      | 0                                         |                                                        |                                                                                            |
| Operating Range (Dual Supplies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      | ±4                                   |                                           | ±8                                                     | v                                                                                          |
| Operating Range (Single Supplies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                      | ±4<br>8                              |                                           | ±0<br>16                                               | v                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | –40°C to +125°C                                                                                                      | 0                                    | 3.2                                       | 4                                                      | mA                                                                                         |
| TEMPERATURE RANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -+0 C 10 + 123 C                                                                                                     |                                      | 5.2                                       | 4                                                      |                                                                                            |
| Specified Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | -40                                  |                                           | +125                                                   | °C                                                                                         |

<sup>1</sup> The AD8230 can operate as low as G = 2. However, since the differential input range is limited to approximately 750 mV, the AD8230 configured at G < 10 does not make use of the full output voltage range.

<sup>2</sup> Gain drift is determined by the TC match of the external gain setting resistors. <sup>3</sup> Differential source resistance less than 10 k $\Omega$  does not result in voltage offset due to input bias current or mismatched series resistors.

 $^4$  For G < 10, the reference voltage range is limited to  $-V_S$  + 4.24 V to  $+V_S$  – 2.75V.

## **ABSOLUTE MAXIMUM RATINGS**

#### Table 3.

| Parameter                     | Rating          |
|-------------------------------|-----------------|
| Supply Voltage                | ±8 V, +16 V     |
| Internal Power Dissipation    | 304 mW          |
| Output Short-Circuit Current  | 20 mA           |
| Input Voltage (Common-Mode)   | ±Vs             |
| Differential Input Voltage    | ±Vs             |
| Storage Temperature Range     | –65°C to +150°C |
| Operational Temperature Range | –40°C to +125°C |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## THERMAL CHARACTERISTICS

Specification is for device in free air SOIC.

#### Table 4.

| Parameter                           | Value | Unit |
|-------------------------------------|-------|------|
| $\theta_{JA}$ (4-Layer JEDEC Board) | 121   | °C/W |

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## **TYPICAL PERFORMANCE CHARACTERISTICS**

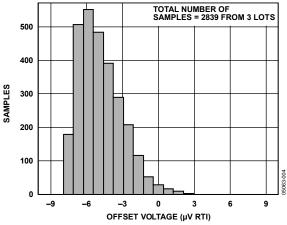
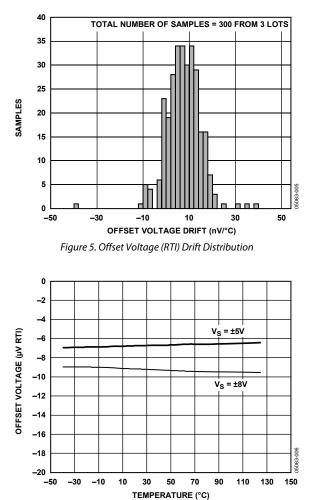
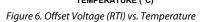





Figure 4. Offset Voltage (RTI) Distribution at  $\pm 5$  V, CM = 0 V, T<sub>A</sub> = 25 °C





