32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog

Operating Conditions: 2.3V to $\mathbf{3 . 6 \mathrm { V }}$

- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (DC to 80 MHz)
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (DC to 100 MHz)
- $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (DC to 120 MHz)

Core: $120 \mathrm{MHz} / 150$ DMIPS MIPS $32{ }^{\circledR}$ M4K ${ }^{\circledR}$

- MIPS16e ${ }^{\circledR}$ mode for up to 40% smaller code size
- Code-efficient (C and Assembly) architecture
- Single-cycle (MAC) 32×16 and two-cycle 32×32 multiply

Clock Management

- 0.9% internal oscillator
- Programmable PLLs and oscillator clock sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timer
- Fast wake-up and start-up

Power Management

- Low-power management modes (Sleep and Idle)
- Integrated Power-on Reset, Brown-out Reset, and High Voltage Detect
- $0.5 \mathrm{~mA} / \mathrm{MHz}$ dynamic current (typical)
- $50 \mu \mathrm{~A}$ IPD current (typical)

Audio/Graphics/Touch HMI Features

- External graphics interface with up to 34 PMP pins
- Audio data communication: $I^{2} \mathrm{~S}, \mathrm{LJ}, \mathrm{RJ}$, USB
- Audio data control interface: SPI and $\mathrm{I}^{2} \mathrm{C}$
- Audio data master clock:
- Generation of fractional clock frequencies
- Can be synchronized with USB clock
- Can be tuned in run-time
- Charge Time Measurement Unit (CTMU):
- Supports mTouch ${ }^{T M}$ capacitive touch sensing
- Provides high-resolution time measurement (1 ns)

Advanced Analog Features

- ADC Module:
- 10-bit 1 Msps rate with one Sample and Hold (S\&H)
- Up to 28 analog inputs
- Can operate during Sleep mode
- Flexible and independent ADC trigger sources
- On-chip temperature measurement capability
- Comparators:
- Two dual-input Comparator modules
- Programmable references with 32 voltage points

Timers/Output Compare/Input Capture

- Five General Purpose Timers:
- Five 16 -bit and up to two 32 -bit Timers/Counters
- Five Output Compare (OC) modules
- Five Input Capture (IC) modules
- Peripheral Pin Select (PPS) to allow function remap
- Real-Time Clock and Calendar (RTCC) module

Communication Interfaces

- USB 2.0-compliant Full-speed OTG controller
- Up to five UART modules (20 Mbps):
- LIN 2.1 protocols and IrDA ${ }^{\circledR}$ support
- Two 4 -wire SPI modules (25 Mbps)
- Two I ${ }^{2}$ C modules (up to 1 Mbaud) with SMBus support
- PPS to allow function remap
- Parallel Master Port (PMP)

Direct Memory Access (DMA)

- Four channels of hardware DMA with automatic data size detection
- 32-bit Programmable Cyclic Redundancy Check (CRC)
- Two additional channels dedicated to USB

Input/Output

- 15 mA or 12 mA source/sink for standard Voh/Vol and up to 22 mA for non-standard Voh1
- 5 V -tolerant pins
- Selectable open drain, pull-ups, and pull-downs
- External interrupts on all I/O pins

Class B Support

- Class B Safety Library, IEC 60730

Debugger Development Support

- In-circuit and in-application programming
- 4-wire MIPS ${ }^{\circledR}$ Enhanced JTAG interface
- Unlimited program and six complex data breakpoints
- IEEE 1149.2-compatible (JTAG) boundary scan

Packages

Type	QFN	TQFP	VTLA	
Pin Count	64	64	100	100
I/O Pins (up to)	53	53	85	85
Contact/Lead Pitch	0.50	0.50	0.40	85
Dimensions	$9 \times 9 \times 0.9$	$10 \times 10 \times 1$	$12 \times 12 \times 1$	0.50

Note: All dimensions are in millimeters (mm) unless specified.

PIC32MX330/350/370/430/450/470

TABLE 1: PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES

	$\stackrel{n}{i=}$				Remappable Peripherals					10-bit 1 Msps ADC (Channels)		0 0 0 0 0 \pm 1 1 0 0 0	\sum_{0}^{D}	-	\sum_{0}^{0}	$\begin{aligned} & \text { U } \\ & \text { O } \\ & \hline 1 \end{aligned}$		$\begin{aligned} & \stackrel{n}{=} \\ & 0 . \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{5}{5} \end{aligned}$	$\begin{aligned} & \stackrel{\text { ®in }}{\stackrel{\rightharpoonup}{*}} \end{aligned}$
							$\stackrel{\substack{\text { 人p}}}{\mathbb{4}}$	$\stackrel{\infty}{\stackrel{\infty}{\bar{n}}}$												
PIC32MX330F064H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	64+12	16	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX330F064L	100	TQFP	64+12	16	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
	124	VTLA																		
PIC32MX350F128H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	128+12	32	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F128L	100	TQFP	128+12	32	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
	124	VTLA																		
PIC32MX350F256H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	256+12	64	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F256L	100	TQFP	256+12	64	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
	124	VTLA																		
PIC32MX370F512H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	512+12	128	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX370F512L	100	TQFP	512+12	128	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
	124	VTLA																		
PIC32MX430F064H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	64+12	16	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX430F064L	100	TQFP	64+12	16	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA																		
PIC32MX450F128H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128L	100	TQFP	128+12	32	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA																		
PIC32MX450F256H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	256+12	64	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F256L	100	TQFP	256+12	64	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA																		
PIC32MX470F512H	64	$\begin{aligned} & \text { QFN, } \\ & \text { TQFP } \end{aligned}$	512+12	128	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX470F512L	100	TQFP	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
	124	VTLA																		

Note 1: All devices feature 12 KB of Boot Flash memory.
2: Four out of five timers are remappable.
3: Four out of five external interrupts are remappable.

Device Pin Tables

TABLE 2: PIN NAMES FOR 64-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RBx-RGx), with the exception of RF6, can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "//O Ports" for more information.
3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.
4: RPF6 (pin 35) is only available for output functions.
5: Shaded Pins are 5 V tolerant.

PIC32MX330/350/370/430/450/470

TABLE 3: PIN NAMES FOR 64-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions
2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.
3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.
4: Shaded Pins are 5 V tolerant.

TABLE 4: PIN NAMES FOR 100-PIN DEVICES

10	0-PIN TQFP (TOP VIEW) ${ }^{(1,2,3)}$ PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		
Pin \#	Full Pin Name	Pin \#	Full Pin Name
1	RG15	36	Vss
2	Vdd	37	VDD
3	AN22/RPE5/PMD5/RE5	38	TCK/CTED2/RA1
4	AN23/PMD6/RE6	39	RPF13/RF13
5	AN27/PMD7/RE7	40	RPF12/RF12
6	RPC1/RC1	41	AN12/PMA11/RB12
7	RPC2/RC2	42	AN13/PMA10/RB13
8	RPC3/RC3	43	AN14/RPB14/CTED5/PMA1/RB14
9	RPC4/CTED7/RC4	44	AN15/RPB15/OCFB/CTED6/PMA0/RB15
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6	45	Vss
11	AN17/C1INC/RPG7/PMA4/RG7	46	VDD
12	AN18/C2IND/RPG8/PMA3/RG8	47	RPD14/RD14
13	$\overline{\mathrm{MCLR}}$	48	RPD15/RD15
14	AN19/C2INC/RPG9/PMA2/RG9	49	RPF4/PMA9/RF4
15	Vss	50	RPF5/PMA8/RF5
16	VDD	51	RPF3/RF3
17	TMS/CTED1/RA0	52	RPF2/RF2
18	RPE8/RE8	53	RPF8/RF8
19	RPE9/RE9	54	RPF7/RF7
20	AN5/C1INA/RPB5/RB5	55	RPF6/SCK1/INT0/RF6
21	AN4/C1INB/RB4	56	SDA1/RG3
22	PGED3/AN3/C2INA/RPB3/RB3	57	SCL1/RG2
23	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	58	SCL2/RA2
24	PGEC1/AN1/RPB1/CTED12/RB1	59	SDA2/RA3
25	PGED1/AN0/RPB0/RB0	60	TDI/CTED9/RA4
26	PGEC2/AN6/RPB6/RB6	61	TDO/RA5
27	PGED2/AN7/RPB7/CTED3/RB7	62	VDD
28	VREF-/CVREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/CVREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVDD	65	Vss
31	AVss	66	RPA14/RA14
32	AN8/RPB8/CTED10/RB8	67	RPA15/RA15
33	AN9/RPB9/CTED4/RB9	68	RPD8/RTCC/RD8
34	CVrefout/AN10/RPB10/CTED11PMA13/RB10	69	RPD9/RD9
35	AN11/PMA12/RB11	70	RPD10/PMCS2/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.
3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.
4: Shaded Pins are 5 V tolerant.

PIC32MX330/350/370/430/450/470

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

10	$0-P I N$ TQFP (TOP VIEW) ${ }^{(1,2}$ PIC32MX330F PIC32MX350F PIC32MX350F PIC32MX370F		
Pin \#	Full Pin Name	Pin \#	Full Pin Name
71	RPD11/PMCS1/RD11	86	VDD
72	RPD0/RD0	87	RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13	88	RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	Vss	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	91	TRCLK/RA6
77	AN25/RPD2/RD2	92	TRD3/CTED8/RA7
78	AN26/RPD3/RD3	93	PMD0/RE0
79	RPD12/PMD12/RD12	94	PMD1/RE1
80	PMD13/RD13	95	TRD2/RG14
81	RPD4/PMWR/RD4	96	TRD1/RG12
82	RPD5/PMRD/RD5	97	TRD0/RG13
83	PMD14/RD6	98	AN20/PMD2/RE2
84	PMD15/RD7	99	RPE3/CTPLS/PMD3/RE3
85	Vcap	100	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.
3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.
4: Shaded Pins are 5 V tolerant.

TABLE 5: PIN NAMES FOR 100-PIN DEVICES

10	$0-$ PIN TQFP (TOP VIEW) ${ }^{(1,2)}$ PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L		
Pin \#	Full Pin Name	Pin \#	Full Pin Name
1	RG15	36	Vss
2	VDD	37	VDD
3	AN22/RPE5/PMD5/RE5	38	TCK/CTED2/RA1
4	AN23/PMD6/RE6	39	RPF13/RF13
5	AN27/PMD7/RE7	40	RPF12/RF12
6	RPC1/RC1	41	AN12/PMA11/RB12
7	RPC2/RC2	42	AN13/PMA10/RB13
8	RPC3/RC3	43	AN14/RPB14/CTED5/PMA1/RB14
9	RPC4/CTED7/RC4	44	AN15/RPB15/OCFB/CTED6/PMA0/RB15
10	AN16/C1IND/RPG6/SCK2/PMA5/RG6	45	Vss
11	AN17/C1INC/RPG7/PMA4/RG7	46	Vdd
12	AN18/C2IND/RPG8/PMA3/RG8	47	RPD14/RD14
13	$\overline{\mathrm{MCLR}}$	48	RPD15/RD15
14	AN19/C2INC/RPG9/PMA2/RG9	49	RPF4/PMA9/RF4
15	Vss	50	RPF5/PMA8/RF5
16	VDD	51	USBID/RF3
17	TMS/CTED1/RA0	52	RPF2/RF2
18	RPE8/RE8	53	RPF8/RF8
19	RPE9/RE9	54	Vbus
20	AN5/C1INA/RPB5/Vbuson/RB5	55	Vusb3V3
21	AN4/C1INB/RB4	56	D-
22	PGED3/AN3/C2INA/RPB3/RB3	57	D+
23	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	58	SCL2/RA2
24	PGEC1/AN1/RPB1/CTED12/RB1	59	SDA2/RA3
25	PGED1/AN0/RPB0/RB0	60	TDI/CTED9/RA4
26	PGEC2/AN6/RPB6/RB6	61	TDO/RA5
27	PGED2/AN7/RPB7/CTED3/RB7	62	VDD
28	VREF-/CVREF-/PMA7/RA9	63	OSC1/CLKI/RC12
29	VREF+/CVREF+/PMA6/RA10	64	OSC2/CLKO/RC15
30	AVDD	65	Vss
31	AVss	66	SCL1/RPA14/RA14
32	AN8/RPB8/CTED10/RB8	67	SDA1/RPA15/RA15
33	AN9/RPB9/CTED4/RB9	68	RPD8/RTCC/RD8
34	CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10	69	RPD9/RD9
35	AN11/PMA12/RB11	70	RPD10/SCK1/PMCS2/RD10
Note	1: \quad The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions. 2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information. 3: Shaded Pins are 5 V tolerant.		

PIC32MX330/350/370/430/450/470

TABLE 5: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

100-PIN TQFP (TOP VIEW) ${ }^{(1,2)}$ PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			
Pin \#	Full Pin Name	Pin \#	Full Pin Name
71	RPD11/PMCS1/RD11	86	VDD
72	RPD0/INT0/RD0	87	RPF0/PMD11/RF0
73	SOSCI/RPC13/RC13	88	RPF1/PMD10/RF1
74	SOSCO/RPC14/T1CK/RC14	89	RPG1/PMD9/RG1
75	Vss	90	RPG0/PMD8/RG0
76	AN24/RPD1/RD1	91	TRCLK/RA6
77	AN25/RPD2/RD2	92	TRD3/CTED8/RA7
78	AN26/RPD3/RD3	93	PMD0/RE0
79	RPD12/PMD12/RD12	94	PMD1/RE1
80	PMD13/RD13	95	TRD2/RG14
81	RPD4/PMWR/RD4	96	TRD1/RG12
82	RPD5/PMRD/RD5	97	TRD0/RG13
83	PMD14/RD6	98	AN20/CTPLS/PMD2/RE2
84	PMD15/RD7	99	RPE3/PMD3/RE3
85	VCAP	100	AN21/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions
2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 " $/$ O Ports" for more information.
3: Shaded Pins are 5V tolerant.

PIC32MX330/350/370/430/450/470

TABLE 6: PIN NAMES FOR 124-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 " $/ \mathrm{O}$ Ports" for more information
3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.
4: Shaded package bumps are 5 V tolerant
5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

PIC32MX330/350/370/430/450/470

TABLE 6: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

Package Bump \#	Full Pin Name	Packag Bump \#	Full Pin Name
B7	$\overline{\mathrm{MCLR}}$	B32	SDA2/RA3
B8	Vss	B33	TDO/RA5
B9	TMS/CTED1/RA0	B34	OSC1/CLKI/RC12
B10	RPE9/RE9	B35	No Connect
B11	AN4/C1INB/RB4	B36	RPA14/RA14
B12	Vss	B37	RPD8/RTCC/RD8
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	B38	RPD10/PMCS2/RD10
B14	PGED1/AN0/RPB0/RB0	B39	RPD0/RD0
B15	No Connect	B40	SOSCO/RPC14/T1CK/RC14
B16	PGED2/AN7/RPB7/CTED3/RB7	B41	Vss
B17	VREF+/CVREF+/PMA6/RA10	B42	AN25/RPD2/RD2
B18	AVss	B43	RPD12/PMD12/RD12
B19	AN9/RPB9/CTED4/RB9	B44	RPD4/PMWR/RD4
B20	AN11/PMA12/RB11	B45	PMD14/RD6
B21	VDD	B46	No Connect
B22	RPF13/RF13	B47	No Connect
B23	AN12/PMA11/RB12	B48	Vcap
B24	AN14/RPB14/CTED5/PMA1/RB14	B49	RPF0/PMD11/RF0
B25	Vss	B50	RPG1/PMD9/RG1
B26	RPD14/RD14	B51	TRCLK/RA6
B27	RPF4/PMA9/RF4	B52	PMDO/RE0
B28	No Connect	B53	Vdd
B29	RPF8/RF8	B54	TRD2/RG14
B30	RPF6/SCKI/INT0/RF6	B55	TRD0/RG13
B31	SCL1/RG2	B56	RPE3/CTPLS/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.
3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.
4: Shaded package bumps are 5 V tolerant.
5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

PIC32MX330/350/370/430/450/470

TABLE 7: PIN NAMES FOR 124-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.
2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.
3: \quad Shaded package bumps are 5 V tolerant.
4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

PIC32MX330/350/370/430/450/470

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

Table of Contents

1.0 Device Overview 17
2.0 Guidelines for Getting Started with 32-bit MCUs. 27
3.0 CPU 37
4.0 Memory Organization. 41
5.0 Flash Program Memory. 55
6.0 Resets 61
7.0 Interrupt Controller 65
8.0 Oscillator Configuration 75
9.0 Prefetch Cache 85
10.0 Direct Memory Access (DMA) Controller 95
11.0 USB On-The-Go (OTG) 115
12.0 I/O Ports 139
13.0 Timer1 169
14.0 Timer2/3, Timer4/5 173
15.0 Watchdog Timer (WDT) 179
16.0 Input Capture. 183
17.0 Output Compare 187
18.0 Serial Peripheral Interface (SPI). 191
19.0 Inter-Integrated Circuit (${ }^{2} \mathrm{C}$) 199
20.0 Universal Asynchronous Receiver Transmitter (UART). 207
21.0 Parallel Master Port (PMP). 215
22.0 Real-Time Clock and Calendar (RTCC). 225
23.0 10-bit Analog-to-Digital Converter (ADC) 235
24.0 Comparator 245
25.0 Comparator Voltage Reference (CVREF) 249
26.0 Charge Time Measurement Unit (CTMU) 253
27.0 Power-Saving Features 259
28.0 Special Features 263
29.0 Instruction Set 275
30.0 Development Support. 277
31.0 Electrical Characteristics 281
32.0 DC and AC Device Characteristics Graphs. 331
33.0 Packaging Information. 335
The Microchip Web Site 363
Customer Change Notification Service 363
Customer Support 363
Product Identification System 364

PIC32MX330/350/370/430/450/470

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual sections of the "PIC32 Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the following documents, refer to the Documentation $>$ Reference Manuals section of the Microchip PIC32 website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
-Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit ($\left.{ }^{2} \mathrm{C}\right)$ " (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

PIC32MX330/350/370/430/450/470

NOTES:

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

This document contains device-specific information for PIC32MX330/350/370/430/450/470 devices.
Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX330/350/ 370/430/450/470 family of devices.
Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM

Note: Not all features are available on all devices. Refer to TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of features by device.

