

规格书编号

SPEC NO:

产品规格书 SPECIFICATION

CUSTOMER 客 户:										
PRODUCT 产品:	SAW RESONATOR									
MODEL NO 型 号:	HDR390MS3									
PREPARED 编 制:	CHECKED 审 核:									
APPROVED 批准:	DATE 日 其	月: 2016-7-16								
客户确认 CUSTOMER RECEIVED:										
审核 CHECKED	批准 APPROVED	日期 DATE								

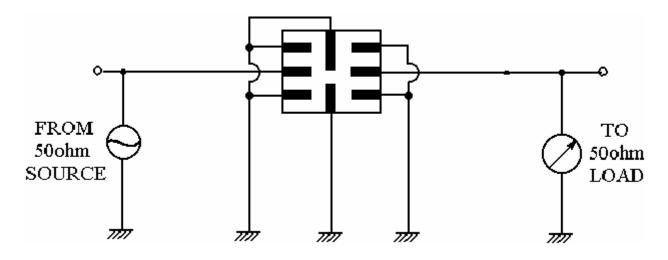
无锡市好达电子有限公司 Shoulder Electronics Limited

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

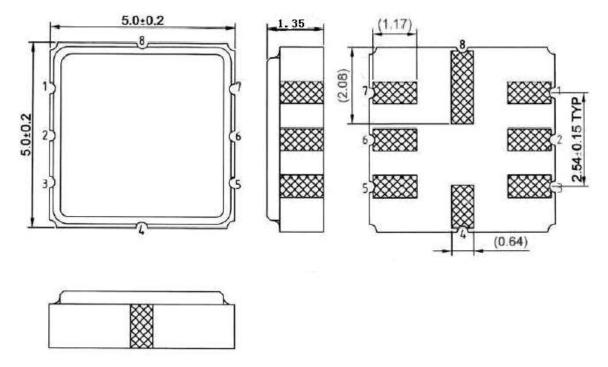
1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	10V
AC Voltage Vpp	10V50Hz/60Hz
Operation temperature	-40°C to +85°C
Storage temperature	-45°C to +85°C
RF Power Dissipation	0dBm

2.2 Electronic Characteristics


Item		Unites	Minimum	Typical	Maximum
Center Freque	ncy	MHz	389.925	390.000	390.075
Insertion Loss		dB		1.5	2.2
Quality Factor	· Unload Q		8000	13900	
50Ω Loaded	Q		1000	2000	
Temperature	Temperature Turnover Temperature		10	25	40
Stability	Freq.temp.Coefficient	ppm/°C2		0.037	
Frequency Ag	ing	ppm/yr		≤10	
DC. Insulation	Resistance	МΩ	1.0		
DEE : 1	Motional Resistance R1			19	26
RF Equivalen	Motional Inductance L1	μН		111.04	
KLC Wodel	Motional Capacitance C1	fF		1.4998	
Transducer Sta	atic Capacitance	pF		1.72	

3. TEST CIRCUIT

4. DIMENSION

- 2.Input
- 6.Output
- 1.3.5.7.Gound
- 4.8 Ground

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to +85 °C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

5-5 Solderability

Subject the device terminals into the solder bath at $245^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

SAW RESONATOR

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x,y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

6. REMARK

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

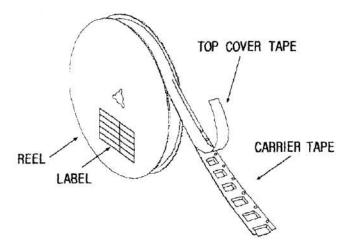
Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

7. Packing

7.1 Dimensions

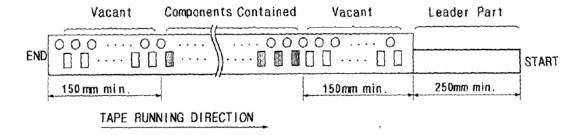

- (1) Carrier Tape: Figure 1
- (2) Reel: Figure 2
- (3) The product shall be packed properly not to be damaged during transportation and storage.

7.2 Reeling Quantity

1000 pcs/reel 7" 3000 pcs/reel 13"

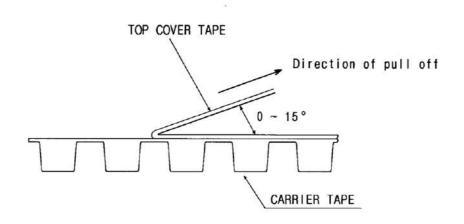
7.3 Taping Structure

(1) The tape shall be wound around the reel in the direction shown below.

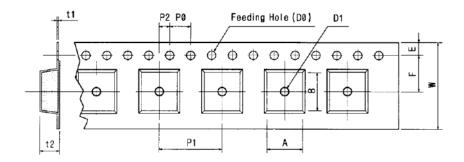


SAW RESONATOR

(2) Label


Device Name	
User Product Name	
Quantity	
Lot No.	

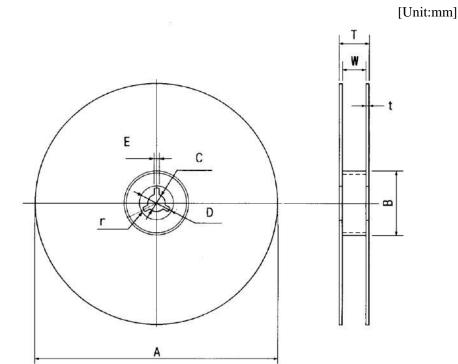
(3) Leader part and vacant position specifications.


8. TAPE SPECIFICATIONS

- 8.1 Tensile Strength of Carrier Tape: 4.4N/mm width
- 8.2 Top Cover Tape Adhesion (See the below figure)
 - (1) pull off angle: 0~15°
 (2) speed: 300mm/min.
 (3) force: 20~70g

SAW RESONATOR

[Figure 1] Carrier Tape Dimensions



Tape Running Direction

[Unit:mm]

W	F	E	P0	P1	P2	D0	D1	t1	t2	A	В
12.0	5.5	1.75	4.0	8.0	2.0	Ø1.5	Ø1.0	0.3	2.10	6.40	5.20
± 0.3	± 0.05	± 0.1	± 0.1	± 0.1	± 0.05	± 0.1	± 0.25	± 0.05	± 0.1	± 0.1	± 0.1

[Figure 2]

1	A	В	С	D	Е	W	t	r
Ø3	30	Ø100	Ø13	021	2	13	3	1.0
土	1.0	± 0.5	± 0.5	± 0.8	± 0.5	± 0.3	max.	max.