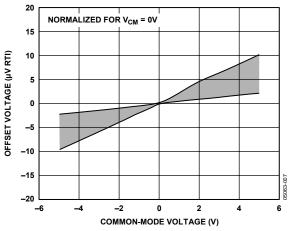



Figure 7. Offset Voltage (RTI) vs. Common-Mode Voltage,  $V_s = \pm 5 V$ 

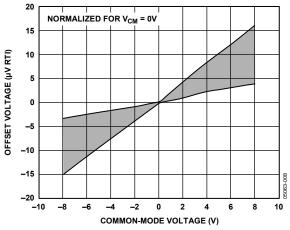



Figure 8. Offset Voltage (RTI) vs. Common-Mode Voltage,  $V_s = \pm 8 V$ 

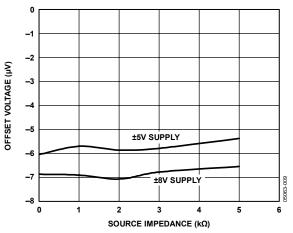
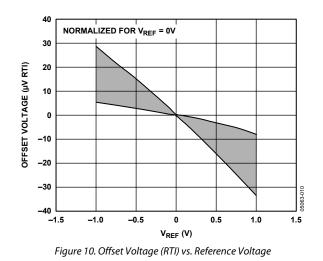
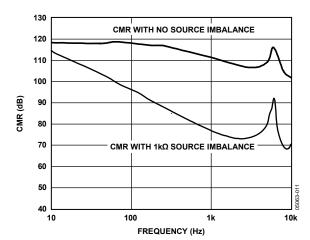
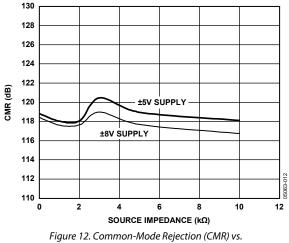






Figure 9. Offset Voltage (RTI) vs. Source Impedance, 1 µF Across Input Pins









Source Impedance, 1.1 µF Across Input Pins

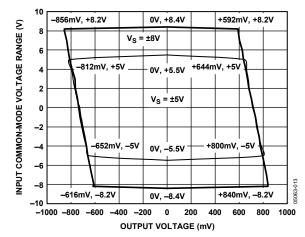



Figure 13. Input Common-Mode Voltage Range vs. Output Voltage, G = 2

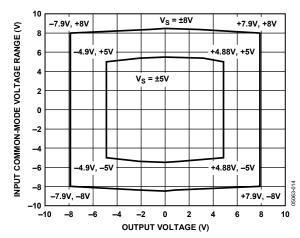
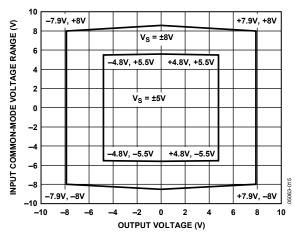
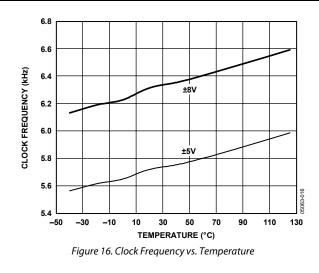
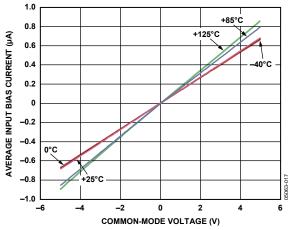
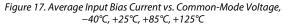
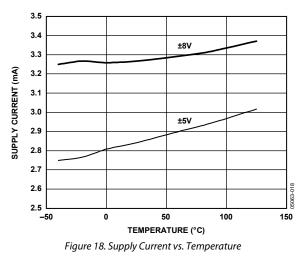
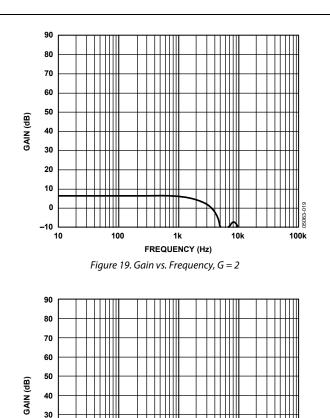



Figure 14. Input Common-Mode Voltage Range vs. Output Voltage, G = 10



Figure 15. Input Common-Mode Voltage Range vs. Output Voltage, G = 100





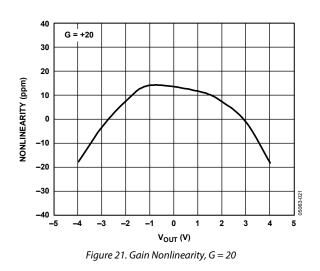






40

30


20

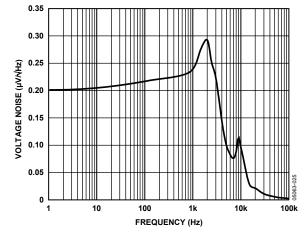
10

0

-10 L 10

100




1k

FREQUENCY (Hz)

