General Description

The MAX4704 low-voltage, 4-channel analog multiplexer operates from a single +1.8 V to +5.5 V supply. The MAX4704 features break-before-make switching action with a toN $=60 \mathrm{~ns}$ and toFF $=20 \mathrm{~ns}$ at +3 V

When powered from a +2.7 V supply, the device has a 60Ω (max) on-resistance (RON), with 3Ω (max) Ron matching and 5Ω max RON flatness. The digital logic inputs are 1.8 V -logic compatible from a +2.7 V to +3.3 V supply. The MAX4704 is available in both a space-saving 12-pin QFN (3mm x 3mm) package and a 10-pin $\mu \mathrm{MAX}$ package.

Applications
MP3 Players
Battery-Operated Equipment
Relay Replacement
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
(3mm x 3mm 12-Pin QFN Package
Guaranteed On-Resistance:
60Ω (max) (+2.7V Supply)
40Ω (max) (+5V Supply)
Guaranteed Match Between Channels: 3Ω
Guaranteed Flatness Over Signal Range:
5Ω (max)
Guaranteed Low Leakage Currents:
100pA (max) at +25C
Switching Time: ton = 60ns, toff = 20ns
+1.8V to +5.5V Single-Supply Operation
-3dB Bandwidth: >200MHz
Low Crosstalk: -90dB (1MHz)
High Off-Isolation: -85dB (1MHz)
Low 3pC Charge Injection
THD: 0.02\%
+1.8V CMOS-Logic Compatible

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4704EGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 QFN-EP*
MAX4704EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$

*EP = Exposed Pad
Pin Configurations

X = DON'T CARE
N.C. = NO CONNECT

MAX1/
MAX4704

Low-Voltage, 60 ,
 4:1 Analog Multiplexer in QFN

ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)

All Other Pins (Note 1)	
Continuous Current COM, NO_	
Peak Current COM, NO_ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-Pin $\mu \mathrm{MAX}$ (derate $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW 12-Pin QFN (derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 952 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: Signals on INH, ADD_, NO_, and COM exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, $\mathrm{V}_{\text {NO- }}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+2.7 \mathrm{~V}, \mathrm{I} \mathrm{ICOM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }}=+1.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		50	60	Ω
			$\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$			70	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \mathrm{I} \mathrm{COM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+1.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	3	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
On-Resistance Flatness (Note 5)	RFLAT (ON)	$\begin{aligned} & \mathrm{V}+=+2.7 \mathrm{~V}, \mathrm{ICOM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=+1 \mathrm{~V},+1.3 \mathrm{~V},+1.8 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		3	5	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			10	
NO_ Off-Leakage Current (Note 6)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.3 \mathrm{~V},+3 \mathrm{~V} \\ & \mathrm{VNO}_{-}=+3 \mathrm{~V},+0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-1		1	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{~V} \mathrm{VCM}=+0.3 \mathrm{~V},+3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}=++0.3 \mathrm{~V},+3 \mathrm{~V} \text {, or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM Off-Leakage Current (Note 6)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.3 \mathrm{~V},+3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+3 \mathrm{~V},+0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
DYNAMIC							
Address Transition Time	ttrans	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20	60	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			70	
Inhibit Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		25	60	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			70	
Inhibit Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		10	20	ns
			TMIN to TMAX			30	
Break-Before-Make Time (Note 7)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	2			
Charge Injection	Q	$V_{G E N}=0, \operatorname{RGEN}=0, C_{L}=1.0 n F,$ Figure 5			2		pC

