

STH47N60DM6-2AG

Automotive N-channel 600 V, 0.070 Ω typ., 36 A MDmesh™ DM6 Power MOSFET in an H²PAK-2 package

Datasheet - preliminary data

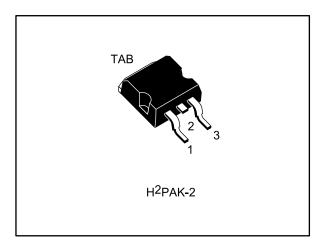
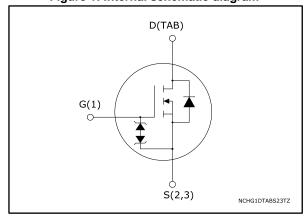



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STH47N60DM6-2AG	600 V	0.080 Ω	36 A

Designed for automotive applications

- Fast-recovery body diode
- Lower R_{DS(on)} x area vs previous generation
- Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely dv/dt ruggedness
- Zener-protected
- Excellent switching performance thanks to the extra driving source pin

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM6 fast recovery diode series. Compared with the previous MDmesh fast generation, DM6 combines very low recovery charge (Qrr), recovery time (trr) and excellent improvement in RDS(on) * area with one of the most effective switching behaviors available in the market for the most demanding high efficiency bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STH47N60DM6-2AG	47N60DM6	H²PAK-2	Tape and reel

Contents STH47N60DM6-2AG

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	H ² PAK-2 package information	10
	4.2	H ² PAK-2 packing information	12
5	Revisio	on history	14

STH47N60DM6-2AG Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _G s	Gate-source voltage	±25	V	
I _D	Drain current (continuous) at T _C = 25 °C	36	Α	
I _D	Drain current (continuous) at T _C = 100 °C	22	Α	
I _D ⁽¹⁾	Drain current (pulsed)	137 A		
P _{TOT}	Total dissipation at T _C = 25 °C	250 W		
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	100		
TJ	Operating junction temperature range	-55 to 150 °		
T _{stg}	Storage temperature range	-55 to 150		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	0000
R _{thj-pcb}	Thermal resistance junction-pcb ⁽¹⁾	30	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})		А
Eas	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$, $V_{DD} = 100 \text{ V}$)	700	mJ

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}I_{SD} \leq 36$ A, di/dt ≤ 800 A/ μ s, V_{DS peak} < V(BR)DSS, V_{DD} = 480 V

 $^{^{(3)}}V_{DS} \le 480 \text{ V}$

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board.

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	600			V
	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			5	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 18 A		0.070	0.080	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	2350	ı	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	160	ı	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	2	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	416	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	1.6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 36 \text{ A},$	-	55	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 14: "Test circuit	-	12	•	nC
Q_{gd}	Gate-drain charge	for gate charge behavior")	-	31	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 18 A,	-	23	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	-	5.5	-	ns
t _{d(off)}	Turn-off delay time	for resistive load switching	ı	57	1	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	9	-	ns

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		36	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		137	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 36 A, V _{GS} = 0 V	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 36 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	115		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 15: "Test circuit	-	0.54		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	9.5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 36 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	210		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 15: "Test circuit	-	2.1		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	20.4		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO} \\$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area 10^{2} 10¹ t_p=10 μs t =100 µs 100 T≤ 150 °C t_p=1 ms \dot{T}_c = 25°C single pulse 10⁻¹ t_o=10 ms 10⁻² 10⁰ 10¹ 10² $\overline{V}_{DS}(V)$ 10

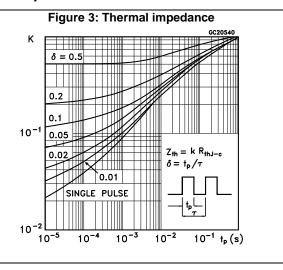
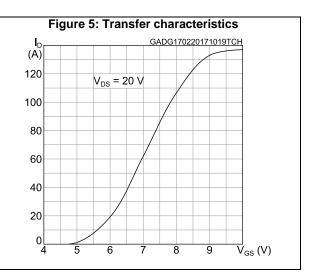
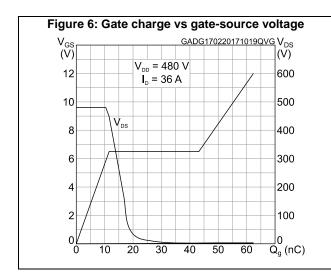