Figure 20. Gain vs. Frequency, G = 10

10k

100k





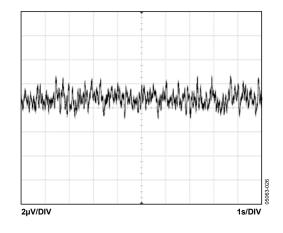
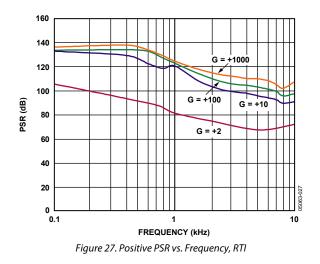
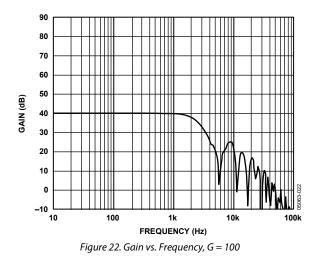
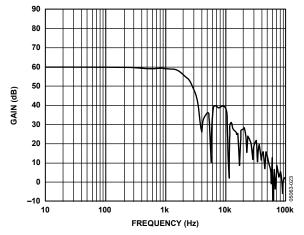






Figure 26. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 100









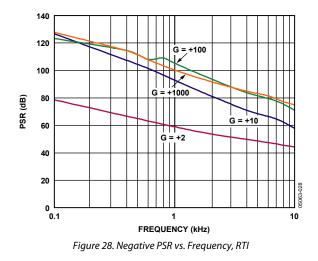
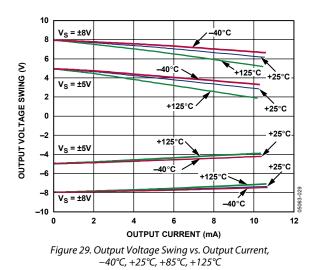





Figure 24. Gain Error vs. Differential Source Impedance





## **THEORY OF OPERATION**

Auto-zeroing is a dynamic offset and drift cancellation technique that reduces input-referred voltage offset to the  $\mu$ V level and voltage offset drift to the nV/°C level. A further advantage of dynamic offset cancellation is the reduction of low frequency noise, in particular the 1/f component.

The AD8230 is an instrumentation amplifier that uses an auto-zeroing topology and combines it with high commonmode signal rejection. The internal signal path consists of an active differential sample-and-hold stage (preamp) followed by a differential amplifier (gain amp). Both amplifiers implement auto-zeroing to minimize offset and drift. A fully differential topology increases the immunity of the signals to parasitic noise and temperature effects. Amplifier gain is set by two external resistors for convenient TC matching.

The signal sampling rate is controlled by an on-chip, 6 kHz oscillator and logic to derive the required nonoverlapping clock phases. For simplification of the functional description, two sequential clock phases, A and B, are shown to distinguish the order of internal operation, as depicted in Figure 30 and Figure 31, respectively.

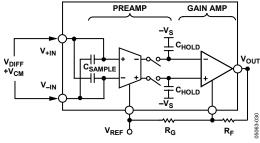



Figure 30. Phase A of the Sampling Phase

During Phase A, the sampling capacitors are connected to the inputs. The input signal's difference voltage, V<sub>DIFF</sub>, is stored across the sampling capacitors, C<sub>SAMPLE</sub>. Because the sampling capacitors only retain the difference voltage, the common-mode voltage is rejected. During this period, the gain amplifier is not connected to the preamplifier so its output remains at the level set by the previously sampled input signal held on C<sub>HOLD</sub>, as shown in Figure 30.