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.4 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=+0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 6			>200		MHz
Off-Isolation (Note 8)	VISO	$f=1 \mathrm{MHz}, R_{L}=50 \Omega, C L=5 p F$ Figure 6			-85		dB
Crosstalk (Note 9)	$V_{C T}$	$f=1 \mathrm{MHz}, R_{L}=50 \Omega, C L=5 p F,$ Figure 6			-90		dB
NO_ Off-Capacitance	CNo_(OFF)	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=\mathrm{GND}$, Figure 7			7		pF
COM On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=\mathrm{GND}$, Figure 7			19		pF
COM Off-Capacitance	CCOM(OFF)	$f=1 \mathrm{MHz}, \mathrm{V}_{\text {NO_ }}=\mathrm{GND}$, Figure 7			15		pF
DIGITAL I/O							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.5	V
Input Leakage Current	$\mathrm{IIH}^{\text {I }}$ IL	ADD_, INH = 0 or V+		-1		1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			1.8		5.5	V
Power-Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{ADD}_{-}, \mathrm{INH}=0$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\text {NO }}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{I} \mathrm{COM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }}=+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	40	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			50	
On-Resistance Match Between Channels (Note 4)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=+4.5 \mathrm{~V}, \mathrm{I} \mathrm{COM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }}=+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1	2	Ω
			TMIN to $\mathrm{T}_{\text {MAX }}$			3	
On-Resistance Flatness (Note 5)	Rflat (ON)	$\begin{aligned} & \mathrm{V}+=+4.5 \mathrm{~V}, \mathrm{ICOM}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+1 \mathrm{~V},+2.25 \mathrm{~V},+3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		3	5	Ω
			TMIN to $\mathrm{T}_{\text {MAX }}$			10	
NO_ Off-Leakage Current (Note 6)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.5 \mathrm{~V},+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}_{-}}=+5 \mathrm{~V},+0.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.1	± 0.01	0.1	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-1		1	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.5 \mathrm{~V},+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}=+0.5 \mathrm{~V},+5 \mathrm{~V} \text {, or floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-5		5	

Low-Voltage, 60 ,
 4:1 Analog Multiplexer in QFN

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.0 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
COM Off-Leakage Current	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+0.5 \mathrm{~V},+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}}=+5 \mathrm{~V},+0.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	± 0.01	0.5	nA
			TMIN to $\mathrm{T}_{\text {MAX }}$	-5		5	
DYNAMIC							
Address Transition Time	ttrans	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=+3 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	35	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	
Inhibit Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		18	35	ns
			TMIN to $\mathrm{T}_{\text {MAX }}$			40	
Inhibit Turn-Off Time	tofF	$\mathrm{V}_{\mathrm{NO}}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega \text {, }$ $C_{L}=35 p F$, Figure 3	$+25^{\circ} \mathrm{C}$		9	20	ns
			TMIN to $\mathrm{T}_{\text {MAX }}$			30	
Break-Before-Make Time (Note 7)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}_{-}}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20		ns
			TMIN to TMAX	2			
Charge Injection	Q	$V_{G E N}=0, R G E N=0, C L=1.0 n F,$ Figure 5			3		pC
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}, 50 \Omega$ in and out, Figure 6			>200		MHz
Off-Isolation (Note 8)	VISO	$f=1 \mathrm{MHz}, R_{L}=50 \Omega, C_{L}=5 p F$ Figure 6			-85		dB
Crosstalk (Note 9)	$V_{\text {CT }}$	$f=1 \mathrm{MHz}, R_{L}=50 \Omega, C_{L}=5 p F,$ Figure 6			-90		dB
Total Harmonic Distortion	THD	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=600 \Omega$			0.02		\%
DIGITAL I/O							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	VIL					0.8	V
Input Leakage Current	$\mathrm{IIH}_{\text {, }}^{\text {ILL }}$	ADD_, INH = 0 or V+		-1		1	$\mu \mathrm{A}$
SUPPLY							
Power-Supply Range	V+			1.8		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{ADD}_{-}, \mathrm{INH}=0$ or $\mathrm{V}+$				1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 4: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 6: Leakage currents are 100% tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by correlation.
Note 7: Guaranteed by design.
Note 8: Off-Isolation = $20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between any two switches.