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	124-pin VTLA			
AN0	16	25	B14	I	Analog	
AN1	15	24	A15	I	Analog	
AN2	14	23	B13	I	Analog	
AN3	13	22	A13	I	Analog	
AN4	12	21	B11	I	Analog	
AN5	11	20	A12	1	Analog	
AN6	17	26	A20	I	Analog	
AN7	18	27	B16	I	Analog	
AN8	21	32	A23	1	Analog	
AN9	22	33	B19	1	Analog	
AN10	23	34	A24	I	Analog	
AN11	24	35	B20	I	Analog	
AN12	27	41	B23	1	Analog	
AN13	28	42	A28	I	Analog	
AN14	29	43	B24	I	Analog	Alog input channels.
AN15	30	44	A29	1	Analog	
AN16	4	10	A7	1	Analog	
AN17	5	11	B6	I	Analog	
AN18	6	12	A8	1	Analog	
AN19	8	14	A9	1	Analog	
AN20	62	98	A66	1	Analog	
AN21	64	100	A67	I	Analog	
AN22	1	3	B2	1	Analog	
AN23	2	4	A4	1	Analog	
AN24	49	76	A52	1	Analog	
AN25	50	77	B42	I	Analog	
AN26	51	78	A53	1	Analog	
AN27	3	5	B3	1	Analog	
CLKI	39	63	B34	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	A42	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.
OSC1	39	63	B34	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	A42	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	A47	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	74	B40	O	-	32.768 kHz low-power oscillator crystal output.
Legend:	CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer				Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input	
Note $\begin{aligned} & 1: \\ & 2: \\ & 3:\end{aligned}$	This pin is only available on devices without a USB module. This pin is only available on devices with a USB module. This pin is not available on 64-pin devices.					

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	100-pin TQFP	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$			
IC1	PPS	PPS	PPS	1	ST	Capture Input 1-5
IC2	PPS	PPS	PPS	1	ST	
IC3	PPS	PPS	PPS	1	ST	
IC4	PPS	PPS	PPS	1	ST	
IC5	PPS	PPS	PPS	1	ST	
OC1	PPS	PPS	PPS	0	ST	Output Compare Output 1
OC2	PPS	PPS	PPS	0	ST	Output Compare Output 2
OC3	PPS	PPS	PPS	0	ST	Output Compare Output 3
OC4	PPS	PPS	PPS	0	ST	Output Compare Output 4
OC5	PPS	PPS	PPS	0	ST	Output Compare Output 5
OCFA	PPS	PPS	PPS	I	ST	Output Compare Fault A Input
OCFB	30	44	A29	1	ST	Output Compare Fault B Input
INT0	$35^{(1)}, 46^{(2)}$	$55^{(1)}, 72^{(2)}$	B30 ${ }^{(1)}$, B39 ${ }^{(2)}$	1	ST	External Interrupt 0
INT1	PPS	PPS	PPS	I	ST	External Interrupt 1
INT2	PPS	PPS	PPS	1	ST	External Interrupt 2
INT3	PPS	PPS	PPS	I	ST	External Interrupt 3
INT4	PPS	PPS	PPS	1	ST	External Interrupt 4
RA0	-	17	B9	I/O	ST	PORTA is a bidirectional I/O port
RA1	-	38	A26	I/O	ST	
RA2	-	58	A39	I/O	ST	
RA3	-	59	B32	I/O	ST	
RA4	-	60	A40	I/O	ST	
RA5	-	61	B33	1/O	ST	
RA6	-	91	B51	I/O	ST	
RA7	-	92	A62	I/O	ST	
RA9	-	28	A21	I/O	ST	
RA10	-	29	B17	I/O	ST	
RA14	-	66	B36	I/O	ST	
RA15	-	67	A44	1/0	ST	
Legend:	CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels				Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input	

Note 1: This pin is only available on devices without a USB module.
2: This pin is only available on devices with a USB module.
3: This pin is not available on 64 -pin devices.

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA			
RB0	16	25	B14	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A15	I/O	ST	
RB2	14	23	B13	I/O	ST	
RB3	13	22	A13	I/O	ST	
RB4	12	21	B11	I/O	ST	
RB5	11	20	A12	I/O	ST	
RB6	17	26	A20	I/O	ST	
RB7	18	27	B16	1/O	ST	
RB8	21	32	A23	1/O	ST	
RB9	22	33	B19	I/O	ST	
RB10	23	34	A24	I/O	ST	
RB11	24	35	B20	I/O	ST	
RB12	27	41	B23	I/O	ST	
RB13	28	42	A28	I/O	ST	
RB14	29	43	B24	I/O	ST	
RB15	30	44	A29	I/O	ST	
RC1	-	6	A5	I/O	ST	PORTC is a bidirectional I/O port
RC2	-	7	B4	I/O	ST	
RC3	-	8	A6	I/O	ST	
RC4	-	9	B5	1/O	ST	
RC12	39	63	B34	I/O	ST	
RC13	47	73	A47	I/O	ST	
RC14	48	74	B40	I/O	ST	
RC15	40	64	A42	I/O	ST	
RD0	46	72	B39	I/O	ST	PORTD is a bidirectional I/O port
RD1	49	76	A52	I/O	ST	
RD2	50	77	B42	I/O	ST	
RD3	51	78	A53	I/O	ST	
RD4	52	81	B44	I/O	ST	
RD5	53	82	A55	I/O	ST	
RD6	54	83	B45	I/O	ST	
RD7	55	84	A56	I/O	ST	
RD8	42	68	B37	I/O	ST	
RD9	43	69	A45	I/O	ST	
RD10	44	70	B38	I/O	ST	
RD11	45	71	A46	I/O	ST	
RD12	-	79	B43	I/O	ST	
RD13	-	80	A54	I/O	ST	
RD14	-	47	B26	I/O	ST	
RD15	-	48	A31	I/O	ST	
Legend:	CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer				Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input	
$\begin{array}{ll} \text { Note } & 1: \\ & 2: \\ & 3: \end{array}$	This pin is This pin is This pin is	ly availab	devices n devices 64-pin de	hout a h a US es.	module.	

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	100-pin TQFP	124-pin VTLA			
RE0	60	93	B52	1/O	ST	PORTE is a bidirectional I/O port
RE1	61	94	A64	I/O	ST	
RE2	62	98	A66	I/O	ST	
RE3	63	99	B56	I/O	ST	
RE4	64	100	A67	I/O	ST	
RE5	1	3	B2	I/O	ST	
RE6	2	4	A4	I/O	ST	
RE7	3	5	B3	I/O	ST	
RE8	-	18	A11	I/O	ST	
RE9	-	19	B10	I/O	ST	
RF0	58	87	B49	I/O	ST	PORTF is a bidirectional I/O port
RF1	59	88	A60	1/O	ST	
RF2	$34^{(1)}$	52	A36	1/O	ST	
RF3	33	51	A35	I/O	ST	
RF4	31	49	B27	I/O	ST	
RF5	32	50	A32	I/O	ST	
RF6	$35^{(1)}$	$55^{(1)}$	B30 ${ }^{(1)}$	I/O	ST	
RF7	-	$54^{(1)}$	A37 ${ }^{(1)}$	1/0	ST	
RF8	-	53	B29	I/O	ST	
RF12	-	40	A27	I/O	ST	
RF13	-	39	B22	I/O	ST	
RG0	-	90	A61	I/O	ST	PORTG is a bidirectional I/O port
RG1	-	89	B50	I/O	ST	
RG2	$37^{(1)}$	$57^{(1)}$	B31	1/O	ST	
RG3	$36^{(1)}$	$56^{(1)}$	A38	1/O	ST	
RG6	4	10	A7	I/O	ST	
RG7	5	11	B6	I/O	ST	
RG8	6	12	A8	I/O	ST	
RG9	8	14	A9	1/O	ST	
RG12	-	96	A65	1/O	ST	
RG13	-	97	B55	1/0	ST	
RG14	-	95	B54	1/O	ST	
RG15	-	1	A2	1/0	ST	
T1CK	48	74	B40	1	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	1	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	1	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	1	ST	Timer5 External Clock Input

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input
$\mathrm{O}=$ Output
$\mathrm{P}=$ Power
$\mathrm{I}=$ Input
TTL = TTL input buffer
Note 1: This pin is only available on devices without a USB module.
2: This pin is only available on devices with a USB module.
3: This pin is not available on 64-pin devices.

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	124-pin VTLA			
CVREF-	15	28	A21	I	Analog	Comparator Voltage Reference (Low)
CVREF+	16	29	B17	I	Analog	Comparator Voltage Reference (High)
CVREFOUT	23	34	A24	I	Analog	Comparator Voltage Reference (Output)
C1INA	11	20	A12	I	Analog	Comparator 1 Inputs
C1INB	12	21	B11	I	Analog	
C1INC	5	11	B6	I	Analog	
C1IND	4	10	A7	I	Analog	
C2INA	13	22	A13	1	Analog	Comparator 2 Inputs
C2INB	14	23	B13	I	Analog	
C2INC	8	14	A9	1	Analog	
C2IND	6	12	A8	I	Analog	
C10UT	PPS	PPS	PPS	0	-	Comparator 1 Output
C2OUT	PPS	PPS	PPS	0	-	Comparator 2 Output
PMALL	30	44	A29	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte
PMALH	29	43	B24	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte
PMA0	30	44	A29	O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	29	43	B24	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA2	8	14	A9	0	TTL/ST	Parallel Master Port data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)
PMA3	6	12	A8	0	TTL/ST	
PMA4	5	11	B6	0	TTL/ST	
PMA5	4	10	A7	0	TTL/ST	
PMA6	16	29	B17	0	TTL/ST	
PMA7	22	28	A21	0	TTL/ST	
PMA8	32	50	A32	0	TTL/ST	
PMA9	31	49	B27	0	TTL/ST	
PMA10	28	42	A28	0	TTL/ST	
PMA11	27	41	B23	0	TTL/ST	
PMA12	24	35	B20	0	TTL/ST	
PMA13	23	34	A24	0	TTL/ST	
PMA14	45	71	A46	0	TTL/ST	
PMA15	44	70	B38	0	TTL/ST	
PMCS1	45	71	A46	0	TTL/ST	
PMCS2	44	70	B38	0	TTL/ST	
PMD0	60	93	B52	I/O	TTL/ST	
PMD1	61	94	A64	I/O	TTL/ST	
PMD2	62	98	A66	I/O	TTL/ST	
Legend:	CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels				Analog = Analog input $P=$ Power $O=$ Output $I=$ Input	

Note 1: This pin is only available on devices without a USB module.
2: This pin is only available on devices with a USB module.
3: This pin is not available on 64-pin devices.

PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$			
PMD3	63	99	B56	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)
PMD4	64	100	A67	I/O	TTL/ST	
PMD5	1	3	B2	I/O	TTL/ST	
PMD6	2	4	A4	I/O	TTL/ST	
PMD7	3	5	B3	I/O	TTL/ST	
PMD8	-	90	A61	1/0	TTL/ST	
PMD9	-	89	B50	I/O	TTL/ST	
PMD10	-	88	A60	1/0	TTL/ST	
PMD11	-	87	B49	I/O	TTL/ST	
PMD12	-	79	B43	I/O	TTL/ST	
PMD13	-	80	A54	I/O	TTL/ST	
PMD14	-	83	B45	I/O	TTL/ST	
PMD15	-	84	A56	1/0	TTL/ST	
PMRD	53	82	A55	0	-	Parallel Master Port Read Strobe
PMWR	52	81	B44	0	-	Parallel Master Port Write Strobe
VBus ${ }^{(2)}$	34	54	A37	1	Analog	USB Bus Power Monitor
Vusb3V3 ${ }^{(2)}$	35	55	B30	P	-	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.
VBuson ${ }^{(2)}$	11	20	A12	0	-	USB Host and OTG bus power control Output
D+ ${ }^{(2)}$	37	57	B31	I/O	Analog	USB D+
D-(2)	36	56	A38	I/O	Analog	USB D-
USBID ${ }^{(2)}$	33	51	A35	1	ST	USB OTG ID Detect
PGED1	16	25	B14	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	15	24	A15	1	ST	Clock Input pin for Programming/Debugging Communication Channel 1
PGED2	18	27	B16	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2
PGEC2	17	26	A20	1	ST	Clock Input Pin for Programming/Debugging Communication Channel 2
PGED3	13	22	A13	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3
PGEC3	14	23	B13	1	ST	Clock Input Pin for Programming/Debugging Communication Channel 3
TRCLK	-	91	B51	0	-	Trace clock
TRD0	-	97	B55	0	-	Trace Data bit 0
TRD1	-	96	A65	0	-	Trace Data bit 1
TRD2	-	95	B54	0	-	Trace Data bit 2
TRD3	-	92	A62	0	-	Trace Data bit 3
CTED1	-	17	B9	1	ST	CTMU External Edge Input 1
CTED2	-	38	A26	1	ST	CTMU External Edge Input 2
CTED3	18	27	B16	1	ST	CTMU External Edge Input 3

[^0]
PIC32MX330/350/370/430/450/470

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin Type	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	124-pin VTLA			
CTED4	22	33	B19	1	ST	CTMU External Edge Input 4
CTED5	29	43	B24	I	ST	CTMU External Edge Input 5
CTED6	30	44	A29	1	ST	CTMU External Edge Input 6
CTED7	-	9	B5	1	ST	CTMU External Edge Input 7
CTED8	-	92	A62	I	ST	CTMU External Edge Input 8
CTED9	-	60	A40	I	ST	CTMU External Edge Input 9
CTED10	21	32	A23	I	ST	CTMU External Edge Input 10
CTED11	23	34	A24	1	ST	CTMU External Edge Input 11
CTED12	15	24	A15	I	ST	CTMU External Edge Input 12
CTED13	14	23	B13	1	ST	CTMU External Edge Input 13
$\overline{\text { MCLR }}$	7	13	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	A22	P	P	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	B18	P	P	Ground reference for analog modules
Vdd	$\begin{gathered} 10,26,38, \\ 57 \end{gathered}$	$\begin{aligned} & 2,16,37 \\ & 46,62,86 \end{aligned}$	$\begin{gathered} \text { B1, A10, A14, } \\ \text { B21, A30, } \\ \text { A41, A48, } \\ \text { A59, B53 } \end{gathered}$	P	-	Positive supply for peripheral logic and I/O pins
VCAP	56	85	B48	P	-	Capacitor for Internal Voltage Regulator
Vss	9, 25, 41	$\begin{gathered} 15,36,45, \\ 65,75 \end{gathered}$	A3, B8, B12, A25, B25, A43, B41, A63	P	-	Ground reference for logic and I/O pins
VREF+	16	29	B17	I	Analog	Analog Voltage Reference (High) Input
VREF-	15	28	A21	I	Analog	Analog Voltage Reference (Low) Input

Legend: $\mathrm{CMOS}=\mathrm{CMOS}$ compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer
Analog = Analog input
$\mathrm{P}=$ Power
$\mathrm{O}=$ Output
I = Input

Note 1: This pin is only available on devices without a USB module.
2: This pin is only available on devices with a USB module.
3: This pin is not available on 64-pin devices.

PIC32MX330/350/370/430/450/470

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VcAP)")
- $\overline{M C L R}$ pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP ${ }^{\text {TM }}$) and debugging purposes (see 2.5 "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")
The following pins may be required:
Vref+/Vref- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVss pins must be

 connected, regardless of ADC use and the ADC voltage reference source.
2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, Vss, AVDD and AVss is required. See Figure 2-1.
Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of $0.1 \mu \mathrm{~F}$ (100 nF), $10-20 \mathrm{~V}$ is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within onequarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz , add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

PIC32MX330/350/370/430/450/470

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

Note 1: If the USB module is not used, this pin must be connected to VDD.
2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 3Ω and the inductor capacity greater than 10 mA .

Where:

$$
\begin{aligned}
& f=\frac{F C N V}{2} \quad \text { (i.e., ADC conversion rate/2) } \\
& f=\frac{1}{(2 \pi \sqrt{L C})} \\
& L=\left(\frac{1}{(2 \pi f \sqrt{C})}\right)^{2}
\end{aligned}
$$

1: Aluminum or electrolytic capacitors should not be used. ESR $\leq 3 \Omega$ from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C} @$ SYSCLK frequency (i.e., MIPS).

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$. This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (Vcap)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6 V rating, connected to ground. The type can be ceramic or tantalum. Refer to Section 31.0 "Electrical Characteristics" for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The $\overline{M C L R}$ pin provides two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{\text { MCLR }}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{M C L R}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{M C L R}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.
For example, as illustrated in Figure 2-2, it is recommended that the capacitor C , be isolated from the $\overline{M C L R}$ pin during programming and debugging operations.
Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Note 1: $470 \Omega \leq R 1 \leq 1 k \Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of $\overline{M C L R}$ pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.
2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB ${ }^{\circledR}$ ICD 3 or MPLAB REAL ICE ${ }^{\text {TM }}$.
For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB ${ }^{\circledR}$ ICD 3" (poster) DS50001765
- "MPLAB ${ }^{\circledR}$ ICD 3 Design Advisory" DS50001764
- "MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ In-Circuit Debugger User's Guide" DS50001616
- "Using MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ Emulator" (poster) DS50001749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (V IH) and input low (VIL) requirements.