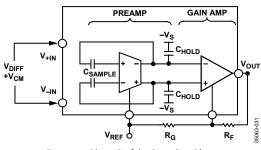
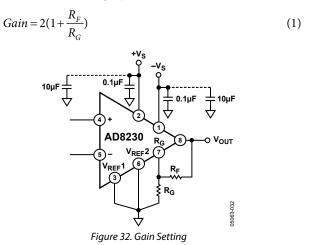




Figure 31. Phase B of the Sampling Phase

In Phase B, the differential signal is transferred to the hold capacitors refreshing the value stored on  $C_{HOLD}$ . The output of the preamplifier is held at a common-mode voltage determined by the reference potential,  $V_{REF}$ . In this manner, the AD8230 is able to condition the difference signal and set the output voltage level. The gain amplifier conditions the updated signal stored on the hold capacitors,  $C_{HOLD}$ .

#### SETTING THE GAIN

Two external resistors set the gain of the AD8230. The gain is expressed in the following equation:



#### Table 5. Gains Using Standard 1% Resistors

| Gain | RF          | Rg    | Actual Gain |  |  |  |
|------|-------------|-------|-------------|--|--|--|
| 2    | 0 Ω (short) | None  | 2           |  |  |  |
| 10   | 8.06 kΩ     | 2 kΩ  | 10          |  |  |  |
| 50   | 12.1 kΩ     | 499 Ω | 50.5        |  |  |  |
| 100  | 9.76 kΩ     | 200 Ω | 99.6        |  |  |  |
| 200  | 10 kΩ       | 100 Ω | 202         |  |  |  |
| 500  | 49.9 kΩ     | 200 Ω | 501         |  |  |  |
| 1000 | 100 kΩ      | 200 Ω | 1002        |  |  |  |
|      |             |       | •           |  |  |  |

Figure 32 and Table 5 provide an example of some gain settings. As Table 5 shows, the AD8230 accepts a wide range of resistor values. Because the instrumentation amplifier has finite driving capability, ensure that the output load in parallel with the sum of the gain setting resistors is greater than  $2 \text{ k}\Omega$ .

$$R_L || (R_F + R_G) > 2 k\Omega \tag{2}$$

Offset voltage drift at high temperature can be minimized by keeping the value of the feedback resistor,  $R_F$ , small. This is due to the junction leakage current on the  $R_G$  pin, Pin 7. The effect of the gain setting resistor on offset voltage drift is shown in Figure 33. In addition, experience has shown that wire-wound resistors in the gain feedback loop may degrade the offset voltage performance.

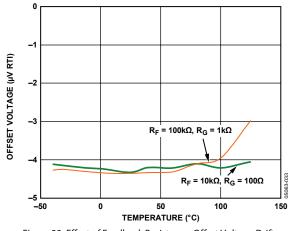



Figure 33. Effect of Feedback Resistor on Offset Voltage Drift

#### LEVEL-SHIFTING THE OUTPUT

A reference voltage, as shown in Figure 34, can be used to level-shift the output. The reference voltage,  $V_R$ , is limited to  $-V_S + 3.5 V$  to  $+V_S - 2.5 V$ . (For G < 10, the reference voltage range is limited to  $-V_S + 4.24 V$  to  $+V_S - 2.75 V$ .) Otherwise, it is nominally tied to midsupply. The voltage source used to level-shift the output should have a low output impedance to avoid contributing to gain error. In addition, it should be able to source and sink current. To minimize offset voltage, the  $V_{REF}$  pins should be connected either to the local ground or to a reference voltage source that is connected to the local ground.

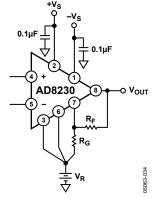



Figure 34. Level-Shifting the Output

The output can also be level-shifted by adding a resistor,  $R_0$ , as shown in Figure 35. The benefit is that the output can be level-shifted to as low as 100 mV of the negative supply rail and to as high as 200 mV of the positive supply rail, increasing unipolar output swing. This can be useful in applications, such as strain gauges, where the force is only applied in one direction. Another benefit of this configuration is that a supply rail can be used for  $V_{R'}$  eliminating the need to add an additional external reference voltage.