Figure 4: Output characteristics GADG170220171018OCH **I**_D (Α) $V_{GS} = 10 \text{ V}$ V_{GS} = 9_.V 120 $V_{\rm GS} = 8 \text{ V}$ 100 80 $V_{GS} = 7 V$ 60 40 $V_{GS} = 6 V$ 20 12 16 8 $\overline{V}_{DS}(V)$

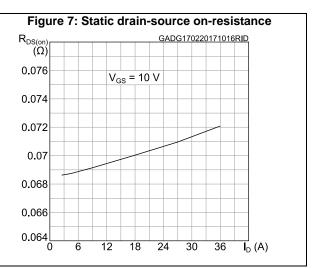


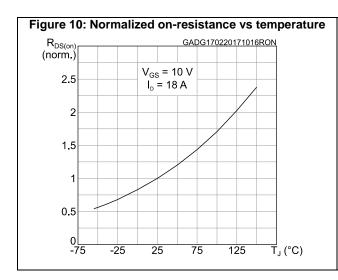
Figure 8: Capacitance variations C (pF) GADG170220171018CVR 10⁴ C_{ISS} 10³ 10² Coss f = 1 MHz10¹ C_{RSS} 10^{0} $\vec{V}_{DS}(V)$ 10⁻¹ 10° 10¹ 10^{2}

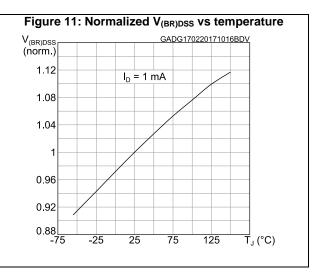
Figure 9: Normalized gate threshold voltage vs temperature

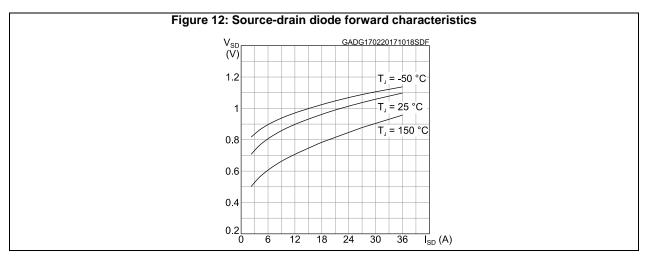
V_{GS(th)}
(norm.)

1.1

0.9

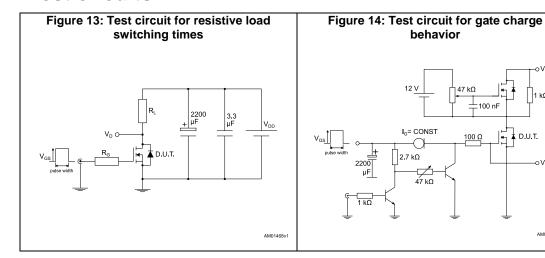

0.8

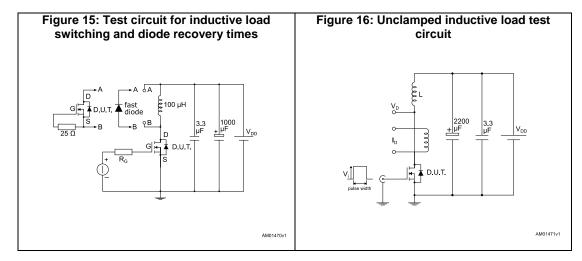

I_D = 250 µA

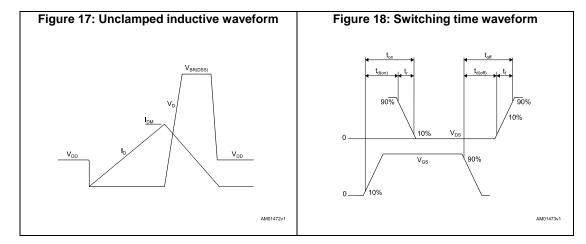

0.7

0.6

-75 -25 25 75 125 T_J (°C)







Test circuits STH47N60DM6-2AG

3 **Test circuits**

1 kΩ

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 H²PAK-2 package information