2.7 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 8.0 "Oscillator Configuration" for details).
The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- $\mathrm{CIN}=$ PIC32_OSC2_Pin Capacitance $=\sim 4-5 \mathrm{pF}$
- Cout $=$ PIC32_OSC1_Pin Capacitance $=\sim 4-5 \mathrm{pF}$
- C 1 and $\mathrm{C} 2=\mathrm{XTAL}$ manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e., 12 mm length) $=2.5 \mathrm{pF}$

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

Crystal manufacturer recommended: $C 1=C 2=15 p F$ Therefore:

CLOAD $=\{([$ CIN + C1 $] *[$ Cout + C2 $]) /[$ CIN $+\mathrm{C} 1+\mathrm{C} 2+$ Cout $]\}$

+ estimated oscillator PCB stray capacitance
$=\{([5+15][5+15]) /[5+15+15+5]\}+2.5 p F$
$=\{([20][20]) /[40]\}+2.5$

$$
=10+2.5=12.5 p F
$$

Rounded to the nearest standard value or 13 pF in this example for Primary Oscillator crystals "C1" and "C2".

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600 k to 1 M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.

Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to \sim VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with $\leq 1.5 \mathrm{pF}$ or the scope probe itself will unduly change the gain and peak-to-peak levels

2.8.1.1 Additional Microchip References

- AN588 "PICmicro ${ }^{\circledR}$ Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC ${ }^{\text {TM }}$ and PICmicro ${ }^{\circledR}$ Devices"
- AN849 "Basic PICmicro ${ }^{\circledR}$ Oscillator Design"

FIGURE 2-4:
PRIMARY CRYSTAL OSCILLATOR CIRCUIT RECOMMENDATIONS

2.9 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.
Alternatively, inputs can be reserved by connecting the pin to Vss through a 1 k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

PIC32MX330/350/370/430/450/470

2.11 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-6, Figure 2-7, and Figure 2-8.

FIGURE 2-6: CAPACITIVE TOUCH SENSING WITH GRAPHICS APPLICATION

FIGURE 2-7: AUDIO PLAYBACK APPLICATION

FIGURE 2-8: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

PIC32MX330/350/370/430/450/470

2.12 Considerations when Interfacing to Remotely Powered Circuits

2.12.1 NON-5V TOLERANT INPUT PINS

A quick review of the section "Absolute Maximum Rating" in Electrical Characteristics chapter indicates that the voltage on any non-5V tolerant pin may not exceed $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$. The exception is, if the input current
is limited to meet the respective injection current specifications defined by the parameters, such as DI60a, DI60b, and DI60c, as provided in Table 37-10.
Figure 2-9 shows an example of a remote circuit using an independent power source which is powered while connected to a PIC32 non-5V tolerant circuit that is not powered.

FIGURE 2-9: PIC32 NON-5V TOLERANT CIRCUIT EXAMPLE

Without proper signal isolation on non-5V tolerant pins, the remote signal can power the PIC32 device through the high side ESD protection diodes. Besides violating the absolute maximum rating specification, when VDD of the PIC32 device is restored and ramping up or ramping down, it can also negatively affect the internal Power-on Reset (POR) and Brown-out Reset (BOR) circuits, which can lead to improper initialization of internal PIC32 logic circuits. In these cases, it is recommended to implement digital or analog signal isolation as shown in Figure 2-10. This is indicative of all industry microcontrollers and not only Microchip products.

FIGURE 2-10: EXAMPLE DIGITAL/ANALOG SIGNAL ISOLATION CIRCUITS

TABLE 2-1: EXAMPLES OF DIGITAL ISOLATORS WITH OPTIONAL LEVEL TRANSLATION

Example Digital/Analog Signal Isolation Circuits	Inductive Coupling	Capacitive Coupling	Opto Coupling	Analog/Digital Coupling
ADuM7241/40 ARZ (1Mbps)	X	-	-	-
ADuM7241/40 ARZ (25 Mbps)	x	-	-	-
ISO721	-	x	-	-
LTV-829S (2 Chan)	-	-	X	-
LTV-849S (4 Chan)	-	-	-	-
FSA266/NC7WB66	-	-	-	X

PIC32MX330/350/370/430/450/470

2.12.2 5V TOLERANT INPUT PINS

The internal high-side diode on 5 v tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-11. Voltages on these pins, if VDD $<2.3 \mathrm{~V}$, should not exceed roughly 3.2 V relative to VSS of the PIC32 device.

Voltage of 3.6 V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability.

If a remotely powered "digital-only" signal can be guaranteed to always be $\leq 3.2 \mathrm{~V}$ relative to Vss on the PIC32 device side, a 5 V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than VSS -0.3 V .

FIGURE 2-11: PIC32 5V TOLERANT PIN ARCHITECTURE EXAMPLE

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS60001113), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ Processor Core are available at http://www.imgtec.com.

The the MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ Processor Core is the heart of the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32 ${ }^{\circledR}$ Enhanced Architecture (Release 2):
- Multiply-accumulate and multiply-subtract instructions
- Targeted multiply instruction
- Zero/One detect instructions
- WAIT instruction
- Conditional move instructions (MOVN, MOVZ)
- Vectored interrupts
- Programmable exception vector base
- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency for interrupt handlers
- Bit field manipulation instructions
- MIPS16e ${ }^{\circledR}$ Code Compression:
- 16-bit encoding of 32-bit instructions to improve code density
- Special PC-relative instructions for efficient loading of addresses and constants
- SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
- Improved support for handling 8 and 16 -bit data types
- Simple Fixed Mapping Translation (FMT) Mechanism:
- Simple Dual Bus Interface:
- Independent 32-bit address and data buses
- Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit (MDU):
- Maximum issue rate of one 32×16 multiply per clock
- Maximum issue rate of one 32×32 multiply every other clock
- Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension-dependent)
- Power Control:
- Minimum frequency: 0 MHz
- Low-Power mode (triggered by WAIT instruction)
- Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
- Support for single stepping
- Virtual instruction and data address/value
- Breakpoints

FIGURE 3-1: MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ PROCESSOR CORE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

3.2 Architecture Overview

The MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e ${ }^{\circledR}$ Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS $32{ }^{\circledR}$ M $4{ }^{\circledR}$ processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.
The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.
The high-performance MDU consists of a 32×16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (' 32 ' of 32×16) represents the rs operand. The second number ('16' of 32×16) represents the $r t$ operand. The PIC32 core only checks the value of the latter (rt) operand to determine how many times the operation must pass through the multiplier. The 16×16 and 32×16 operations pass through the multiplier once. A 32×32 operation passes through the multiplier twice.
The MDU supports execution of one 16×16 or 32×16 multiply operation every clock cycle; 32×32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32×32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.
Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If $r s$ is 8 bits wide, 23 iterations are skipped. For a 16-bit wide $r s, 15$ iterations are skipped and for a 24 -bit wide $r s, 7$ iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.
Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1: MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/ DIVIDE UNIT LATENCIES AND REPEAT RATES

Op code	Operand Size (mul r) ($\operatorname{div} r s$)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU, MSUB/MSUBU	16 bits	1	1
	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

PIC32MX330/350/370/430/450/470

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 ${ }^{\circledR}$ architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.
Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CPO)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e ${ }^{\circledR}$, is also available by accessing the CPO registers, listed in Table 3-2.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ${ }^{(1)}$	Reports the address for the most recent address-related exception.
9	Count ${ }^{(1)}$	Processor cycle count.
10	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
11	Compare ${ }^{(1)}$	Timer interrupt control.
12	Status ${ }^{(1)}$	Processor status and control.
12	IntCt\| ${ }^{(1)}$	Interrupt system status and control.
12	SRSCtI ${ }^{(1)}$	Shadow register set status and control.
12	SRSMap ${ }^{(1)}$	Provides mapping from vectored interrupt to a shadow set.
13	Cause ${ }^{(1)}$	Cause of last general exception.
14	EPC ${ }^{(1)}$	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration register 1.
16	Config2	Configuration register 2.
16	Config3	Configuration register 3.
17-22	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
23	Debug ${ }^{(2)}$	Debug control and exception status.
24	DEPC ${ }^{(2)}$	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
30	ErrorEPC ${ }^{(1)}$	Program counter at last error.
31	DESAVE ${ }^{(2)}$	Debug handler scratchpad register.

Note 1: Registers used in exception processing.
2: Registers used during debug.

PIC32MX330/350/370/430/450/470

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

TABLE 3-3: MIPS32 ${ }^{\circledR}$ M4K ${ }^{\circledR}$ PROCESSOR CORE EXCEPTION TYPES

Exception	
Reset	Assertion $\overline{\text { MCLR }}$ or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Bp	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

3.3 Power Management

The MIPS ${ }^{\circledR}$ M $4 \mathrm{~K}^{\circledR}$ processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX330/350/370/430/450/470 family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS ${ }^{\circledR}$ M4K ${ }^{\circledR}$ processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the $\mathrm{M} 4 \mathrm{~K}^{\circledR}$ core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.
The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to Section 3. "Memory Organization" (DS60001115), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX330/350/370/430/450/470 devices to execute from data memory.
Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1) mode address space
- Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

4.1 Memory Layout

PIC32MX330/350/370/430/450/470 microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX330/350/370/430/ 450/470 devices are illustrated in Figure 4-1 through Figure 4-4.

PIC32MX330/350/370/430/450/470

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY

FIGURE 4-2: MEMORY MAP FOR DEVICES WITH 128 KB OF PROGRAM MEMORY

PIC32MX330/350/370/430/450/470

FIGURE 4-3: MEMORY MAP FOR DEVICES WITH 256 KB OF PROGRAM MEMORY

FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY

PIC32MX330/350/370/430/450/470

TABLE 4-1: SFR MEMORY MAP

Peripheral	Virtual Address	
	Base	Offset Start
Watchdog Timer	0xBF80	0x0000
RTCC		0x0200
Timer1-5		0x0600
Input Capture 1-5		0x2000
Output Compare 1-5		0x3000
I2C1 and I2C2		0x5000
SPI1 and SPI2		0x5800
UART1 and UART2		0x6000
PMP		0x7000
ADC		0x9000
CVREF		0x9800
Comparator		0xA000
CTMU		0xA200
Oscillator		0xF000
Device and Revision ID		0xF200
Flash Controller		0xF400
Reset		0xF600
PPS		0xFA04
Interrupts	0xBF88	0x1000
Bus Matrix		0x2000
DMA		0x3000
Prefetch		0x4000
USB		0x5040
PORTA-PORTG		0x6000
Configuration	0xBFC0	0x2FF0

4.2 Bus Matrix Registers
TABLE 4-2: BUS MATRIX REGISTER MAP

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
2000	BMXCON ${ }^{(1)}$	31:16	-	-	-	-	-	BMXCHEDMA	-	-	-	-	-	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	041F
		15:0	-	-	-	-	-	-	-	-	-	BMXWSDRM	-	-	-		MXARB<2:0>		0047
2010	BMXDKPBA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	BMXDKPBA<15:0>																0000
2020	BMXDUDBA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	BMXDUDBA<15:0>																0000
2030	BMXDUPBA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	BMXDUPBA<15:0>																0000
2040	BMXDRMSZ	31:16	BMXDRMSZ<31:0>																xxxx
		15:0																	xxxx
2050	BMXPUPBA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	BMXPUPBA<19:16>				0000
		15:0	BMXPUPBA<15:0>																0000
2060	BMXPFMSZ	31:16	BMXPFMSZ<31:0>																xxx
		15:0																	xxxx
2070	BMXBOOTSZ	31:16	BMXBOOTSZ<31:0>																0000
		15:0																	0000

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-0
	-	-	-	-	-	BMX CHEDMA	-	-
23:16	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	-	-	-	$\begin{gathered} \text { BMX } \\ \text { ERRIXI } \end{gathered}$	$\begin{gathered} \text { BMX } \\ \text { ERRICD } \end{gathered}$	BMX ERRDMA	$\begin{gathered} \text { BMX } \\ \text { ERRDS } \end{gathered}$	BMX ERRIS
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
	-	BMX WSDRM	-	-	-	BMXARB<2:0>		

Legend:

R = Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ = Bit is cleared

bit 31-27 Unimplemented: Read as ' 0 '
bit 26 BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit
1 = Enable program Flash memory (data) cacheability for DMA accesses (requires cache to have data caching enabled)
0 = Disable program Flash memory (data) cacheability for DMA accesses
(hits are still read from the cache, but misses do not update the cache)
bit 25-21 Unimplemented: Read as ' 0 '
bit 20 BMXERRIXI: Enable Bus Error from IXI bit
1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus
0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19 BMXERRICD: Enable Bus Error from ICD Debug Unit bit
1 = Enable bus error exceptions for unmapped address accesses initiated from ICD
$0=$ Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18 BMXERRDMA: Bus Error from DMA bit
1 = Enable bus error exceptions for unmapped address accesses initiated from DMA
0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17 BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access
$0=$ Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16 BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access
0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7 Unimplemented: Read as ' 0 '
bit 6 BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
1 = Data RAM accesses from CPU have one wait state for address setup
$0=$ Data RAM accesses from CPU have zero wait states for address setup
bit 5-3 Unimplemented: Read as ' 0 '
bit 2-0 BMXARB<2:0>: Bus Matrix Arbitration Mode bits
111 = Reserved (using these configuration modes will produce undefined behavior)
-
.
011 = Reserved (using these configuration modes will produce undefined behavior)
010 = Arbitration Mode 2
001 = Arbitration Mode 1 (default)
000 = Arbitration Mode 0

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
	BMXDKPBA<15:8>							
7:0	R-0							
	BMXDKPBA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-10 BMXDKPBA<15:10>: DRM Kernel Program Base Address bits
When non-zero, this value selects the relative base address for kernel program space in RAM
bit 9-0 BMXDKPBA<9:0>: Read-Only bits
Value is always ' 0 ', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.
2: The value in this register must be less than or equal to BMXDRMSZ.

PIC32MX330/350/370/430/450/470

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
	BMXDUDBA<15:8>							
7:0	R-0							
	BMXDUDBA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits
When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.
bit 9-0 BMXDUDBA<9:0>: Read-Only bits
Value is always ' 0 ', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.
2: The value in this register must be less than or equal to BMXDRMSZ.

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
	BMXDUPBA<15:8>							
7:0	R-0							
	BMXDUPBA<7:0>							

Legend:

$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits
When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.
bit 9-0 BMXDUPBA<9:0>: Read-Only bits
Value is always ' 0 ', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.
2: The value in this register must be less than or equal to BMXDRMSZ.

PIC32MX330/350/370/430/450/470

REGISTER 4-5: BMXDRMSZ: DATA RAM SIZE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R	R	R	R	R	R	R	R
	BMXDRMSZ<31:24>							
23:16	R	R	R	R	R	R	R	R
	BMXDRMSZ<23:16>							
15:8	R	R	R	R	R	R	R	R
	BMXDRMSZ<15:8>							
7:0	R	R	R	R	R	R	R	R
	BMXDRMSZ<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' = Bit is cleared

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits
Static value that indicates the size of the Data RAM in bytes:
$0 \times 00004000=$ Device has 16 KB RAM
$0 \times 00008000=$ Device has 32 KB RAM
$0 \times 00010000=$ Device has 64 KB RAM
$0 \times 00020000=$ Device has 128 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ 30 / 22 / 14 / 6 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	BMXPUPBA<19:16>			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
	BMXPUPBA<15:8>							
7:0	R-0							
	BMXPUPBA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-20 Unimplemented: Read as ' 0 '
bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits
bit 10-0 BMXPUPBA<10:0>: Read-Only bits
Value is always ' 0 ', which forces 2 KB increments

[^1]
REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R	R	R	R	R	R	R	R
	BMXPFMSZ<31:24>							
23:16	R	R	R	R	R	R	R	R
	BMXPFMSZ<23:16>							
15:8	R	R	R	R	R	R	R	R
	BMXPFMSZ<15:8>							
7:0	R	R	R	R	R	R	R	R
	BMXPFMSZ<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits
Static value that indicates the size of the PFM in bytes:
$0 x 00010000=$ Device has 64 KB Flash
$0 \times 00020000=$ Device has 128 KB Flash
$0 \times 00040000=$ Device has 256 KB Flash $0 \times 00080000=$ Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	$\begin{gathered} \hline \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{array}{\|c} \hline \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R	R	R	R	R	R	R	R
	BMXBOOTSZ<31:24>							
23:16	R	R	R	R	R	R	R	R
	BMXBOOTSZ<23:16>							
15:8	R	R	R	R	R	R	R	R
	BMXBOOTSZ<15:8>							
7:0	R	R	R	R	R	R	R	R
	BMXBOOTSZ<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ = Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-0 BMXBOOTSZ<31:0>: Boot Flash Memory (BFM) Size bits
Static value that indicates the size of the Boot PFM in bytes:
$0 \times 00003000=$ Device has 12 KB Boot Flash

PIC32MX330/350/370/430/450/470

NOTES:

PIC32MX330/350/370/430/450/470

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/
470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121), which is available from the Documentation $>$ Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual".
EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.
ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.
The EJTAG and ICSP methods are described in the "PIC32 Flash Programming Specification" (DS60001145), which can be downloaded from the Microchip web site.
Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

PIC32MX330/350/370/430/450/470
5.1 Control Registers

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{array}{\|c\|} \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0
	WR	WREN	WRERR ${ }^{(1)}$	LVDERR ${ }^{(1)}$	LVDSTAT $^{(1)}$	-	-	-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	NVMOP<3:0>			

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	0 ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 WR: Write Control bit
This bit is writable when WREN = 1 and the unlock sequence is followed.
1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
0 = Flash operation complete or inactive
bit 14 WREN: Write Enable bit
1 = Enable writes to WR bit and enables LVD circuit
0 = Disable writes to WR bit and disables LVD circuit
This is the only bit in this register reset by a device Reset.
bit 13 WRERR: Write Error bit ${ }^{(1)}$
This bit is read-only and is automatically set by hardware.
1 = Program or erase sequence did not complete successfully
0 = Program or erase sequence completed normally
bit 12 LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ${ }^{(1)}$
This bit is read-only and is automatically set by hardware.
1 = Low-voltage detected (possible data corruption, if WRERR is set)
$0=$ Voltage level is acceptable for programming
bit 11 LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ${ }^{(1)}$
This bit is read-only and is automatically set, and cleared, by hardware.
1 = Low-voltage event active
0 = Low-voltage event NOT active
bit 10-4 Unimplemented: Read as ' 0 '
bit 3-0 NVMOP<3:0>: NVM Operation bits
These bits are writable when WREN $=0$.
1111 = Reserved
-
.
0111 = Reserved
0110 = No operation
0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
$0010=$ No operation
0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected $0000=$ No operation

Note 1: This bit is cleared by setting NVMOP $=0000$, and initiating a Flash operation (i.e., WR).