The gain changes with the inclusion of Ro. The full expression is

$$V_{OUT} = 2\left(\frac{R_F}{R_G || R_O} + 1\right) V_{IN} - \frac{R_F}{R_O} V_{R'} = 2\left(\frac{R_F(R_G + R_O)}{R_G R_O} + 1\right) V_{IN} - \frac{R_F}{R_O} V_{R'}$$
(3)

The following steps can be taken to set the gain and level-shift the output:

1. Select an R<sub>F</sub> value. Table 5 shows R<sub>F</sub> values for various gains.

2. Solve for R<sub>0</sub> using Equation 4.

$$R_{O} = -\frac{V_{R'} \times R_{F}}{V_{DESIRED-LEVEL}}$$
(4)

where:

 $V_{R}$  is a voltage source, such as a supply voltage. V<sub>DESIRED-LEVEL</sub> is the desired output bias voltage.

3. Solve for R<sub>G</sub>.

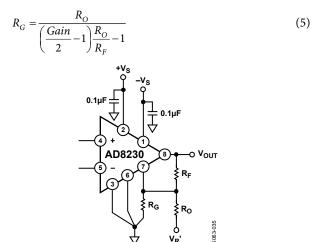



Figure 35. Level-Shifting the Output Without an Additional Voltage Reference

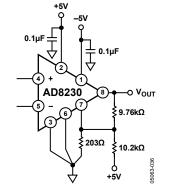



Figure 36. An AD8230 with its Output Biased at -4.8 V; G = 100; V<sub>DESIRED-LEVEL</sub> = -4.8 V

#### SOURCE IMPEDANCE AND INPUT SETTLING TIME

The input stage of the AD8230 consists of two actively driven, differential switched capacitors, as described in Figure 30 and Figure 31. Differential input signals are sampled on  $C_{SAMPLE}$  such that the associated parasitic capacitances, 70 pF, are balanced between the inputs to achieve high common-mode rejection. On each sample period (approximately 85 µs), these parasitic capacitances must be recharged to the common-mode voltage by the signal source impedance (10 k $\Omega$  maximum). If resistors and capacitors are used at the input of the AD8230, care should be taken to maintain close match to maximize CMRR.

#### **INPUT VOLTAGE RANGE**

The input common-mode range of the AD8230 is rail to rail. However, the differential input voltage range is limited to approximately 750 mV. The AD8230 does not phase invert when its inputs are overdriven.

## INPUT PROTECTION

The input voltage is limited to within 0.6 V beyond the supply rails by the internal ESD protection diodes. Resistors and low leakage diodes can be used to limit excessive, external voltage and current from damaging the inputs, as shown in Figure 37. Figure 39 shows an overvoltage protection circuit between the thermocouple and the AD8230.

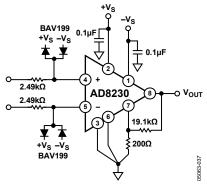



Figure 37. Overvoltage Input Protection

## **POWER SUPPLY BYPASSING**

A regulated dc voltage should be used to power the instrumentation amplifier. Noise on the supply pins can adversely affect performance. Bypass capacitors should be used to decouple the amplifier.

The AD8230 has internal clocked circuitry that requires adequate supply bypassing. A 0.1  $\mu$ F capacitor should be placed as close to each supply pin as possible. As shown in Figure 32, a 10  $\mu$ F tantalum capacitor can be used further away from the part.

# POWER SUPPLY BYPASSING FOR MULTIPLE CHANNEL SYSTEMS

The best way to prevent clock interference in multichannel systems is to lay out the PCB with a star node for the positive supply and a star node for the negative supply. Using such a technique, crosstalk between clocks is minimized. If laying out star nodes is not feasible, use wide traces to minimize parasitic inductance and decouple frequently along the power supply traces. Examples are shown in Figure 38. Care and forethought go a long way in maximizing performance.

