$+3 \mathrm{~V} /+5 \mathrm{~V} / \pm 5 \mathrm{~V}$ CMOS 4 - and 8 -Channel Analog Multiplexers

Data Sheet

FEATURES

$\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual supply
2 V to 12 V single supply
Automotive temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
<0.1 nA leakage currents
45Ω on resistance over full signal range
Rail-to-rail switching operation
Single 8-to-1 multiplexer ADG658
Differential 4-to-1 multiplexer ADG659
16-lead LFCSP/TSSOP/QSOP packages
Typical power consumption <0.1 $\boldsymbol{\mu W}$
TTL/CMOS compatible inputs
Package upgrades to 74HC4051/74HC4052 and
MAX4051/MAX4052/MAX4581/MAX4582

APPLICATIONS

Automotive applications

Automatic test equipment
Data acquisition systems
Battery-powered systems
Communication systems
Audio and video signal routing
Relay replacement
Sample-and-hold systems
Industrial control systems

GENERAL DESCRIPTION

The ADG658 and ADG659 are low voltage, CMOS analog multiplexers comprised of eight single channels and four differential channels, respectively. The ADG658 switches one of eight inputs ($\mathrm{S} 1-\mathrm{S} 8$) to a common output, D , as determined by the 3-bit binary address lines A0, A1, and A2. The ADG659 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines A0 and A1. An $\overline{\mathrm{EN}}$ input on both devices enables or disables the device. When disabled, all channels are switched off.

These devices are designed on an enhanced process that provides lower power dissipation yet gives high switching speeds. These devices can operate equally well as either multiplexers or demultiplexers and have an input range that extends to the supplies. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels. All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual $\pm 5 \mathrm{~V}$ supplies.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADG658 and ADG659 are available in 16-lead TSSOP/ QSOP packages and 16-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

PRODUCT HIGHLIGHTS

1. Single- and dual-supply operation. The ADG658 and ADG659 offer high performance and are fully specified and guaranteed with $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supply rails.
2. Automotive temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. Low power consumption, typically $<0.1 \mu \mathrm{~W}$.
4. 16 -lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages, 16 -lead TSSOP package and 16-lead QSOP package.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
5 V Single Supply 5
2.7 V to 3.6 V Single Supply 7
REVISION HISTORY
11/2016—Rev. C to Rev. D
Changes to Figure 3 and Table 7 11
Updated Outline Dimensions 19
Changes to Ordering Guide 20
9/2014—Rev. B to Rev. C
Moved Terminology Section 15
Updated Outline Dimensions 19
Changes to Ordering Guide 20
Absolute Maximum Ratings 9
ESD Caution. 9
Pin Configurations and Function Descriptions 11
Typical Performance Characteristics 12
Terminology 15
Test Circuits 16
Outline Dimensions 19
Ordering Guide 20
Automotive Products 20
2/2009—Rev. A to Rev. B
Changes to Ordering Guide 207/2004—Rev. 0 to Rev. AUpdated FormatUniversal
Added QSOP Package Outline 20
Changes to Ordering Guide 20