PIC32MX330/350/370/430/450/470

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	W-0							
	NVMKEY<31:24>							
23:16	W-0							
	NVMKEY<23:16>							
15:8	W-0							
	NVMKEY<15:8>							
7:0	W-0							
	NVMKEY<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ = Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 31-0 NVMKEY<31:0>: Unlock Register bits
These bits are write-only, and read as ' 0 ' on any read
Note: \quad This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\text { 29/21/13/5 }}$	$\begin{array}{\|c\|} \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	NVMADDR<31:24>							
23:16	R/W-0							
	NVMADDR<23:16>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0	R/W-0	R/W-0
	NVMADDR<15:8>							
7:0	R/W-0							
	NVMADDR<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ = Bit is cleared

bit 31-0 NVMADDR<31:0>: Flash Address bits
Bulk/Chip/PFM Erase: Address is ignored
Page Erase: Address identifies the page to erase
Row Program: Address identifies the row to program
Word Program: Address identifies the word to program

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{array}{\|c\|} \text { Bit } \\ 27 / 19 / 11 / 3 \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-0							
	NVMDATA<31:24>							
23:16	R/W-0							
	NVMDATA<23:16>							
15:8	R/W-0							
	NVMDATA<15:8>							
7:0	R/W-0							
	NVMDATA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits
Note: \quad The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	NVMSRCADDR<31:24>							
23:16	R/W-0							
	NVMSRCADDR<23:16>							
15:8	R/W-0							
	NVMSRCADDR<15:8>							
7:0	R/W-0							
	NVMSRCADDR<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits
The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits ($\mathrm{NVMCON}<3: 0>$) are set to perform row programming.

PIC32MX330/350/370/430/450/470

NOTES:

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- $\overline{\mathrm{MCLR}}$: Master Clear Reset pin
- SWR: Software Reset
- WDTR: Watchdog Timer Reset
- BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470
6.1 Reset Control Registers

			Bits																$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\sim}{<} \end{aligned}$
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
F600	RCON	31:16	-	-	HVDR	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	CMR	VREGS	EXTR	SWR	-	WDTO	SLEEP	IDLE	BOR	POR	$x x x x^{(2)}$
F610	RSWRST	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SWRST	0000

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	-	-	HVDR	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
	-	-	-	-	-	-	CMR	VREGS
7:0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
	EXTR	SWR	-	WDTO	SLEEP	IDLE	$\mathrm{BOR}^{(1)}$	POR ${ }^{(1)}$

Legend:	HS = Set by hardware	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-30 Unimplemented: Read as ' 0 '
bit 29 HVDR: High Voltage Detect Reset Flag bit
1 = High Voltage Detect (HVD) Reset has occurred
$0=$ HVD Reset has not occurred
bit 28-10 Unimplemented: Read as ' 0 '
bit 9 CMR: Configuration Mismatch Reset Flag bit
1 = Configuration mismatch Reset has occurred
0 = Configuration mismatch Reset has not occurred
bit 8 VREGS: Voltage Regulator Standby Enable bit 1 = Regulator is enabled and is on during Sleep mode $0=$ Regulator is set to Stand-by Tracking mode
bit 7 EXTR: External Reset ($\overline{M C L R}$) Pin Flag bit
1 = Master Clear (pin) Reset has occurred
$0=$ Master Clear (pin) Reset has not occurred
bit 6 SWR: Software Reset Flag bit
1 = Software Reset was executed
0 = Software Reset as not executed
bit 5 Unimplemented: Read as ' 0 '
bit 4 WDTO: Watchdog Timer Time-out Flag bit
1 = WDT Time-out has occurred
$0=$ WDT Time-out has not occurred
bit 3 SLEEP: Wake From Sleep Flag bit
1 = Device was in Sleep mode
$0=$ Device was not in Sleep mode
bit 2 IDLE: Wake From Idle Flag bit
1 = Device was in Idle mode
$0=$ Device was not in Idle mode
bit $1 \quad$ BOR: Brown-out Reset Flag bit ${ }^{(1)}$
1 = Brown-out Reset has occurred
$0=$ Brown-out Reset has not occurred
bit $0 \quad$ POR: Power-on Reset Flag bit ${ }^{(1)}$
1 = Power-on Reset has occurred
$0=$ Power-on Reset has not occurred

Note 1: User software must clear this bit to view next detection.

PIC32MX330/350/370/430/450/470

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	W-0, HC						
	-	-	-	-	-	-	-	SWRST ${ }^{(1)}$

Legend:	$H C=$ Cleared by hardware	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$\prime 0$ ' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'
bit $0 \quad$ SWRST: Software Reset Trigger bit ${ }^{(1)}$
1 = Enable software Reset event
$0=$ No effect

Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX330/350/370/430/450/470 interrupt module includes the following features:

- Up to 76 interrupt sources
- Up to 46 interrupt vectors
- Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information)
- Software can generate any interrupt
- User-configurable interrupt vector table location
- User-configurable interrupt vector spacing

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Interrupt Source ${ }^{(1)}$	IRQ \#	Vector \#	Interrupt Bit Location				Persistent Interrupt
			Flag	Enable	Priority	Sub-priority	
Highest Natural Order Priority							
CT - Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 - Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 - Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 - External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 - Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E - Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 - Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 - Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 - External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 - Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E - Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 - Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 - Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 - External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 - Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E - Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 - Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 - Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 - External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 - Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E - Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 - Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 - Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 - External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 - Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E - Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 - Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 - Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 - ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM - Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC - Real-Time Clock and Calendar	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
FCE - Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 - Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 - Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
USB - USB Interrupts	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	Yes
SPI1E - SPI1 Fault	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1RX - SPI1 Receive Done	36	30	IFS1<4>	IEC1<4>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1TX - SPI1 Transfer Done	37	30	IFS1<5>	IEC1<5>	IPC7<20:18>	IPC7<17:16>	Yes
U1E - UART1 Fault	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes
U1RX - UART1 Receive Done	39	31	IFS1<7>	IEC1<7>	IPC7<28:26>	IPC7<25:24>	Yes
U1TX - UART1 Transfer Done	40	31	IFS1<8>	IEC1<8>	IPC7<28:26>	IPC7<25:24>	Yes
I2C1B - I2C1 Bus Collision Event	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1S - I2C1 Slave Event	42	32	IFS1<10>	IEC1<10>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1M - I2C1 Master Event	43	32	IFS1<11>	IEC1<11>	IPC8<4:2>	IPC8<1:0>	Yes
CNA - PORTA Input Change Interrupt	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

PIC32MX330/350/370/430/450/470

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Interrupt Source ${ }^{(1)}$	IRQ \#	Vector \#	Interrupt Bit Location				Persistent Interrupt
			Flag	Enable	Priority	Sub-priority	
CNB - PORTB Input Change Interrupt	45	33	IFS1<13>	IEC1<13>	IPC8<12:10>	IPC8<9:8>	Yes
CNC - PORTC Input Change Interrupt	46	33	IFS1<14>	IEC1<14>	IPC8<12:10>	IPC8<9:8>	Yes
CND - PORTD Input Change Interrupt	47	33	IFS1<15>	IEC1<15>	IPC8<12:10>	IPC8<9:8>	Yes
CNE - PORTE Input Change Interrupt	48	33	IFS1<16>	IEC1<16>	IPC8<12:10>	IPC8<9:8>	Yes
CNF - PORTF Input Change Interrupt	49	33	IFS1<17>	IEC1<17>	IPC8<12:10>	IPC8<9:8>	Yes
CNG - PORTG Input Change Interrupt	50	33	IFS1<18>	IEC1<18>	IPC8<12:10>	IPC8<9:8>	Yes
PMP - Parallel Master Port	51	34	IFS1<19>	IEC1<19>	IPC8<20:18>	IPC8<17:16>	Yes
PMPE - Parallel Master Port Error	52	34	IFS1<20>	IEC1<20>	IPC8<20:18>	IPC8<17:16>	Yes
SPI2E - SPI2 Fault	53	35	IFS1<21>	IEC1<21>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2RX - SPI2 Receive Done	54	35	IFS1<22>	IEC1<22>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2TX - SPI2 Transfer Done	55	35	IFS1<23>	IEC1<23>	IPC8<28:26>	IPC8<25:24>	Yes
U2E - UART2 Error	56	36	IFS1<24>	IEC1<24>	IPC9<4:2>	IPC9<1:0>	Yes
U2RX - UART2 Receiver	57	36	IFS1<25>	IEC1<25>	IPC9<4:2>	IPC9<1:0>	Yes
U2TX - UART2 Transmitter	58	36	IFS1<26>	IEC1<26>	IPC9<4:2>	IPC9<1:0>	Yes
I2C2B - I2C2 Bus Collision Event	59	37	IFS1<27>	IEC1<27>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2S - I2C2 Slave Event	60	37	IFS1<28>	IEC1<28>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2M - I2C2 Master Event	61	37	IFS1<29>	IEC1<29>	IPC9<12:10>	IPC9<9:8>	Yes
U3E - UART3 Error	62	38	IFS1<30>	IEC1<30>	IPC9<20:18>	IPC9<17:16>	Yes
U3RX - UART3 Receiver	63	38	IFS1<31>	IEC1<31>	IPC9<20:18>	IPC9<17:16>	Yes
U3TX - UART3 Transmitter	64	38	IFS2<0>	IEC2<0>	IPC9<20:18>	IPC9<17:16>	Yes
U4E - UART4 Error	65	39	IFS2<1>	IEC2<1>	IPC9<28:26>	IPC9<25:24>	Yes
U4RX - UART4 Receiver	66	39	IFS2<2>	IEC2<2>	IPC9<28:26>	IPC9<25:24>	Yes
U4TX - UART4 Transmitter	67	39	IFS2<3>	IEC2<3>	IPC9<28:26>	IPC9<25:24>	Yes
U5E - UART5 Error	68	40	IFS2<4>	IEC2<4>	IPC10<4:2>	IPC10<1:0>	Yes
U5RX - UART5 Receiver	69	40	IFS2<5>	IEC2<5>	IPC10<4:2>	IPC10<1:0>	Yes
U5TX - UART5 Transmitter	70	40	IFS2<6>	IEC2<6>	IPC10<4:2>	IPC10<1:0>	Yes
CTMU - CTMU Event	71	41	IFS2<7>	IEC2<7>	IPC10<12:10>	IPC10<9:8>	Yes
DMA0 - DMA Channel 0	72	42	IFS2<8>	IEC2<8>	IPC10<20:18>	IPC10<17:16>	No
DMA1 - DMA Channel 1	73	43	IFS2<9>	IEC2<9>	IPC10<28:26>	IPC10<25:24>	No
DMA2 - DMA Channel 2	74	44	IFS2<10>	IEC2<10>	IPC11<4:2>	IPC11<1:0>	No
DMA3 - DMA Channel 3	75	45	IFS2<11>	IEC2<11>	IPC11<12:10>	IPC11<9:8>	No
Lowest Natural Order Priority							

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX330/350/370/430/450/470 Controller Family Features" for the list of available peripherals.

PIC32MX330/350/370/430/450/470

7.1 Interrupts Control Registers
TABLE 7-2: INTERRUPT REGISTER MAP

[^2]TABLE 7-2: INTERRUPT REGISTER MAP (CONTINUED)

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

$\begin{array}{lll}\text { Note } & \text { 1: This bit is only available on 100-pin devices. } \\ & \text { 2: } & \text { This bit is only implemented on devices with a USB module. }\end{array}$

PIC32MX330/350/370/430/450/470

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0	R/W-0						
	-	-	-	-	-	-	-	SS0
15:8	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	-	-	-	MVEC	-	TPC<2:0>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-17 Unimplemented: Read as ' 0 '
bit 16 SSO: Single Vector Shadow Register Set bit
$1=$ Single vector is presented with a shadow register set
$0=$ Single vector is not presented with a shadow register set
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 MVEC: Multi Vector Configuration bit
1 = Interrupt controller configured for multi vectored mode
$0=$ Interrupt controller configured for single vectored mode
bit 11 Unimplemented: Read as ' 0 '
bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
$111=$ Interrupts of group priority 7 or lower start the Interrupt Proximity timer
$110=$ Interrupts of group priority 6 or lower start the Interrupt Proximity timer
101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
$100=$ Interrupts of group priority 4 or lower start the Interrupt Proximity timer
$011=$ Interrupts of group priority 3 or lower start the Interrupt Proximity timer
010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
$001=$ Interrupts of group priority 1 start the Interrupt Proximity timer
000 = Disables Interrupt Proximity timer
bit 7-5 Unimplemented: Read as ' 0 '
bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
1 = Rising edge
$0=$ Falling edge
bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
$1=$ Rising edge
0 = Falling edge
bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	-	SRIPL<2:0>(1)		
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	VEC<5:0> ${ }^{(1)}$					

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ '

bit 31-11 Unimplemented: Read as ' 0 '
bit 10-8 SRIPL<2:0>: Requested Priority Level bits ${ }^{(1)}$
111-000 = The priority level of the latest interrupt presented to the CPU
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 VEC<5:0>: Interrupt Vector bits ${ }^{(1)}$
11111-00000 = The interrupt vector that is presented to the CPU

Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\underset{\text { Bit }}{\substack{\text { 27/19/11/3 }}}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{25 / 17 / 9 / 1}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-0							
	IPTMR<31:24>							
23:16	R/W-0							
	IPTMR<23:16>							
15:8	R/W-0							
	IPTMR<15:8>							
7:0	R/W-0							
	IPTMR<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplement	ad as '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$\mathrm{x}=\mathrm{Bit}$

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits
Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

PIC32MX330/350/370/430/450/470

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
23:16	R/W-0							
	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0							
	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0	R/W-0
	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits
1 = Interrupt request has occurred
$0=$ No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{array}{\|c} \hline \text { Bit } \\ 30 / 22 / 14 / 6 \end{array}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0							
	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0							
	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7:0	R/W-0							
	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IECO

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits
1 = Interrupt is enabled
$0=$ Interrupt is disabled
Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	IP3<2:0>			IS3<1:0>	
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	IP2<2:0>			IS2<1:0>	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	IP1<2:0>			IS1<1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	IP0<2:0>			IS0<1:0>	

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ = Bit is cleared

bit 31-29 Unimplemented: Read as ' 0 '
bit 28-26 IP3<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
.
-
$010=$ Interrupt priority is 2
001 = Interrupt priority is 1
$000=$ Interrupt is disabled
bit 25-24 IS3<1:0>: Interrupt Subpriority bits
$11=$ Interrupt subpriority is 3
$10=$ Interrupt subpriority is 2
$01=$ Interrupt subpriority is 1
$00=$ Interrupt subpriority is 0
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-18 IP2<2:0>: Interrupt Priority bits
$111=$ Interrupt priority is 7
-
-
$010=$ Interrupt priority is 2
001 = Interrupt priority is 1
$000=$ Interrupt is disabled
bit 17-16 IS2<1:0>: Interrupt Subpriority bits
$11=$ Interrupt subpriority is 3
$10=$ Interrupt subpriority is 2
$01=$ Interrupt subpriority is 1
$00=$ Interrupt subpriority is 0
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-10 IP1<2:0>: Interrupt Priority bits
$111=$ Interrupt priority is 7
-
.
$010=$ Interrupt priority is 2
001 = Interrupt priority is 1
$000=$ Interrupt is disabled

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit

 definitions.
PIC32MX330/350/370/430/450/470

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

bit 9-8 IS1<1:0>: Interrupt Subpriority bits
$11=$ Interrupt subpriority is 3
$10=$ Interrupt subpriority is 2
$01=$ Interrupt subpriority is 1
$00=$ Interrupt subpriority is 0
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-2 IP0<2:0>: Interrupt Priority bits $111=$ Interrupt priority is 7
.
-
$010=$ Interrupt priority is 2
$001=$ Interrupt priority is 1
$000=$ Interrupt is disabled
bit 1-0 IS0<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
$10=$ Interrupt subpriority is 2
$01=$ Interrupt subpriority is 1
$00=$ Interrupt subpriority is 0
Note: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

PIC32MX330/350/370/430/450/470

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. "Oscillator Configuration" (DS60001112), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 oscillator system has the following modules and features:

- A Total of four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

PIC32MX330/350/370/430/450/470

FIGURE 8-1: PIC32MX330/350/370/430/450/470 FAMILY CLOCK DIAGRAM

Notes: 1. A series resistor, Rs, may be required for AT strip cut crystals or eliminate clipping. Alternately, to increase oscillator circuit gain, add a parallel resistor, Rp , with a value of $1 \mathrm{M} \Omega$.
2. The internal feedback resistor, RF, is typically in the range of $2 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$.
3. Refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual" for help in determining the best oscillator components.
4. PBCLK out is available on the OSC2 pin in certain clock modes.
5. USB PLL is available on PIC32MX4XX devices only.
8.1 Oscillator Control Registers

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
F000	OSCCON	31:16	-	-	PLLODIV<2:0>			FRCDIV<2:0>			-	SOSCRDY	PBDIVRDY	PBDIV 100 >		PLLMULT<2:0>			$x 1 \times x^{(2)}$
		15:0	-	COSC<2:0>			-	NOSC<2:0>			CLKLOCK	ULOCK ${ }^{(4)}$	SLOCK	SLPEN	CF	UFRCEN ${ }^{(4)}$	SOSCEN	OSWEN	$x \times x x^{(2)}$
F010	OSCTUN	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	TUN<5:0>						0000
F020	REFOCON	31:16	-	RODIV <14:0>															0000
		15:0	ON	-	SIDL	OE	RSLP	-	DIVSWEN	ACTIVE	-	-	-	-		ROSE	<3:0>		0000
	REFOTRIM	31:16	ROTRIM<8:0>									-	-	-	-	-	-	-	0000
F030		15:0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.
3: This bit is only available on devices with a USB module.