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT VS. LOGIC INPUT VOLTAGE

LOGIC THRESHOLD vs.
SUPPLY VOLTAGE

ON-RESISTANCE vs. $\left.\mathbf{V C O M}^{\left(V_{+}=5 V\right.}\right)$

COM ON-LEAKAGE CURRENT
vs. TEMPERATURE

INHIBIT TURN-ON/OFF TIME vs. SUPPLY VOLTAGE


```
Low-Voltage, 60 ,
4:1 Analog Multiplexer in QFN
```

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ADDRESS TRANSITION TIME vs. SUPPLY VOLTAGE

ADDRESS TRANSITION TIME
vs. TEMPERATURE

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

Pin Description

PIN		NAME	
$\boldsymbol{\mu}$ MAX	QFN-EP		
10	1	V+	Positive Supply Voltage
-	2,8	N.C.	No Connection. Not internally connected.
1	3	NO2	Analog Switch 2. Normally open.
2	4	NO3	Analog Switch 3. Normally open.
3	5	NO1	Analog Switch 1. Normally open.
4	6	INH	Inhibit. Connect to GND for normal operation. Connect to logic-level high to turn all switches off.
5	7	GND	Ground
6	9	ADDB	Address Decoder Selection B
7	10	ADDA	Address Decoder Selection A
8	11	NOO	Analog Switch 0. Normally open.
9	12	COM	Analog Switch Common Terminal
-	-	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance; not intended as an electrical connection point (QFN package only).

Detailed Description

The MAX4704 low-voltage, 4-channel analog multiplexer operates from a single +1.8 V to +5.5 V supply. When powered from a +2.7 V supply, the device has a 60Ω (max) on-resistance (Ron), with 3Ω (max) Ron matching and 5Ω (max) RON flatness. The digital logic inputs are +1.8 V -logic compatible from $\mathrm{a}+2.7 \mathrm{~V}$ to +3.3 V supply.

Applications Information

Digital Control Inputs

The MAX4704 logic inputs are +1.8 V CMOS logic compatible for 3 V operation and $T \mathrm{~T}$ compatible for 5 V operation of V+. Driving ADD_rail-to-rail minimizes power consumption.

Analog Signal Levels

Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) are passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_ and COM pins can be either inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond those listed may cause permanent damage to devices.
Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode
(D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog range to a diode drop (about 0.7 V) below $\mathrm{V}+$ (for D1), and a diode drop above ground (for D2). On-resistance increases slightly at low supply voltages. Maximum supply voltage ($\mathrm{V}+$) must not exceed +6 V .
Adding protection diode D2 causes the logic threshold to be shifted relative to GND. TTL compatibility is not guaranteed when D2 is added.
Protection diodes D1 and D2 also protect against some overvoltage situations. In the circuit in Figure 1, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

$V_{A D D}$

Figure 2. Address Transition Time

Figure 3. Inhibit Switching Times

$V_{\text {ADD }}$

Figure 4. Break-Before-Make Interval
\qquad

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

Test Circuits/Timing Diagrams (continued)

VINH

$\Delta V_{\text {OUt }}$ IS THE MEASURED VOLTAGE DUE TO CHARGETRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF
$Q=\Delta V_{\text {OUT }} X C_{L}$
REPEAT TEST FOR EACH SECTION
Figure 5. Charge Injection

MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH.
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH
CROSSTALK IS MEASURED FROM ONE CHANNEL (A, B) TO OTHER CHANNEL.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED.

Figure 6. Off-Isolation, On-Loss, and Crosstalk

TRANSISTOR COUNT: 256
PROCESS: CMOS

Figure 7. NO_/COM Capacitance

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

[^0]| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 12 QFN-EP | G1233-1 | $\underline{\mathbf{2 1 - 0 1 0 2}}$ |
| $10 \mu \mathrm{MAX}$ | - | $\underline{\mathbf{2 1 - 0 0 6 1}}$ |

Low-Voltage, 60 , 4:1 Analog Multiplexer in QFN

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 01$	Initial release	-
1	$10 / 08$	Inserted exposed paddle description	1,7

[^0]: For the latest package outline information and land patterns, go to www.maxim-ic.com/packages