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { B Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 45 \\ & 75 \\ & 1.3 \\ & 3 \\ & 10 \\ & 16 \end{aligned}$	90 3.2 17	V_{SS} to V_{DD} 100 3.5 18	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \text {; see Figure } 21 \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{5 S}=-5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage Io (OFF) ADG658 ADG659 Channel ON Leakage I_{o}, $\mathrm{Is}_{\mathrm{s}}(\mathrm{ON})$ ADG658 ADG659	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.1 \end{aligned}$		± 5 ± 5 ± 2.5 ± 5 ± 2.5	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 24 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VinL Input Current linl or $l_{\text {INH }}$ CIN, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 1 \end{gathered}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$					
ttransition	$\begin{aligned} & 80 \\ & 115 \end{aligned}$	140	165	ns typ ns max	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
ton ($\overline{\mathrm{EN}}$)	80				$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	115	140	165	ns max	$\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}$; see Figure 27
toff ($\overline{\mathrm{EN}}$)	30			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	45	50	55	ns max	$\mathrm{V}_{5}=3 \mathrm{~V}$; see Figure 27
Break-Before-Make Time Delay, tввм	50		10	ns typ ns min	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \text {; see Figure } 26 \end{aligned}$
Charge Injection	2			pC typ pC max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega \\ & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { see Figure } 28 \end{aligned}$
Off Isolation	-90			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 29
Total Harmonic Distortion, THD + N	0.025			\% typ	$\mathrm{R}_{\mathrm{L}}=600 \Omega, 2 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$
```Channel-to-Channel Crosstalk (ADG659) -3 dB Bandwidth```	-90			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 31
ADG658	210			MHz typ	$\mathrm{RL}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 30
ADG659	400			MHz typ	


Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { B Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
$\mathrm{C}_{\text {s ( }}$ (OFF)	4			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}$ (OFF)					
ADG658	23			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG659	12			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d, }} \mathrm{C}_{\text {S }}(\mathrm{ON})$					
ADG658	28			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG659	16			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
ldo	0.01			$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or 5.5 V
			1	$\mu \mathrm{A} \max$	
Iss	0.01			$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or 5.5 V
			1	$\mu \mathrm{A}$ max	

${ }^{1}$ Guaranteed by design; not subject to production test.

ADG658/ADG659

## 5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.


Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { B Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
$\begin{array}{r} \hline \mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON}) \\ \text { ADG658 } \\ \text { ADG659 } \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 16 \end{aligned}$			pF typ   pF typ	$\begin{aligned} & f=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD	0.01		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1}$ Guaranteed by design; not subject to production test.

### 2.7 V TO 3.6 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=2.7$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.


Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { B Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$					
ADG658	30			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG659	16			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$
IDD	0.01			$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or 3.6 V
			1	$\mu \mathrm{A}$ max	

[^0]
## ADG658/ADG659

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{S S}$	13 V
$V_{\text {D }}$ to GND	-0.3 V to +13 V
$V_{\text {ss }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 10 mA , whichever occurs first
Peak Current, S or D   (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)	40 mA
Continuous Current, S or D	20 mA
Operating Temperature Range	
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}$ Thermal Impedance	
16-Lead QSOP	$104^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead TSSOP	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$70^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase ( 60 sec )	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
ESD	5.5 kV

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## ADG658/ADG659

Table 5. ADG658 Truth Table

A2	A1	A0	$\overline{\mathbf{E N}}$	Switch Condition
$\mathrm{X}^{1}$	$\mathrm{X}^{1}$	$\mathrm{X}^{1}$	1	None
0	0	0	0	1
0	0	1	0	2
0	1	0	0	3
0	1	1	0	4
1	0	0	0	6
1	0	1	0	7
1	1	0	0	8
1	1			

Table 6. ADG659 Truth Table

A1	A0	$\overline{\text { EN }}$	On Switch Pair
$\mathrm{X}^{1}$	$\mathrm{X}^{1}$	1	None
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

[^2]
## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



NOTES

1. EXPOSED PAD. THE EXPOSED PAD MUST BE LEFT FLOATING.