PIC32MX330/350/370/430/450/470

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ 30 / 22 / 14 / 6 \end{array}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1
	-	-	PLLODIV<2:0>			FRCDIV<2:0>		
23:16	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y
	-	SOSCRDY	PBDIVRDY	PBDIV<1:0>		PLLMULT<2:0>		
15:8	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
	-	COSC<2:0>			-	NOSC<2:0>		
7:0	R/W-0	R-0	R-0	R/W-0	RW-0	R/W-0	R/W-y	R/W-0
	CLKLOCK	ULOCK ${ }^{(1)}$	SLOCK	SLPEN	CF	UFRCEN ${ }^{(1)}$	SOSCEN	OSWEN

Legend:	$y=$ Value set from Configuration bits on POR	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-30 Unimplemented: Read as ' 0 '
bit 29-27 PLLODIV<2:0>: Output Divider for PLL
111 = PLL output divided by 256
$110=$ PLL output divided by 64
$101=$ PLL output divided by 32
$100=$ PLL output divided by 16
$011=$ PLL output divided by 8
$010=$ PLL output divided by 4
$001=$ PLL output divided by 2
$000=$ PLL output divided by 1
bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
$111=$ FRC divided by 256
$110=$ FRC divided by 64
101 = FRC divided by 32
$100=$ FRC divided by 16
$011=$ FRC divided by 8
$010=$ FRC divided by 4
$001=$ FRC divided by 2 (default setting)
000 = FRC divided by 1
bit 23 Unimplemented: Read as ' 0 '
bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
1 = Indicates that the Secondary Oscillator is running and is stable
$0=$ Secondary Oscillator is still warming up or is turned off
bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
$1=$ PBDIV<1:0> bits can be written
$0=$ PBDIV $\langle 1: 0>$ bits cannot be written
bit 20-19 PBDIV<1:0>: Peripheral Bus Clock (PBCLK) Divisor bits
$11=$ PBCLK is SYSCLK divided by 8 (default)
$10=$ PBCLK is SYSCLK divided by 4
$01=$ PBCLK is SYSCLK divided by 2
$00=$ PBCLK is SYSCLK divided by 1
Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

```
bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits
        111 = Clock is multiplied by }2
        110 = Clock is multiplied by }2
        101 = Clock is multiplied by 20
        100 = Clock is multiplied by 19
        011 = Clock is multiplied by 18
        010 = Clock is multiplied by 17
        001 = Clock is multiplied by 16
        000 = Clock is multiplied by 15
bit 15 Unimplemented: Read as '0'
bit 14-12 COSC<2:0>: Current Oscillator Selection bits
    111 = Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits
    110 = Internal Fast RC (FRC) Oscillator divided by 16
    101 = Internal Low-Power RC (LPRC) Oscillator
    100 = Secondary Oscillator (SOSc)
    011 = Primary Oscillator (POSC) with PLL module (XTPLL, HSPLL or ECPLL)
    010 = Primary Oscillator (POSC) (XT, HS or EC)
    001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
    000 = Internal Fast RC (FRC) Oscillator
bit 11 Unimplemented: Read as '0'
bit 10-8 NOSC<2:0>: New Oscillator Selection bits
        111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
        110 = Internal Fast RC Oscillator (FRC) divided by 16
        101 = Internal Low-Power RC (LPRC) Oscillator
        100 = Secondary Oscillator (SOSC)
        011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
        010 = Primary Oscillator (XT, HS or EC)
        001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
        000 = Internal Fast Internal RC Oscillator (FRC)
        On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).
bit 7 CLKLOCK: Clock Selection Lock Enable bit
        If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):
        1 = Clock and PLL selections are locked
        0 Clock and PLL selections are not locked and may be modified
        If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):
        Clock and PLL selections are never locked and may be modified.
bit 6 ULOCK: USB PLL Lock Status bit (1)
    1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
    0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or
        USB PLL is disabled
bit 5 SLOCK: PLL Lock Status bit
    1 = PLL module is in lock or PLL module start-up timer is satisfied
    0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4 SLPEN: Sleep Mode Enable bit
    1 = Device will enter Sleep mode when a WAIT instruction is executed
    0 = Device will enter Idle mode when a WAIT instruction is executed
bit 3 CF: Clock Fail Detect bit
    1 = FSCM has detected a clock failure
    0 No clock failure has been detected
```

Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

PIC32MX330/350/370/430/450/470

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)
bit 2 UFRCEN: USB FRC Clock Enable bit ${ }^{(1)}$
1 = Enable FRC as the clock source for the USB clock source
0 = Use the Primary Oscillator or USB PLL as the USB clock source
bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit 0 OSWEN: Oscillator Switch Enable bit
1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
$0=$ Oscillator switch is complete
Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
	-	-	-	-	-	-	-	-
15:8	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	TUN<5:0> ${ }^{(1)}$					

Legend:	$y=$ Value set from Configuration bits on POR	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$\prime 0$ ' = Bit is cleared

```
bit 31-6 Unimplemented: Read as '0'
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits (1)
    100000 = Center frequency -1.5%
    100001 =
    •
    -
    •
    111111 =
    000000 = Center frequency. Oscillator runs at minimal frequency (8 MHz)
    000001 =
    •
    •
    -
    011110 =
    011111 = Center frequency +1.5%
```

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

PIC32MX330/350/370/430/450/470

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	R/W-0						
	-	RODIV<14:8> ${ }^{(1,3)}$						
23:16	R/W-0							
	RODIV<7:0> ${ }^{(3)}$							
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	RW-0, HC	R-O, HS, HC
	ON	-	SIDL	OE	RSLP ${ }^{(2)}$	-	DIVSWEN	ACTIVE
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	ROSEL<3:0>(1)			

Legend:	$H C=$ Hardware Clearable	HS = Hardware Settable
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31 Unimplemented: Read as ' 0 '
bit 30-16 RODIV<14:0>: Reference Clock Divider bits ${ }^{(1,3)}$
This value selects the Reference Clock Divider bits. See Figure 8-1 for more information.
bit 15 ON: Output Enable bit
1 = Reference Oscillator Module is enabled
$0=$ Reference Oscillator Module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Peripheral Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 OE: Reference Clock Output Enable bit
1 = Reference clock is driven out on REFCLKO pin
0 = Reference clock is not driven out on REFCLKO pin
bit 11 RSLP: Reference Oscillator Module Run in Sleep bit ${ }^{(2)}$
1 = Reference Oscillator Module output continues to run in Sleep
0 = Reference Oscillator Module output is disabled in Sleep
bit 10 Unimplemented: Read as ' 0 '
bit 9 DIVSWEN: Divider Switch Enable bit
1 = Divider switch is in progress
0 = Divider switch is complete
bit 8 ACTIVE: Reference Clock Request Status bit
1 = Reference clock request is active
$0=$ Reference clock request is not active
bit 7-4 Unimplemented: Read as ' 0 '

Note 1: The ROSEL and RODIV bits should not be written while the ACTIVE bit is ' 1 ', as undefined behavior may result.
2: This bit is ignored when the ROSEL<3:0> bits $=0000$ or 0001 .
3: While the ON bit is set to ' 1 ', writes to these bits do not take effect until the DIVSWEN bit is also set to ' 1 '.

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits ${ }^{(1)}$
1111 = Reserved; do not use
-
-
-
1001 = Reserved; do not use
1000 = REFCLKI
0111 = System PLL output
0110 = USB PLL output
0101 = Sosc
0100 = LPRC
0011 = FRC
0010 = Posc
0001 = PBCLK
0000 = SYSCLK

Note 1: The ROSEL and RODIV bits should not be written while the ACTIVE bit is ' 1 ', as undefined behavior may result.
2: This bit is ignored when the ROSEL<3:0> bits $=0000$ or 0001 .
3: While the ON bit is set to ' 1 ', writes to these bits do not take effect until the DIVSWEN bit is also set to ' 1 '.

PIC32MX330/350/370/430/450/470

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\underset{\text { Bit }}{\text { 27/19/11/3 }}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	ROTRIM<8:1>							
23:16	R/W-0	U-0						
	ROTRIM<0>	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:	$y=$ Value set from Configuration bits on POR	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits
$111111111=511 / 512$ divisor added to RODIV value
$111111110=510 / 512$ divisor added to RODIV value
-
-
$100000000=256 / 512$ divisor added to RODIV value
-
-
$000000010=2 / 512$ divisor added to RODIV value
$000000001=1 / 512$ divisor added to RODIV value
$000000000=0 / 512$ divisor added to RODIV value
bit 22-0 Unimplemented: Read as ' 0 '

Note: While the ON bit (REFOCON<15>) is ' 1 ', writes to this register do not take effect until the DIVSWEN bit is also set to ' 1 '.

9.0 PREFETCH CACHE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

The following are some of the key features of the Prefetch Cache module.

- 16 fully associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- Pseudo LRU replacement policy
- All cache lines are software writable
- 16-byte parallel memory fetch
- Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

Control Registers

PIC32MX330/350/370/430/450/470

REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0	R/W-0						
	-	-	-	-	-	-	-	CHECOH
15:8	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	-	-	-	-	-	-	DCSZ<1:0>	
7:0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	-	-	PREFEN<1:0>		-	PFMWS<2:0>		

Legend:

$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-17 Unimplemented: Write '0'; ignore read
bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
1 = Invalidate all data and instruction lines
$0=$ Invalidate all data Ines and instruction lines that are not locked
bit 15-10 Unimplemented: Write ' 0 '; ignore read
bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
11 = Enable data caching with a size of 4 Lines
$10=$ Enable data caching with a size of 2 Lines
$01=$ Enable data caching with a size of 1 Line
00 = Disable data caching
Changing these bits induce all lines to be reinitialized to the "invalid" state.
bit 7-6 Unimplemented: Write ' 0 '; ignore read
bit 5-4 PREFEN<1:0>: Predictive Prefetch Enable bits
11 = Enable predictive prefetch for both cacheable and non-cacheable regions
$10=$ Enable predictive prefetch for non-cacheable regions only
01 = Enable predictive prefetch for cacheable regions only
$00=$ Disable predictive prefetch
bit 3 Unimplemented: Write ' 0 '; ignore read
bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits
111 = Seven Wait states
$110=$ Six Wait states
101 = Five Wait states
100 = Four Wait states
011 = Three Wait states
$010=$ Two Wait states
$001=$ One Wait state
000 = Zero Wait state

PIC32MX330/350/370/430/450/470

REGISTER 9-2: CHEACC: CACHE ACCESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{29 / 21 / 13 / 5}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\underset{\text { Bit }}{\text { 27/19/11/3 }}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{25 / 17 / 9 / 1}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0	U-0						
	CHEWEN	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	CHEIDX<3:0>			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared
$x=$ Bit is unknown		

bit 31 CHEWEN: Cache Access Enable bits for registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3
1 = The cache line selected by CHEIDX<3:0> is writeable
$0=$ The cache line selected by CHEIDX<3:0> is not writeable
bit 30-4 Unimplemented: Write ' 0 '; ignore read
bit 3-0 CHEIDX<3:0>: Cache Line Index bits
The value selects the cache line for reading or writing.

REGISTER 9-3: CHETAG: CACHE TAG REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0	U-0						
	LTAGBOOT	-	-	-	-	-	-	-
23:16	R/W-x							
	LTAG<19:12>							
15.8	R/W-x							
15.8	LTAG<11:4>							
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0	R/W-1	U-0
	LTAG<3:0>				LVALID	LLOCK	LTYPE	-

Legend:

$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared

bit 31 LTAGBOOT: Line TAG Address Boot bit
1 = The line is in the 0x1D000000 (physical) area of memory
$0=$ The line is in the 0×1 FC00000 (physical) area of memory
bit 30-24 Unimplemented: Write ' 0 '; ignore read
bit 23-4 LTAG<19:0>: Line TAG Address bits
LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses, (system) physical addresses, and PFM physical addresses.
bit 3 LVALID: Line Valid bit
1 = The line is valid and is compared to the physical address for hit detection
$0=$ The line is not valid and is not compared to the physical address for hit detection
bit 2 LLOCK: Line Lock bit
1 = The line is locked and will not be replaced
$0=$ The line is not locked and can be replaced
bit 1 LTYPE: Line Type bit
1 = The line caches instruction words
$0=$ The line caches data words
bit $0 \quad$ Unimplemented: Write ' 0 '; ignore read

PIC32MX330/350/370/430/450/470

REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
	R/W-0							
15.8	LMASK<10:3>							
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	LMASK<2:0>			-	-	-	-	-

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Write ' 0 '; ignore read
bit 15-5 LMASK<10:0>: Line Mask bits
1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits (CHETAG<23:4>) and the physical address.
$0=$ Only writeable for values of $C H E I D X<3: 0>$ bits (CHEACC $<3: 0>$) equal to $0 \times 0 \mathrm{~A}$ and $0 \times 0 \mathrm{~B}$. Disables mask logic.
bit 4-0 Unimplemented: Write ' 0 '; ignore read

REGISTER 9-5: CHEWO: CACHE WORD 0

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEW0<31:24>							
23:16	R/W-x							
	CHEW0<23:16>							
15:8	R/W-x							
	CHEW0<15:8>							
7:0	R/W-x							
	CHEW0<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 CHEW0<31:0>: Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.

REGISTER 9-6: CHEW1: CACHE WORD 1

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEW1<31:24>							
23:16	R/W-x							
	CHEW1<23:16>							
15:8	R/W-x							
	CHEW1<15:8>							
7:0	R/W-x							
	CHEW1<7:0>							

Legend:

$R=$ Readable bit	W $=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-0 CHEW1<31:0>: Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEW2<31:24>							
23:16	R/W-x							
	CHEW2<23:16>							
15:8	R/W-x							
	CHEW2<15:8>							
7:0	R/W-x							
	CHEW2<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' = Bit is cleared

bit 31-0 CHEW2<31:0>: Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>)
Readable only if the device is not code-protected.

PIC32MX330/350/370/430/450/470

REGISTER 9-8: CHEW3: CACHE WORD 3

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEW3<31:24>							
23:16	R/W-x							
	CHEW3<23:16>							
15:8	R/W-x							
	CHEW3<15:8>							
7:0	R/W-x							
	CHEW3<7:0>							

Legend:

$R=$ Readable bit
W = Writable bit
$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared $\quad x=$ Bit is unknown
bit 31-0 CHEW3<31:0>: Word 3 of the cache line selected by the CHEIDX<3:0> bits (CHEACC $<3: 0>$)
Readable only if the device is not code-protected.

Note: \quad This register is a window into the cache data array and is readable only if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c\|} \text { Bit } \\ 27 / 19 / 11 / 3 \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	R-0						
	-	-	-	-	-	-	-	CHELRU<24>
23:16	R-0							
	CHELRU<23:16>							
15:8	R-0							
	CHELRU<15:8>							
7:0	R-0							
	CHELRU<7:0>							

Legend:

$R=$ Readable bit
$\mathrm{W}=$ Writable bit
$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
$x=B i t$ is unknown
bit 31-25 Unimplemented: Write ' 0 '; ignore read
bit 24-0 CHELRU<24:0>: Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

REGISTER 9-10: CHEHIT: CACHE HIT STATISTICS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-x							
	CHEHIT<31:24>							
23:16	R/W-x							
	CHEHIT<23:16>							
15:8	R/W-x							
	CHEHIT<15:8>							
7:0	R/W-x							
	CHEHIT<7:0>							
Legend:								
$\mathrm{R}=$ Readable bit			W = Writable bit		$\mathrm{U}=$ Unimplemented bit, read as '0'			
-n = Value at POR			' 1 ' = Bit is set		' 0 ' = Bit is cleared		$x=$ Bit is unknown	

bit 31-0 CHEHIT<31:0>: Cache Hit Count bits
Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache from a cacheable region. Non-cacheable accesses do not modify this value.

REGISTER 9-11: CHEMIS: CACHE MISS STATISTICS REGISTER

Bit Range	Bit $31 / 23 / 15 / 7$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEMIS<31:24>							
23:16	R/W-x							
	CHEMIS<23:16>							
15:8	R/W-x							
	CHEMIS<15:8>							
7:0	R/W-x							
	CHEMIS<7:0>							
Legend:								
$\mathrm{R}=$ Readable bit			$\mathrm{W}=$ Writable bit		$\mathrm{U}=$ Unimplemented bit, read as ' 0 '			
-n = Value at POR			' 1 ' = Bit is set		' 0 ' = Bit is cleared		$x=$ Bit is unknown	

bit 31-0 CHEMIS<31:0>: Cache Miss Count bits
Incremented each time the processor issues an instruction fetch from a cacheable region that misses the prefetch cache. Non-cacheable accesses do not modify this value.