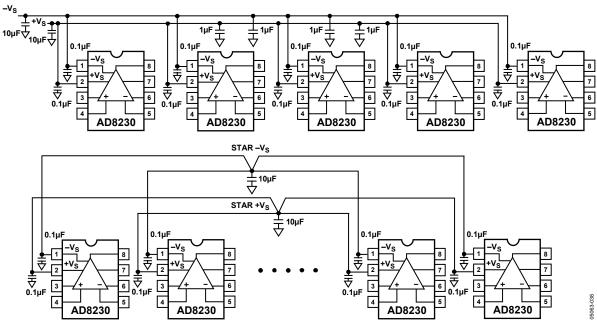



Figure 38. Use Star Nodes for  $+V_s$  and  $-V_s$  or Use Thick Traces and Decouple Frequently Along the Supply Lines

## LAYOUT

The AD8230 has two reference pins:  $V_{REF1}$  and  $V_{REF2}$ .  $V_{REF1}$  draws current to set the internal voltage references. In contrast,  $V_{REF2}$  does not draw current. It sets the common mode of the output signal. As such,  $V_{REF1}$  and  $V_{REF2}$  should be star-connected to ground (or to a reference voltage). In addition, to maximize CMR, the trace between  $V_{REF2}$  and the gain resistor,  $R_G$ , should be kept short.

## **APPLICATIONS**

The AD8230 can be used in thermocouple applications, as shown in Figure 3 and Figure 39. Figure 39 is an example of such a circuit for use in an industrial environment. Series resistors and low leakage diodes serve to clamp overload voltages (see the Input Protection section for more information).

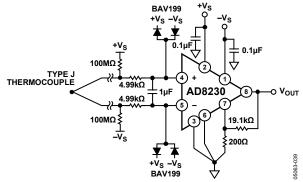



Figure 39. Type J Thermocouple with Overvoltage Protection and RFI Filter

An antialiasing filter reduces unwanted high frequency signals. The matched 100 M $\Omega$  resistors serve to provide input bias current to the input transistors and serve as an indicator as to when the thermocouple connection is broken. Well-matched 1% 4.99 k $\Omega$  resistors are used to form the antialiasing filter. It is good practice to match the source impedances to ensure high CMR. The circuit is configured for a gain of 193, which provides an overall temperature sensitivity of 10 mV/°C.

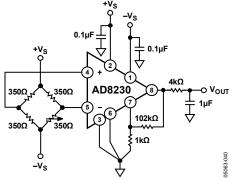




Figure 40. Bridge Measurement with Filtered Output

Measuring load cells in industrial environments can be a challenge. Often, the load cell is located some distance away from the instrumentation amplifier. The common-mode potential can be several volts, exceeding the common-mode input range of many 5 V auto-zero instrumentation amplifiers. Fortunately, the wide common-mode input voltage range of the AD8230 spans 16 V, relieving designers of having to worry about the common-mode range.

## **OUTLINE DIMENSIONS**



### **ORDERING GUIDE**

| Model                       | Temperature Range | Package Description              | Package Option |
|-----------------------------|-------------------|----------------------------------|----------------|
| AD8230YRZ <sup>1</sup>      | -40°C to +125°C   | 8-Lead SOIC_N                    | R-8            |
| AD8230YRZ-REEL <sup>1</sup> | -40°C to +125°C   | 8-Lead SOIC_N, 13" Tape and Reel | R-8            |
| AD8230YRZ-REEL71            | -40°C to +125°C   | 8-Lead SOIC_N, 7" Tape and Reel  | R-8            |
| AD8230-EVAL                 |                   | Evaluation Board                 |                |

<sup>1</sup> Z = RoHS Compliant Part.

## NOTES

©2004–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05063-0-9/07(B)

Rev. B | Page 16 of 16

www.analog.com