Figure 19: H²PAK-2 package outline

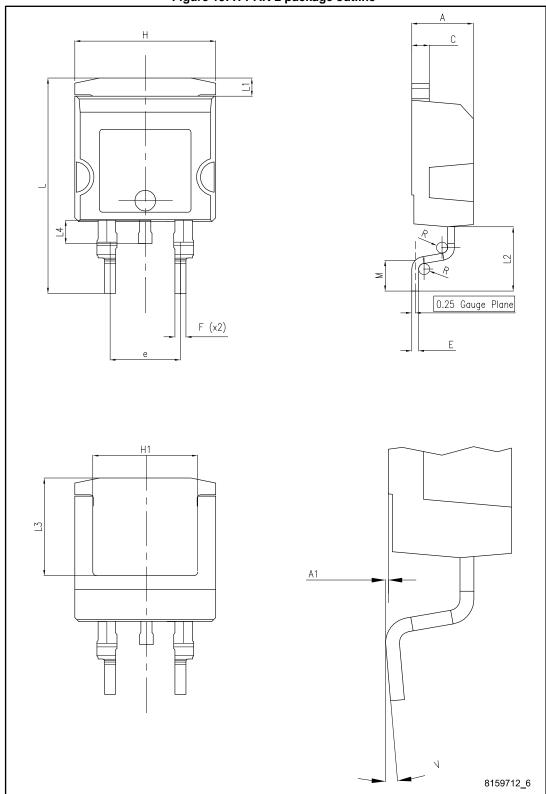
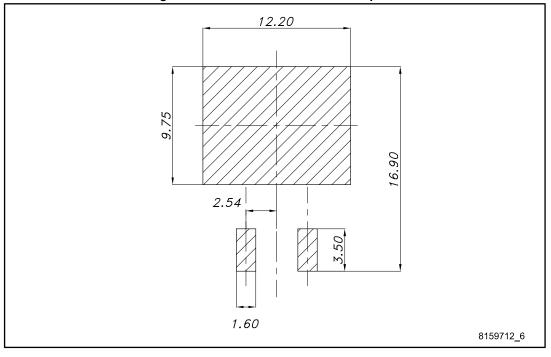



Table 10: H²PAK-2 package mechanical data

Table 10. n-FAN-2 package mechanical data						
Dim.	mm					
Dilli.	Min.	Тур.	Max.			
Α	4.30		4.70			
A1	0.03		0.20			
С	1.17		1.37			
е	4.98		5.18			
Е	0.50		0.90			
F	0.78		0.85			
Н	10.00		10.40			
H1	7.40		7.80			
L	15.30	-	15.80			
L1	1.27		1.40			
L2	4.93		5.23			
L3	6.85		7.25			
L4	1.5		1.7			
М	2.6		2.9			
R	0.20		0.60			
V	0°		8°			

Figure 20: H²PAK-2 recommended footprint

4.2 H²PAK-2 packing information

Figure 21: Tape outline

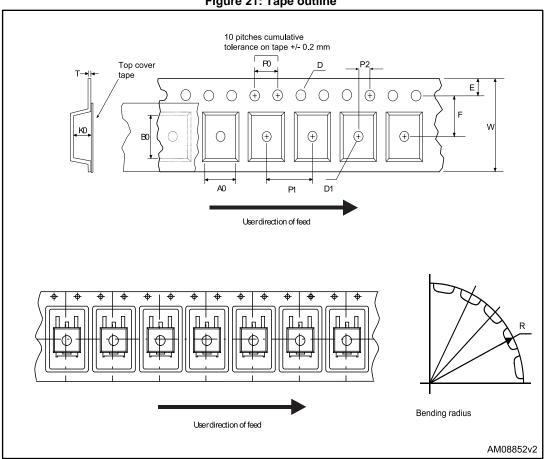
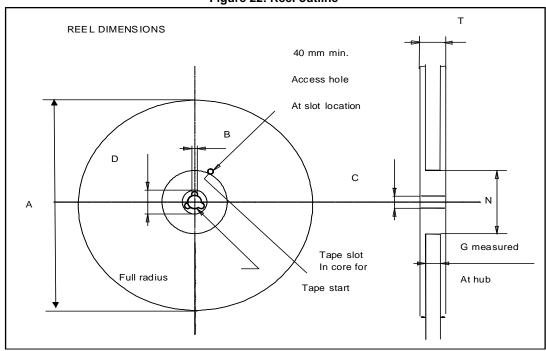



Figure 22: Reel outline

577

Table 11: Tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	A		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity 100		1000
P2	1.9	2.1	Bulk quantity 1000		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STH47N60DM6-2AG

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
09-Aug-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