PIC32MX330/350/370/430/450/470

REGISTER 9-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	CHEPFABT<31:24>							
23:16	R/W-x							
	CHEPFABT<23:16>							
15:8	R/W-x							
	CHEPFABT<15:8>							
7:0	R/W-x							
	CHEPFABT<7:0>							
Legend:								
$\mathrm{R}=$ Readable bit			W = Writable bit		$\mathrm{U}=$ Unimplemented bit, read as ' 0 '			
-n = Value at POR			' 1 ' = Bit is set		' 0 ' = Bit is cleared		$x=$ Bit is unknown	

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits
Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation $>$ Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.
Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
- Auto-increment source and destination address registers
- Source and destination pointers
- Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
- Transfer granularity, down to byte level
- Bytes need not be word-aligned at source and destination
- Fixed priority channel arbitration
- Flexible DMA channel operating modes:
- Manual (software) or automatic (interrupt) DMA requests
- One-Shot or Auto-Repeat Block Transfer modes
- Channel-to-channel chaining
- Flexible DMA requests:
- A DMA request can be selected from any of the peripheral interrupt sources
- Each channel can select any (appropriate) observable interrupt as its DMA request source
- A DMA transfer abort can be selected from any of the peripheral interrupt sources
- Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half full
- DMA transfer aborted due to an external event
- Invalid DMA address generated
- DMA debug support features:
- Most recent address accessed by a DMA channel
- Most recent DMA channel to transfer data
- CRC Generation module:
- CRC module can be assigned to any of the available channels
- CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

10.1 Control Registers

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
3000	dmacon	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	-	SUSPEND	DMABUSY	-	-	-	-	-	-	-	-	-	-	-	0000
3010	DMASTAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RDWR		ACH<		0000
3020	DMAADDR	31:16	DMAADDR<31:0>																0000
		15:0																	0000

Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.
TABLE 10-2: DMA CRC REGISTER MAP

Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
3060	DCHOCON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHBUSY	-	-	-	-	-	-	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	<1:0>	0000
3070	DCHOECON	31:16	-	-	-	-	-	-	-	-	CHAIRQ<7:0>								00FF
		15:0	CHSIRQ<7:0>								CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	-	-	-	FFF8
3080	DCHOINT	31:16	-	-	-	-	-	-	-	-	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	-	-	-	-	-	-	-	-	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCHOSSA	31:16	CHSSA<31:0>																0000
		15:0																	0000
30A0	DCHODSA	31:16	CHDSA<31:0>																0000
		15:0																	0000
30B0	DCHOSSIZ	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHSSIZ<15:0>																0000
30C0	DCHODSIZ	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHDSIZ<15:0>																0000
30D0	DCH0SPTR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHSPTR<15:0>																0000
30E0	DCHODPTR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHDPTR<15:0>																0000
30F0	DCHOCSIZ	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHCSIZ<15:0>																0000
3100	DCHOCPTR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHCPTR<15:0>																0000
3110	DCHODAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	CHPDAT<7:0>								0000
3120	DCH1CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CHBUSY	-	-	-	-	-	-	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	<1:0>	0000
3130	DCH1ECON	31:16	-	-	-	-	-	-	-	-	CHAIRQ<7:0>								00FF
		15:0	CHSIRQ<7:0>								CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	-	-	-	FFF8
3140	DCH1INT	31:16	-	-	-	-	-	-	-	-	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	-	-	-	-	-	-	-	-	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16	CHSSA<31:0>																0000
		15:0																	0000
3160	DCH1DSA	31:16	CHDSA<31:0>																0000
		15:0																	0000

[^3]Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)

PIC32MX330/350/370/430/450/470

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
	ON(1)	-	-	SUSPEND	DMABUSY ${ }^{(1)}$	-	-	-
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: DMA On bit ${ }^{(1)}$
$1=$ DMA module is enabled
$0=$ DMA module is disabled
bit 14-13 Unimplemented: Read as ' 0 '
bit 12 SUSPEND: DMA Suspend bit
$1=$ DMA transfers are suspended to allow CPU uninterrupted access to data bus
0 = DMA operates normally
bit 11 DMABUSY: DMA Module Busy bit ${ }^{(1)}$
1 = DMA module is active
$0=$ DMA module is disabled and not actively transferring data
bit 10-0 Unimplemented: Read as ' 0 '

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	Bit 27/19/11/3	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
	-	-	-	-	RDWR	DMACH<2:0>		

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-4 Unimplemented: Read as '0'
bit 3 RDWR: Read/Write Status bit
1 = Last DMA bus access was a read
$0=$ Last DMA bus access was a write
bit 2-0 DMACH<2:0>: DMA Channel bits
These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R-0							
	DMAADDR<31:24>							
23:16	R-0							
	DMAADDR<23:16>							
15:8	R-0							
	DMAADDR<15:8>							
7:0	R-0							
	DMAADDR<7:0>							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits
These bits contain the address of the most recent DMA access.

PIC32MX330/350/370/430/450/470

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
	-	-	BYTO<1:0>		$\mathrm{WBO}^{(1)}$	-	-	BITO ${ }^{(1)}$
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	PLEN<4:0>				
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	CRCEN	CRCAPP ${ }^{(1)}$	CRCTYP	-	-	CRCCH<2:0>		

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-30 Unimplemented: Read as ' 0 '
bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
$10=$ Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
$00=$ No swapping (i.e., source byte order)
bit 27 WBO: CRC Write Byte Order Selection bit ${ }^{(1)}$
$1=$ Source data is written to the destination re-ordered as defined by BYTO<1:0>
$0=$ Source data is written to the destination unaltered
bit 26-25 Unimplemented: Read as ' 0 '
bit 24 BITO: CRC Bit Order Selection bit ${ }^{(1)}$
When CRCTYP ($\mathrm{DCRCCON}<15>$) = 1 ($C R C$ module is in IP Header mode):
1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
$0=$ The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)
When CRCTYP (DCRCCON $<15>$) $=0$ (CRC module is in LFSR mode):
1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
$0=$ The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
bit 23-13 Unimplemented: Read as ' 0 '
bit 12-8 PLEN<4:0>: Polynomial Length bits ${ }^{(1)}$
When CRCTYP (DCRCCON $<15>$) $=1$ ($C R C$ module is in IP Header mode):
These bits are unused.

When CRCTYP (DCRCCON<15>) $=0$ (CRC module is in LFSR mode):
Denotes the length of the polynomial -1 .
bit 7 CRCEN: CRC Enable bit
$1=$ CRC module is enabled and channel transfers are routed through the CRC module
$0=$ CRC module is disabled and channel transfers proceed normally
Note 1: W hen $W B O=1$, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit $6 \quad$ CRCAPP: CRC Append Mode bit ${ }^{(1)}$
1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
$0=$ The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
bit 5 CRCTYP: CRC Type Selection bit
1 = The CRC module will calculate an IP header checksum
$0=$ The CRC module will calculate a LFSR CRC
bit 4-3 Unimplemented: Read as ' 0 '
bit 2-0 CRCCH<2:0>: CRC Channel Select bits
$111=$ CRC is assigned to Channel 7
$110=$ CRC is assigned to Channel 6
$101=$ CRC is assigned to Channel 5
$100=$ CRC is assigned to Channel 4
$011=$ CRC is assigned to Channel 3
$010=$ CRC is assigned to Channel 2
$001=$ CRC is assigned to Channel 1
$000=$ CRC is assigned to Channel 0

Note 1: When $W B O=1$, unaligned transfers are not supported and the CRCAPP bit cannot be set.

PIC32MX330/350/370/430/450/470

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	DCRCDATA<31:24>							
23:16	R/W-0							
	DCRCDATA<23:16>							
15:8	R/W-0							
	DCRCDATA<15:8>							
7:0	R/W-0							
	DCRCDATA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits
Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return ' 0 ' on any read.

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ' 0 '. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

When CRCTYP (DCRCCON<15>) $=0$ (CRC module is in LFSR mode):
Bits greater than PLEN will return ' 0 ' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	RW-0	R/W-0						
	DCRCXOR<31:24>							
23:16	RW-0	R/W-0						
	DCRCXOR<23:16>							
15:8	R/W-0							
	DCRCXOR<15:8>							
7:0	R/W-0							
	DCRCXOR<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
This register is unused.
When CRCTYP (DCRCCON $<15>$) $=0$ (CRC module is in LFSR mode):
1 = Enable the XOR input to the Shift register
$0=$ Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

REGISTER 10-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	CHBUSY	-	-	-	-	-	-	CHCHNS ${ }^{(1)}$
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
	CHEN ${ }^{(2)}$	CHAED	CHCHN	CHAEN	-	CHEDET	CHPRI<1:0>	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ‘0’
bit 15 CHBUSY: Channel Busy bit
$1=$ Channel is active or has been enabled
$0=$ Channel is inactive or has been disabled
bit 14-9 Unimplemented: Read as ' 0 ’
bit $8 \quad$ CHCHNS: Chain Channel Selection bit ${ }^{(1)}$
1 = Chain to channel lower in natural priority (CH 1 will be enabled by CH 2 transfer complete)
$0=$ Chain to channel higher in natural priority (CH 1 will be enabled by CH 0 transfer complete)
bit 7 CHEN: Channel Enable bit ${ }^{(2)}$
$1=$ Channel is enabled
$0=$ Channel is disabled
bit 6 CHAED: Channel Allow Events If Disabled bit
$1=$ Channel start/abort events will be registered, even if the channel is disabled
$0=$ Channel start/abort events will be ignored if the channel is disabled
bit CHCHN: Channel Chain Enable bit
1 = Allow channel to be chained
$0=$ Do not allow channel to be chained
bit 4 CHAEN: Channel Automatic Enable bit
1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
0 = Channel is disabled on block transfer complete
bit $3 \quad$ Unimplemented: Read as ' 0 ’
bit 2 CHEDET: Channel Event Detected bit
1 = An event has been detected
$0=$ No events have been detected
bit 1-0 CHPRI<1:0>: Channel Priority bits
11 = Channel has priority 3 (highest)
$10=$ Channel has priority 2
01 = Channel has priority 1
$00=$ Channel has priority 0
Note 1: The chain selection bit takes effect when chaining is enabled (i.e., $\mathrm{CHCHN}=1$).
2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

PIC32MX330/350/370/430/450/470

REGISTER 10-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	R/W-1							
	CHAIRQ<7:0> ${ }^{(1)}$							
15:8	R/W-1							
	CHSIRQ<7:0> ${ }^{(1)}$							
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	-	-	-

Legend:	$S=$ Settable bit	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-24 Unimplemented: Read as ' 0 '

bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ${ }^{(1)}$
11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
-
-
00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
$00000000=$ Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits ${ }^{(1)}$
11111111 = Interrupt 255 will initiate a DMA transfer
-
-
00000001 = Interrupt 1 will initiate a DMA transfer
00000000 = Interrupt 0 will initiate a DMA transfer
bit 7 CFORCE: DMA Forced Transfer bit
1 = A DMA transfer is forced to begin when this bit is written to a ' 1 '
$0=$ This bit always reads ' 0 '
bit 6 CABORT: DMA Abort Transfer bit
$1=$ A DMA transfer is aborted when this bit is written to a ' 1 '
$0=$ This bit always reads ' 0 '
bit 5 PATEN: Channel Pattern Match Abort Enable bit
1 = Abort transfer and clear CHEN on pattern match
$0=$ Pattern match is disabled
bit 4 SIRQEN: Channel Start IRQ Enable bit
1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
$0=$ Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3 AIRQEN: Channel Abort IRQ Enable bit
1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
$0=$ Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0 Unimplemented: Read as ' 0 '

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 10-9: DCHxINT: DMA CHANNEL ' x ' INTERRUPT CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\underset{30 / 22 / 14 / 6}{\text { Bit }}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\underset{\text { Bit }}{28 / 20 / 12 / 4}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	R/W-0							
	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' $=$ Bit is set	' 0 ' = Bit is cleared

bit 31-24 Unimplemented: Read as ' 0 ’
bit 23 CHSDIE: Channel Source Done Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
$1=$ Interrupt is enabled
0 = Interrupt is disabled
bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
$1=$ Interrupt is enabled
$0=$ Interrupt is disabled
bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 16 CHERIE: Channel Address Error Interrupt Enable bit
1 = Interrupt is enabled
$0=$ Interrupt is disabled
bit 15-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ CHSDIF: Channel Source Done Interrupt Flag bit
$1=$ Channel Source Pointer has reached end of source (CHSPTR $=$ CHSSIZ)
$0=$ No interrupt is pending
bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit
$1=$ Channel Source Pointer has reached midpoint of source (CHSPTR $=$ CHSSIZ/2)
$0=$ No interrupt is pending
bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit
1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
$0=$ No interrupt is pending

PIC32MX330/350/370/430/450/470

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x’ INTERRUPT CONTROL REGISTER (CONTINUED)

bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
$0=$ No interrupt is pending
bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
$0=$ No interrupt is pending
bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
$0=$ No interrupt is pending
bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
$1=$ An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
$0=$ No interrupt is pending
bit $0 \quad$ CHERIF: Channel Address Error Interrupt Flag bit
1 = A channel address error has been detected
Either the source or the destination address is invalid.
$0=$ No interrupt is pending

PIC32MX330/350/370/430/450/470

REGISTER 10-10: DCHxSSA: DMA CHANNEL ' x ' SOURCE START ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	CHSSA<31:24>							
23:16	R/W-0							
	CHSSA<23:16>							
15:8	R/W-0							
	CHSSA<15:8>							
7:0	R/W-0							
	CHSSA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-0 CHSSA<31:0> Channel Source Start Address bits
Channel source start address.
Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL ' x ' DESTINATION START ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0	RW-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0
	CHDSA<31:24>							
23:16	R/W-0							
	CHDSA<23:16>							
15:8	R/W-0	RW-0						
	CHDSA<15:8>							
7:0	R/W-0	RW-0						
	CHDSA<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits
Channel destination start address.
Note: This must be the physical address of the destination.

PIC32MX330/350/370/430/450/470

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0							
	CHSSIZ<15:8>							
7:0	R/W-0							
	CHSSIZ<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16	Unimplemented: Read as ' 0 '
bit 15-0	CHSSIZ<15:0>: Channel Source Size bits
	$1111111111111111=65,535$ byte source size
	\cdot
	$0000000000000010=2$ byte source size
	$0000000000000001=1$ byte source size
	$0000000000000000=65,536$ byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0							
	CHDSIZ<15:8>							
7:0	R/W-0							
	CHDSIZ<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits $1111111111111111=65,535$ byte destination size
-
-
$0000000000000010=2$ byte destination size $00000000000000001=1$ byte destination size $0000000000000000=65,536$ byte destination size

PIC32MX330/350/370/430/450/470

REGISTER 10-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0							
	CHSPTR<15:8>							
7:0	R-0							
	CHSPTR<7:0>							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits
$1111111111111111=$ Points to byte 65,535 of the source
-

0000000000000001 = Points to byte 1 of the source $0000000000000000=$ Points to byte 0 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-15: DCHxDPTR: DMA CHANNEL ' x ' DESTINATION POINTER REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{29 / 21 / 13 / 5}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0							
	CHDPTR<15:8>							
7:0	R-0							
	CHDPTR<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits
$1111111111111111=$ Points to byte 65,535 of the destination
-
$00000000000000001=$ Points to byte 1 of the destination
$00000000000000000=$ Points to byte 0 of the destination

PIC32MX330/350/370/430/450/470

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0							
	CHCSIZ<15:8>							
7:0	R/W-0							
	CHCSIZ<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ‘ 0 '	
bit 15-0	CHCSIZ<15:0>: Channel Cell-Size bits
	$1111111111111111=65,535$ bytes transferred on an event
	\cdot
	.
	$0000000000000010=2$ bytes transferred on an event
	$0000000000000001=1$ byte transferred on an event
	$0000000000000000=65,536$ bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL ' x ' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0							
	CHCPTR<15:8>							
7:0	R-0							
	CHCPTR<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as '0'
bit 15-0 CHCPTR<7:0>: Channel Cell Progress Pointer bits
$1111111111111111=65,535$ bytes have been transferred since the last event
.
$0000000000000001=1$ byte has been transferred since the last event $0000000000000000=0$ bytes have been transferred since the last event

[^4]REGISTER 10-18: DCHxDAT: DMA CHANNEL ' x ' PATTERN DATA REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\underset{\text { Bit }}{\substack{\text { 27/19/11/3 }}}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	CHPDAT<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared
	$x=$ Bit is unknown	

bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 CHPDAT<7:0>: Channel Data Register bits
Pattern Terminate mode:
Data to be matched must be stored in this register to allow terminate on match.
All other modes:
Unused.