Figure 3. 16-Lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP Pin Configuration
Table 7. Pin Function Descriptions

Parameter	Description
$V_{D D}$	Most Positive Power Supply Potential.
$V_{S S}$	Most Negative Power Supply Potential.
$I_{D D}$	Positive Supply Current.
$I_{S S}$	Negative Supply Current.
GND	Ground (O V) Reference.
$S$	Source Terminal. Can be an input or output.
$D$	Drain Terminal. Can be an input or output.
$A_{x}$	Logic Control Input.
Active Low Digital Input. When high, device is disabled and all switches are OFF. When low, Ax logic inputs determine	
	ON switch.
EPAD (LFCSP Only)	Exposed Pad. The exposed pad must be left floating.

## ADG658/ADG659

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Dual Supply


Figure 5. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Single Supply


Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures (Dual Supply)


Figure 7. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures (Single Supply)


Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures (Single Supply)


Figure 9. Leakage Current vs. Temperature (Dual Supply)


Figure 10. Leakage Current vs. Temperature (Single Supply)


Figure 11. Charge Injection vs. Source Voltage


Figure 12. ton/toff Times vs. Temperature (Dual Supply)


Figure 13. ton/toff Times vs. Temperature (Single Supply)


Figure 14. ON Response vs. Frequency (ADG658)


Figure 15. ON Response vs. Frequency (ADG659)


Figure 16. OFF Isolation vs. Frequency


Figure 17. Crosstalk vs. Frequency


Figure 18. THD + Noise


Figure 19. VDD Current vs. Logic Level


Figure 20. Logic Threshold Voltage vs. Supply Voltage

## ADG658/ADG659

## TERMINOLOGY

$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog Voltage on Terminals D, S.
Ron
Ohmic Resistance between D and S.
$\Delta \mathbf{R o N}_{\text {on }}$
On Resistance Match between Any Two Channels, i.e., Ronmax - Ronmin.
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of ON Resistance as measured over the specified analog signal range.
Is (OFF)
Source Leakage Current with the Switch OFF.
$\mathrm{I}_{\mathrm{D}}$ (OFF)
Drain Leakage Current with the Switch OFF.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O N})$
Channel Leakage Current with the Switch ON.
$\mathrm{V}_{\mathrm{INL}}$
Maximum Input Voltage for Logic 0.
$V_{\text {INH }}$
Minimum Input Voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {inh }}\right)$
Input Current of the Digital Input.
$\mathrm{C}_{\mathrm{s}}$ (OFF)
OFF Switch Source Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (OFF)
OFF Switch Drain Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
ON Switch Capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital Input Capacitance.
ton
Delay between Applying the Digital Control Input and the Output Switching ON. See Figure 27.
toff
Delay between Applying the Digital Control Input and the Output Switching OFF.
t $_{\text {вbм }}$
ON Time. Measured between $80 \%$ points of both switches when switching from one address state to another.

## Charge Injection

Measure of the Glitch Impulse Transferred from the Digital Input to the Analog Output during Switching.

## Off Isolation

Measure of Unwanted Signal Coupling through an OFF Switch.

## Crosstalk

Measure of Unwanted Signal Coupled through from One Channel to Another as a Result of Parasitic Capacitance.

## Bandwidth

The Frequency at which the Output is Attenuated by 3 dB .
On Response
The Frequency Response of the ON Switch.

## Insertion Loss

The Loss Due to the ON Resistance of the Switch.

## ADG658/ADG659

TEST CIRCUITS


Figure 21. ON Resistance


Figure 23. ID (OFF)


Figure 24. $I_{D}(O N)$


*SIMILAR CONNECTION FOR ADG659

Figure 25. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$


Figure 26. Break-Before-Make Delay, $t_{B B M}$


Figure 27. Enable Delay, toN $(\overline{E N})$, $t_{\text {off }}(\overline{E N})$

*SIMILAR CONNECTION FOR ADG659


Figure 28. Charge Injection


Figure 29. Off Isolation


Figure 30. Bandwidth


Figure 31. Channel-to-Channel Crosstalk

## OUTLINE DIMENSIONS



Figure 32. 16-Lead Thin Shrink Small Outline Package [TSSOP] ( $R U-16$ )
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 33. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-23)
Dimensions shown in millimeters


COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 34. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16)
Dimensions shown in inches and (millimeters)

## ORDERING GUIDE

Model ${ }^{1,2}$	Temperature Range	Package Description	Package Option
ADG658YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YRQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADW54003-0	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADW54003-0RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659WYRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YRQZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2} \mathrm{~W}=$ Qualified for Automotive Applications.

## AUTOMOTIVE PRODUCTS

The ADW54003 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.


[^0]:    ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]:    ${ }^{1}$ Over voltages at $\mathrm{Ax}, \overline{\mathrm{EN}}, \mathrm{S}$, or D are clamped by internal diodes. Current must be limited to the maximum ratings.

[^2]:    ${ }^{1} \mathrm{X}=$ Don't Care