PIC32MX330/350/370/430/450/470

NOTES:

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-TheGo (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCl or OHCl controller.
The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the Vbus pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash

Note: The implementation and use of the USB specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

PIC32MX330/350/370/430/450/470

FIGURE 11-1: PIC32MX430/450/470 USB INTERFACE DIAGRAM

11.1 Control Registers

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
5040	U1OTGIR ${ }^{(2)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	-	VBUSVDIF	0000
5050	U1OTGIE	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	-	VBUSVDIE	0000
5060	U1OTGSTAT ${ }^{(3)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	ID	-	LSTATE	-	SESVD	SESEND	-	VBUSVD	0000
5070	U1OTGCON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5080	U1PWRC	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	UACTPND ${ }^{(4)}$	-	-	USLPGRD	USBBUSY	-	USUSPEND	USBPWR	0000
5200	$\mathrm{U} 1 \mathrm{R}^{(2)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
5210	U1IE	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
5220	U1EIR ${ }^{(2)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	$\begin{aligned} & \text { CRC5EF } \\ & \hline \text { EOFEF } \end{aligned}$	PIDEF	0000 00000
5230	U1EIE	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	$\begin{gathered} \hline \text { CRC5EE } \\ \hline \text { EOFEE } \end{gathered}$	PIDEE	0000
5240	U1STAT ${ }^{(3)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-		ENDP	T<3:0>		DIR	PPBI	-	-	0000
5250	U1CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	JSTATE	SE0	PKTDIS	USBRST	HOSTEN	RESUME	PPBRST	USBEN	0000
		15.0	-	-	-	-	-	-	-	-	JSTATE	SEO	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
5260	U1ADDR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	LSPDEN	DEVADDR<6:0>							0000
5270	U1BDTP1	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	BDTPTRL<15:9>							-	0000

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$ respectively. See

PIC32MX330/350/370/430/450/470

USB REGISTER MAP (CONTINUED)

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$ respectively. See
Section 12.2 "CLR, SET, and INV Registers" for more information
This register does not have associated CLR, SET and INV registers
3: Reset value for this bit is undefined
TABLE 11-1: USB REGISTER MAP (CONTINUED)

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
5390	U1EP9	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0	U1EP10	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53E0	U1EP14	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53F0	U1EP15	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: $\quad x=$ unknown value on Reset; - = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0×4, 0×8 and $0 \times C$ respectively. See This register does not have associated SET and INV registers.
This register does not have associated CLR, SET and INV registers 4: Reset value for this bit is undefined

PIC32MX330/350/370/430/450/470

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/WC-0, HS	U-0	R/WC-0, HS					
	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	-	VBUSVDIF

Legend:	WC = Write ' 1 ' to clear	HS = Hardware Settable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as '0'
bit 7 IDIF: ID State Change Indicator bit
$1=$ Change in ID state is detected
$0=$ No change in ID state is detected
bit 6 T1MSECIF: 1 Millisecond Timer bit
$1=1$ millisecond timer has expired
$0=1$ millisecond timer has not expired
bit 5 LSTATEIF: Line State Stable Indicator bit
1 = USB line state has been stable for 1 millisecond, but different from last time
$0=$ USB line state has not been stable for 1 millisecond
bit 4 ACTVIF: Bus Activity Indicator bit
1 = Activity on the D+, D-, ID or VBus pins has caused the device to wake-up
$0=$ Activity has not been detected
bit 3 SESVDIF: Session Valid Change Indicator bit
$1=$ VBus voltage has dropped below the session end level
$0=$ VBUS voltage has not dropped below the session end level
bit 2 SESENDIF: B-Device Vbus Change Indicator bit
$1=A$ change on the session end input was detected
$0=$ No change on the session end input was detected
bit 1 Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVDIF: A-Device Vbus Change Indicator bit
1 = Change on the session valid input is detected
$0=$ No change on the session valid input is detected

REGISTER 11-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Bit Range	Bit $\mathbf{3 1 / 2 3 / 1 5 / 7}$	Bit $\mathbf{3 0 / 2 2 / 1 4 / 6}$	Bit $\mathbf{2 9 / 2 1 / 1 3 / 5}$	Bit $\mathbf{2 8 / 2 0 / 1 2 / 4}$	Bit $\mathbf{2 7 / 1 9 / 1 1 / 3}$	Bit $\mathbf{2 6 / 1 8 / 1 0 / 2}$	Bit $\mathbf{2 5 / 1 7 / 9 / 1}$	Bit $\mathbf{2 4 / 1 6 / 8 / 0}$
	$\mathrm{U}-0$							
	-	-	-	-	-	-	-	-
$23: 16$	$\mathrm{U}-0$							
	-	-	-	-	-	-	-	-
$15: 8$	$\mathrm{U}-0$							
	-	-	-	-	-	-	-	-
$7: 0$	$\mathrm{R} / \mathrm{W}-0$	RW-0	R/W-0	R/W-0	R/W-0	R/W-0	$\mathrm{U}-0$	$\mathrm{R} / \mathrm{W}-0$
	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	-	VBUSVDIE

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-8 Unimplemented: Read as '0’
bit 7 IDIE: ID Interrupt Enable bit
$1=\mathrm{ID}$ interrupt is enabled
$0=$ ID interrupt is disabled
bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
$1=1$ millisecond timer interrupt is enabled
$0=1$ millisecond timer interrupt is disabled
bit 5 LSTATEIE: Line State Interrupt Enable bit
1 = Line state interrupt is enabled
$0=$ Line state interrupt is disabled
bit 4 ACTVIE: Bus Activity Interrupt Enable bit
1 = ACTIVITY interrupt is enabled
0 = ACTIVITY interrupt is disabled
bit 3 SESVDIE: Session Valid Interrupt Enable bit
1 = Session valid interrupt is enabled
$0=$ Session valid interrupt is disabled
bit 2 SESENDIE: B-Session End Interrupt Enable bit
$1=B$-session end interrupt is enabled
0 = B-session end interrupt is disabled
bit 1 Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVDIE: A-Vbus Valid Interrupt Enable bit
1 = A-VBUS valid interrupt is enabled
$0=A-$ VBus valid interrupt is disabled

PIC32MX330/350/370/430/450/470

REGISTER 11-3: U1OTGSTAT: USB OTG STATUS REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\substack{\text { Bi/21/13/5 }}}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
	ID	-	LSTATE	-	SESVD	SESEND	-	VBUSVD

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-8 Unimplemented: Read as ' 0 '
bit $7 \quad$ ID: ID Pin State Indicator bit
$1=$ No cable is attached or a Type-B cable has been plugged into the USB receptacle $0=$ A Type-A cable has been plugged into the USB receptacle

bit 6 Unimplemented: Read as ' 0 '

bit 5 LSTATE: Line State Stable Indicator bit
$1=$ USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms $0=$ USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms
bit 4 Unimplemented: Read as ' 0 '
bit 3 SESVD: Session Valid Indicator bit
$1=$ Vbus voltage is above Session Valid on the A or B device $0=$ Vbus voltage is below Session Valid on the A or B device
bit 2 SESEND: B-Device Session End Indicator bit
$1=$ Vbus voltage is below Session Valid on the B device $0=$ VBus voltage is above Session Valid on the B device
bit 1 Unimplemented: Read as ' 0 '
bit $0 \quad$ VBUSVD: A-Device Vbus Valid Indicator bit
1 = Vbus voltage is above Session Valid on the A device
$0=$ Vbus voltage is below Session Valid on the A device

REGISTER 11-4: U1OTGCON: USB OTG CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	Bit $30 / 22 / 14 / 6$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as '0'
bit 7 DPPULUP: D+ Pull-Up Enable bit
$1=D+$ data line pull-up resistor is enabled
$0=\mathrm{D}+$ data line pull-up resistor is disabled
bit 6 DMPULUP: D- Pull-Up Enable bit
1 = D- data line pull-up resistor is enabled
0 = D- data line pull-up resistor is disabled
bit 5 DPPULDWN: D+ Pull-Down Enable bit
$1=D+$ data line pull-down resistor is enabled
$0=D+$ data line pull-down resistor is disabled
bit 4 DMPULDWN: D- Pull-Down Enable bit
$1=\mathrm{D}$ - data line pull-down resistor is enabled
$0=D$ - data line pull-down resistor is disabled
bit 3 VBUSON: Vbus Power-on bit
1 = Vbus line is powered
$0=$ VBUS line is not powered
bit 2 OTGEN: OTG Functionality Enable bit
1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
bit 1 VBUSCHG: VBus Charge Enable bit
$1=$ VBUS line is charged through a pull-up resistor
$0=$ VBUS line is not charged through a resistor
bit $0 \quad$ VBUSDIS: Vbus Discharge Enable bit
$1=$ VBUS line is discharged through a pull-down resistor
$0=$ VBUS line is not discharged through a resistor

PIC32MX330/350/370/430/450/470

REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	UACTPND	-	-	USLPGRD	USBBUSY ${ }^{(1)}$	-	USUSPEND	USBPWR

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-8 Unimplemented: Read as '0'
bit 7 UACTPND: USB Activity Pending bit
$1=$ USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
$0=A n$ interrupt is not pending
bit 6-5 Unimplemented: Read as '0'
bit 4 USLPGRD: USB Sleep Entry Guard bit
1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
$0=$ USB module does not block Sleep entry
bit 3 USBBUSY: USB Module Busy bit ${ }^{(1)}$
1 = USB module is active or disabled, but not ready to be enabled
$0=$ USB module is not active and is ready to be enabled
Note: When USBPWR $=0$ and USBBUSY $=1$, status from all other registers is invalid and writes to all USB module registers produce undefined results.
bit 2 Unimplemented: Read as ' 0 '
bit 1 USUSPEND: USB Suspend Mode bit
1 = USB module is placed in Suspend mode
(The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
0 = USB module operates normally
bit 0 USBPWR: USB Operation Enable bit
$1=$ USB module is turned on
$0=$ USB module is disabled
(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ 31 / 23 / 15 / 7 \end{array}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{array}{\|c} \text { Bit } \\ 26 / 18 / 10 / 2 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/WC-0, HS	R/WC-0, HS	RWC-0, HS	R/WC-0, HS	R/WC-0, HS	RWC-0, HS	R-0	R/WC-0, HS
	STALLIF	ATTACHIF ${ }^{(1)}$	RESUMEIF ${ }^{(2)}$	IDLEIF	TRNIF ${ }^{(3)}$	SOFIF	UERRIF ${ }^{(4)}$	URSTIF ${ }^{(5)}$
								DETACHIF ${ }^{(6)}$

Legend:	WC = Write ' 1 ' to clear	HS = Hardware Settable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as '0'
bit 7 STALLIF: STALL Handshake Interrupt bit
1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
$0=$ STALL handshake has not been sent
bit 6 ATTACHIF: Peripheral Attach Interrupt bit ${ }^{(1)}$
1 = Peripheral attachment was detected by the USB module
$0=$ Peripheral attachment was not detected
bit 5 RESUMEIF: Resume Interrupt bit ${ }^{(2)}$
$1=K$-State is observed on the $\mathrm{D}+$ or D - pin for $2.5 \mu \mathrm{~s}$
$0=\mathrm{K}$-State is not observed
bit 4 IDLEIF: Idle Detect Interrupt bit
1 = Idle condition detected (constant Idle state of 3 ms or more)
$0=$ No Idle condition detected
bit 3 TRNIF: Token Processing Complete Interrupt bit ${ }^{(3)}$
1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information $0=$ Processing of current token not complete
bit 2 SOFIF: SOF Token Interrupt bit
$1=$ SOF token received by the peripheral or the SOF threshold reached by the host
$0=$ SOF token was not received nor threshold reached
bit 1 UERRIF: USB Error Condition Interrupt bit ${ }^{(4)}$
1 = Unmasked error condition has occurred
0 = Unmasked error condition has not occurred
bit $0 \quad$ URSTIF: USB Reset Interrupt bit (Device mode) ${ }^{(\mathbf{5})}$
1 = Valid USB Reset has occurred
$0=$ No USB Reset has occurred
bit $0 \quad$ DETACHIF: USB Detach Interrupt bit (Host mode) ${ }^{(6)}$
1 = Peripheral detachment was detected by the USB module
$0=$ Peripheral detachment was not detected
Note 1: This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for $2.5 \mu \mathrm{~s}$, and the current bus state is not SEO.
2: When not in Suspend mode, this interrupt should be disabled.
3: Clearing this bit will cause the STAT FIFO to advance.
4: Only error conditions enabled through the U1EIE register will set this bit.
5: Device mode.
6: Host mode.

PIC32MX330/350/370/430/450/470

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE ${ }^{(1)}$	URSTIE ${ }^{(2)}$
								DETACHIE ${ }^{(3)}$

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit $7 \quad$ STALLIE: STALL Handshake Interrupt Enable bit
1 = STALL interrupt is enabled
$0=$ STALL interrupt is disabled
bit 6 ATTACHIE: ATTACH Interrupt Enable bit
$1=$ ATTACH interrupt is enabled
$0=$ ATTACH interrupt is disabled
bit 5 RESUMEIE: RESUME Interrupt Enable bit
1 = RESUME interrupt is enabled
$0=$ RESUME interrupt is disabled
bit 4 IDLEIE: Idle Detect Interrupt Enable bit
$1=$ Idle interrupt is enabled
$0=$ Idle interrupt is disabled
bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
1 = TRNIF interrupt is enabled
$0=$ TRNIF interrupt is disabled
bit 2 SOFIE: SOF Token Interrupt Enable bit
1 = SOFIF interrupt is enabled
$0=$ SOFIF interrupt is disabled
bit 1 UERRIE: USB Error Interrupt Enable bit ${ }^{(1)}$
1 = USB Error interrupt is enabled
$0=$ USB Error interrupt is disabled
bit $0 \quad$ URSTIE: USB Reset Interrupt Enable bit ${ }^{(2)}$
1 = URSTIF interrupt is enabled
$0=$ URSTIF interrupt is disabled
DETACHIE: USB Detach Interrupt Enable bit ${ }^{(3)}$
1 = DATTCHIF interrupt is enabled
$0=$ DATTCHIF interrupt is disabled
Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.
2: Device mode.
3: Host mode.

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/WC-0, HS							
	BTSEF	BMXEF	DMAEF ${ }^{(1)}$	BTOEF ${ }^{(2)}$	DFN8EF	CRC16EF	CRC5EF ${ }^{(4)}$	PIDEF
							EOFEF ${ }^{(3,5)}$	

Legend:	WC = Write ' 1 ' to clear	$H S=$ Hardware Settable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' = Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as '0'
bit 7 BTSEF: Bit Stuff Error Flag bit
1 = Packet is rejected due to bit stuff error
$0=$ Packet is accepted
bit 6 BMXEF: Bus Matrix Error Flag bit
1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
$0=$ No address error
bit 5 DMAEF: DMA Error Flag bit ${ }^{(1)}$
1 = USB DMA error condition detected
$0=$ No DMA error
bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit ${ }^{(2)}$
1 = Bus turnaround time-out has occurred
$0=$ No bus turnaround time-out
bit 3 DFN8EF: Data Field Size Error Flag bit
1 = Data field received is not an integral number of bytes
$0=$ Data field received is an integral number of bytes
bit 2 CRC16EF: CRC16 Failure Flag bit
1 = Data packet rejected due to CRC16 error
0 = Data packet accepted

Note 1: This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
3: This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
4: Device mode.
5: Host mode.

PIC32MX330/350/370/430/450/470

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

bit 1 CRC5EF: CRC5 Host Error Flag bit ${ }^{(4)}$
1 = Token packet is rejected due to CRC5 error
$0=$ Token packet is accepted
EOFEF: EOF Error Flag bit ${ }^{(3,5)}$
$1=$ EOF error condition is detected
$0=$ No EOF error condition
bit 0 PIDEF: PID Check Failure Flag bit
1 = PID check is failed
$0=$ PID check is passed

Note 1: This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
3: This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
4: Device mode.
5: Host mode.

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ${ }^{(1)}$	PIDEE
							EOFEE ${ }^{(2)}$	

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-8 Unimplemented: Read as ' 0 '
bit 7 BTSEE: Bit Stuff Error Interrupt Enable bit
1 = BTSEF interrupt is enabled
$0=$ BTSEF interrupt is disabled
bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
$1=$ BMXEF interrupt is enabled
0 = BMXEF interrupt is disabled
bit 5 DMAEE: DMA Error Interrupt Enable bit
1 = DMAEF interrupt is enabled
$0=$ DMAEF interrupt is disabled
bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
$1=$ BTOEF interrupt is enabled
$0=$ BTOEF interrupt is disabled
bit 3 DFN8EE: Data Field Size Error Interrupt Enable bit
$1=$ DFN8EF interrupt is enabled
0 = DFN8EF interrupt is disabled
bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
1 = CRC16EF interrupt is enabled
$0=$ CRC16EF interrupt is disabled
bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit ${ }^{(1)}$
1 = CRC5EF interrupt is enabled
$0=$ CRC5EF interrupt is disabled
EOFEE: EOF Error Interrupt Enable bit ${ }^{(2)}$
1 = EOF interrupt is enabled
0 = EOF interrupt is disabled
bit 0 PIDEE: PID Check Failure Interrupt Enable bit
1 = PIDEF interrupt is enabled
0 = PIDEF interrupt is disabled
Note 1: Device mode.
2: Host mode.
Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

PIC32MX330/350/370/430/450/470

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
	ENDPT<3:0>				DIR	PPBI	-	-

Legend:

$\mathrm{R}=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-8 Unimplemented: Read as ' 0 '
bit 7-4 ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits
(Represents the number of the BDT, updated by the last USB transfer.)
1111 = Endpoint 15
1110 = Endpoint 14
-
0001 = Endpoint 1
0000 = Endpoint 0
bit 3 DIR: Last BD Direction Indicator bit
1 = Last transaction was a transmit transfer (TX)
$0=$ Last transaction was a receive transfer (RX)
bit $2 \quad$ PPBI: Ping-Pong BD Pointer Indicator bit
1 = The last transaction was to the ODD BD bank
$0=$ The last transaction was to the EVEN BD bank
bit 1-0 Unimplemented: Read as '0'

Note: \quad The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit ($\mathrm{U} 1 \mathrm{IR}<3>$) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit $=0$.

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	JSTATE	SE0	PKTDIS ${ }^{(4)}$	USBRST	HOSTEN ${ }^{(2)}$	RESUME ${ }^{(3)}$	PPBRST	USBEN ${ }^{(4)}$
			TOKBUSY ${ }^{(1,5)}$					SOFEN ${ }^{(5)}$

Legend:

$R=$ Readable bit	W $=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-8 Unimplemented: Read as '0'
bit 7 JSTATE: Live Differential Receiver JSTATE flag bit
1 = JSTATE detected on the USB
$0=$ No JSTATE detected
bit 6 SEO: Live Single-Ended Zero flag bit
1 = Single Ended Zero detected on the USB
$0=$ No Single Ended Zero detected
bit 5 PKTDIS: Packet Transfer Disable bit ${ }^{(4)}$
1 = Token and packet processing disabled (set upon SETUP token received)
$0=$ Token and packet processing enabled
TOKBUSY: Token Busy Indicator bit ${ }^{(1,5)}$
1 = Token being executed by the USB module
$0=$ No token being executed
bit 4 USBRST: Module Reset bit ${ }^{(5)}$
1 = USB reset is generated
$0=$ USB reset is terminated
bit 3 HOSTEN: Host Mode Enable bit ${ }^{(2)}$
$1=$ USB host capability is enabled
0 = USB host capability is disabled
bit 2 RESUME: RESUME Signaling Enable bit ${ }^{(3)}$
$1=$ RESUME signaling is activated
$0=$ RESUME signaling is disabled

Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
2: All host control logic is reset any time that the value of this bit is toggled.
3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
4: Device mode.
5: Host mode.

PIC32MX330/350/370/430/450/470

REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)

bit 1 PPBRST: Ping-Pong Buffers Reset bit
1 = Reset all Even/Odd buffer pointers to the EVEN BD banks
$0=$ Even/Odd buffer pointers not being Reset
bit 0 USBEN: USB Module Enable bit ${ }^{(4)}$
$1=$ USB module and supporting circuitry is enabled
$0=$ USB module and supporting circuitry is disabled
SOFEN: SOF Enable bit ${ }^{(5)}$
$1=$ SOF token sent every 1 ms
$0=$ SOF token is disabled

Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
2: All host control logic is reset any time that the value of this bit is toggled.
3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
4: Device mode.
5: Host mode.

REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	LSPDEN	DEVADDR<6:0>						

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-8 Unimplemented: Read as '0’
bit 7 LSPDEN: Low Speed Enable Indicator bit
$1=$ Next token command to be executed at Low Speed
$0=$ Next token command to be executed at Full Speed
bit 6-0 DEVADDR<6:0>: 7-bit USB Device Address bits

REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R-0							
	FRML<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared
$\mathrm{x}=$ Bit is unknown		

bit 31-8 Unimplemented: Read as ' 0 ’
bit 7-0 FRML<7:0>: The 11-bit Frame Number Lower bits
The register bits are updated with the current frame number whenever a SOF TOKEN is received.

PIC32MX330/350/370/430/450/470

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	-	-	-	-	-	FRMH<2:0>		

Legend:

$R=$ Readable bit
W = Writable bit
$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
$\mathrm{x}=\mathrm{Bit}$ is unknown
bit 31-3 Unimplemented: Read as ' 0 '
bit 2-0 FRMH<2:0>: The Upper 3 bits of the Frame Numbers bits
The register bits are updated with the current frame number whenever a SOF TOKEN is received.

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	Bit 27/19/11/3	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	$\mathrm{PID}<3: 0>^{(1)}$				EP<3:0>			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-8 Unimplemented: Read as ' 0 '
bit 7-4 PID<3:0>: Token Type Indicator bits ${ }^{(1)}$
0001 = OUT (TX) token type transaction
$1001=I N(R X)$ token type transaction
1101 = SETUP (TX) token type transaction
Note: All other values are reserved and must not be used.
bit 3-0 EP<3:0>: Token Command Endpoint Address bits
The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0	R/W-0	R/W-0
	CNT<7:0>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 CNT<7:0>: SOF Threshold Value bits
Typical values of the threshold are:
$01001010=64$-byte packet
$00101010=$ 32-byte packet
$00011010=16$-byte packet
$00010010=8$-byte packet

REGISTER 11-17: U1BDTP1: USB BDT PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit $30 / 22 / 14 / 6$	Bit 29/21/13/5	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0	U-0						
	BDTPTRL<15:9>							-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-8 Unimplemented: Read as '0'
bit 7-1 BDTPTRL<15:9>: BDT Base Address bits
This 7 -bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory.
The 32-bit BDT base address is 512 -byte aligned.
bit 0 Unimplemented: Read as ' 0 '

PIC32MX330/350/370/430/450/470

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	BDTPTRH<23:16>							

Legend:

$R=$ Readable bit
W = Writable bit
$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared $x=$ Bit is unknown
bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 BDTPTRH<23:16>: BDT Base Address bits
This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.
The 32-bit BDT base address is 512-byte aligned.

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	Bit $30 / 22 / 14 / 6$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0							
	BDTPTRU<31:24>							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 BDTPTRU<31:24>: BDT Base Address bits
This 8 -bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.
The 32-bit BDT base address is 512-byte aligned.

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
	UTEYE	UOEMON	-	USBSIDL	-	-	-	UASUSPND

Legend:

$\mathrm{R}=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 31-8 Unimplemented: Read as ' 0 '
bit 7 UTEYE: USB Eye-Pattern Test Enable bit
1 = Eye-Pattern Test is enabled
0 = Eye-Pattern Test is disabled
bit 6 UOEMON: USB $\overline{\mathrm{OE}}$ Monitor Enable bit
$1=O E$ signal is active; it indicates intervals during which the $\mathrm{D}+/ \mathrm{D}$ - lines are driving
$0=O E$ signal is inactive
bit 5 Unimplemented: Read as ' 0 '
bit 4 USBSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 3-1 Unimplemented: Read as '0'
bit $0 \quad$ UASUSPND: Automatic Suspend Enable bit
$1=$ USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
$0=$ USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

PIC32MX330/350/370/430/450/470

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	LSPD	RETRYDIS	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-8 Unimplemented: Read as '0'
bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
1 = Direct connection to a low-speed device is enabled
0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
bit 6 RETRYDIS: Retry Disable bit (Host mode and U1EP0 only)
1 = Retry NAKed transactions is disabled
$0=$ Retry NAKed transactions is enabled; retry done in hardware
bit 5 Unimplemented: Read as '0'
bit 4 EPCONDIS: Bidirectional Endpoint Control bit
If EPTXEN = 1 and EPRXEN = 1:
1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed
0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed
Otherwise, this bit is ignored.
bit 3 EPRXEN: Endpoint Receive Enable bit
$1=$ Endpoint n receive is enabled
$0=$ Endpoint n receive is disabled
bit 2 EPTXEN: Endpoint Transmit Enable bit
1 = Endpoint n transmit is enabled
$0=$ Endpoint n transmit is disabled
bit 1 EPSTALL: Endpoint Stall Status bit
$1=$ Endpoint n was stalled
0 = Endpoint n was not stalled
bit 0 EPHSHK: Endpoint Handshake Enable bit
1 = Endpoint Handshake is enabled
0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

12.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC ${ }^{\circledR}$ MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Following are key features of the I/O Port module:

- Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers
Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

PIC32MX330/350/370/430/450/470

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the presence of outputs higher than VDD (e.g., 5 V) on any desired 5 V -tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.
See the "Device Pin Tables" section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.
The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.
When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX330/350/370/430/450/470 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.
Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.
The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.
Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output. They should also be disabled on 5 V tolerant pins when the pin voltage can exceed VDD.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as ' 1 ' are modified. Bits specified as ' 0 ' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.
Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and " n " is the remappable port number.

12.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include $\mathrm{I}^{2} \mathrm{C}$ among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).
A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.
The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

12.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [pin name]R registers, where [pin name] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

Note: For input only, peripheral pin select functionality does not have priority over TRISx settings. Therefore, when configuring RPn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to ' 1 ').

PIC32MX330/350/370/430/450/470

TABLE 12-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[pin name]R Value to RPn Pin Selection
INT3	INT3R	INT3R<3:0>	$\begin{aligned} & 0000=\text { RPD2 } \\ & 0001=\text { RPG8 } \\ & 0010=\text { RPF4 } \\ & 0011=\text { RPD10 } \\ & 0100=\text { RPF1 } \\ & 0101=\text { RPB9 } \\ & 0110=\text { RPB10 } \\ & 0111=\text { RPC14 } \\ & 1000=\text { RPB5 } \\ & 1001=\text { Reserved } \\ & 1010=\text { RPC1 }^{(3)} \\ & 1011=\text { RPD14 }^{(3)} \\ & 1100=\text { RPG1 }^{(3)} \\ & 1101=\text { RPA14 }^{(3)} \\ & 1110=\text { Reserved }^{2} \\ & 1111=\text { RPF2 }^{(1)} \\ & \hline \end{aligned}$
T2CK	T2CKR	T2CKR<3:0>	
IC3	IC3R	IC3R<3:0>	
U1RX	U1RXR	U1RXR<3:0>	
U2RX	U2RXR	U2RXR<3:0>	
$\overline{\text { U5CTS }}$	U5CTSR ${ }^{(3)}$	U5CTSR<3:0>	
REFCLKI	REFCLKIR	REFCLKIR<3:0>	
INT4	INT4R	INT4R<3:0>	$\begin{aligned} & 0000=\text { RPD3 } \\ & 0001=\text { RPG7 } \\ & 0010=\text { RPF5 } \\ & 0011=\text { RPD11 } \\ & 0100=\text { RPF0 } \\ & 0101=\text { RPB1 } \\ & 0110=\text { RPE5 } \\ & 0111=\text { RPC13 } \\ & 1000=\text { RPB3 } \\ & 1001=\text { Reserved }_{1010}=\text { RPC4 }^{(3)} \\ & 1011=\text { RPD15 }^{(3)} \\ & 1100=\text { RPGo }^{(3)} \\ & 1101=\text { RPA15 }^{(3)} \\ & 1110=\text { RPF2 }^{(1)} \\ & 1111=\text { RPF7 }^{(2)} \end{aligned}$
T5CK	T5CKR	T5CKR<3:0>	
IC4	IC4R	IC4R<3:0>	
U3RX	U3RXR	U3RXR<3:0>	
$\overline{\text { U4CTS }}$	U4CTSR	U4CTSR<3:0>	
SDI1	SDI1R	SDI1R<3:0>	
SDI2	SDI2R	SDI2R<3:0>	
INT2	INT2R	INT2R<3:0>	$\begin{aligned} & 0000=\text { RPD9 } \\ & 0001=\text { RPG6 } \\ & 0010=\text { RPB8 } \\ & 0011=\text { RPB15 } \\ & 0100=\text { RPD } 4 \\ & 0101=\text { RPB0 } \\ & 0110=\text { RPE3 } \\ & 0111=\text { RPB7 } \\ & 1000=\text { Reserved } \\ & 1001=\text { RPF12 }^{(3)} \\ & 1010=\text { RPD12 }^{(3)} \\ & 1011=\text { RPF8 }^{(3)} \\ & 1100=\text { RPC3 }^{(3)} \\ & 1101=\text { RPE }^{(3)} \\ & 1110=\text { Reserved } \\ & 1111=\text { RPB2 } \end{aligned}$
T4CK	T4CKR	T4CKR<3:0>	
IC2	IC2R	IC2R<3:0>	
IC5	IC5R	IC5R<3:0>	
$\overline{\text { U1CTS }}$	U1CTSR	U1CTSR<3:0>	
$\overline{\text { U2CTS }}$	U2CTSR	U2CTSR<3:0>	
$\overline{\text { SS1 }}$	SS1R	SS1R<3:0>	

Note 1: This selection is not available on 64-pin USB devices.
2: This selection is only available on 100 -pin General Purpose devices.
3: This selection is not available on 64-pin USB and General Purpose devices.
4: This selection is only available on General Purpose devices.

TABLE 12-1: INPUT PIN SELECTION (CONTINUED)

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[pin name]R Value to RPn Pin Selection
INT1	INT1R	INT1R<3:0>	$\begin{aligned} & 0000=\text { RPD1 } \\ & 0001=\text { RPG9 } \\ & 0010=\text { RPB14 } \\ & 0011=\text { RPD0 } \\ & 0100=\text { RPD8 } \\ & 0101=\text { RPB6 } \\ & 0110=\text { RPD5 } \\ & 0111=\text { RPB2 } \\ & 1000=\text { RPF3 }^{(4)} \\ & 1001=\text { RPF13 }^{(3)} \\ & 1010=\text { Reserved }^{2} \\ & 1011=\text { RPF2 }^{(1)} \\ & 1100=\text { RPC2 }^{(3)} \\ & 1101=\text { RPE8 }^{(3)} \\ & 1110=\text { Reserved }^{1111}=\text { Reserved }^{2} \end{aligned}$
T3CK	T3CKR	T3CKR<3:0>	
IC1	IC1R	IC1R<3:0>	
$\overline{\text { U3CTS }}$	U3CTSR	U3CTSR<3:0>	
U4RX	U4RXR	U4RXR<3:0>	
U5RX	U5RXR ${ }^{(3)}$	U5RXR<3:0>	
$\overline{\mathrm{SS} 2}$	SS2R	SS2R<3:0>	
OCFA	OCFAR	OCFAR<3:0>	

Note 1: This selection is not available on 64-pin USB devices.
2: This selection is only available on $100-$ pin General Purpose devices.
3: This selection is not available on 64-pin USB and General Purpose devices.
4: This selection is only available on General Purpose devices.

PIC32MX330/350/370/430/450/470

12.3.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [pin name]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).
A null output is associated with the output register reset value of ' 0 '. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPAO

12.3.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to the peripheral map:

- Control register lock sequence
- Configuration bit select lock

12.3.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [pin name]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.
To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

12.3.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [pin name]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.
In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	$0000=$ No Connect
RPG8	RPG8R	RPG8R $<3: 0>$	$0001=$ U3TX

Note 1: This selection is only available on General Purpose devices.
2: This selection is only available on 64-pin General Purpose devices.
3: This selection is only available on 100-pin General Purpose devices.
4: This selection is only available on 100-pin USB and General Purpose devices.
5: This selection is not available on 64-pin USB devices.

PIC32MX330/350/370/430/450/470

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	$0000=$ No Connect
RPG6	RPG6R	RPG6R<3:0>	$0001=\overline{\text { U3RTS }}$

Note 1: This selection is only available on General Purpose devices.
2: This selection is only available on 64-pin General Purpose devices.
3: This selection is only available on 100 -pin General Purpose devices.
4: This selection is only available on 100-pin USB and General Purpose devices.
5: This selection is not available on 64-pin USB devices.
12.4 Control Registers
TABLE 12-3: PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L, PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6000	ANSELA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	ANSELA10	ANSELA9	-	-	-	-	-	-	-	-	-	0060
6010	TRISA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	TRISA15	TRISA14	-	-	-	TRISA10	TRISA9	-	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISAO	$x x x x$
6020	PORTA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	RA15	RA14	-	-	-	RA10	RA9	-	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RAO	$x x x x$
6030	LATA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	LATA15	LATA14	-	-	-	LATA10	LATA9	-	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATAO	xxxx
6040	ODCA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ODCA15	ODCA14	-	-	-	ODCA10	ODCA9	-	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCAO	$x x x x$
6050	CNPUA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPUA15	CNPUA14	-	-	-	CNPUA10	CNPUA9	-	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUAO	$x \times x \times$
6060	CNPDA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPDA15	CNPDA14	-	-	-	CNPDA10	CNPDA9	-	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDAO	xxxx
6070	CNCONA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
6080	CNENA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNIEA15	CNIEA14	-	-	-	CNIEA10	CNIEA9	-	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEAO	$x \times x x$
6090	CNSTATA	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	$\begin{gathered} \hline \text { CN } \\ \text { STATA15 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA14 } \end{gathered}$	-	-	-	CN STATA10	$\begin{aligned} & \text { CN } \\ & \text { STATA9 } \end{aligned}$	-	$\begin{gathered} \text { CN } \\ \text { STATA7 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA6 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA5 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA4 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA3 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATA2 } \end{gathered}$	$\begin{aligned} & \text { CN } \\ & \text { STATA1 } \end{aligned}$	$\begin{gathered} \text { CN } \\ \text { STATAO } \end{gathered}$	xxxx

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

PIC32MX330/350/370/430/450/470

TABLE 12-4: PORTB REGISTER MAP

$\stackrel{n}{\infty}$			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	$18 / 2$	17/1	16/0	
6100	ANSELB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ANSELB15	ANSELB14	ANSELB13	ANSELB12	ANSELB11	ANSELB10	ANSELB9	ANSELB8	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	FFFF
6110	TRISB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	xxxx
6120	PORTB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
6130	LATB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
6140	ODCB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	xxxx
6150	CNPUB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	xxxx
6160	CNPDB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	xxxx
6170	CNCONB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
6180	CNENB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	xxxx
6190	CNSTATB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	$\begin{gathered} \text { CN } \\ \text { STATB15 } \end{gathered}$	$\begin{array}{c\|} \hline \text { CN } \\ \text { STATB14 } \\ \hline \end{array}$	$\begin{gathered} \text { CN } \\ \text { STATB13 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB12 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB11 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB10 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB9 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB8 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB7 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB6 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB5 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB4 } \\ \hline \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB3 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATB2 } \end{gathered}$	$\begin{gathered} \mathrm{CN} \\ \text { STATB1 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATBO } \end{gathered}$	xxxx

[^5]TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

PIC32MX330/350/370/430/450/470

PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

TABLE 12-7: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L, PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

			Bits																¿范
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6300	ANSELD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	ANSELD3	ANSELD2	ANSELD1	-	000E
6310	TRISD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
6340	ODCD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUDO	xxxx
6360	CNPDD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	xxxx
6370	CNCOND	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
6380	CNEND	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	xxxx
6390	CNSTATD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	$\begin{gathered} \hline \text { CNS } \\ \text { TATD15 } \end{gathered}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD14 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CN } \\ \text { STATD13 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD12 } \end{gathered}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD11 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATD10 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATD9 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATD8 } \end{gathered}$	$\begin{gathered} \hline \mathrm{CN} \\ \text { STATD7 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATD6 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATD5 } \end{gathered}$	$\begin{gathered} \mathrm{CN} \\ \text { STATD4 } \end{gathered}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD3 } \end{gathered}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD2 } \end{gathered}$	$\begin{gathered} \hline \text { CN } \\ \text { STATD1 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATDO } \end{gathered}$	xxxx

$\begin{array}{ll}\text { Legend: } \\ \text { Note } & \text { 1: } \quad \text { All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }\end{array}$

PIC32MX330/350/370/430/450/470

PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY

[^6]TABLE 12-9: PORTE REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L, PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, PIC32MX470F512L DEVICES ONLY

$\begin{array}{lll}\text { Legend: } & x=\text { Unknown value on Reset; }-=\text { Unimplemented, read as ' } 0 \text { '; Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: } & \text { All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }\end{array}$

PIC32MX330/350/370/430/450/470

TABLE 12-10: PORTE REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,

[^7]TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6510	TRISF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	TRISF13	TRISF12	-	-	-	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	$x x x x$
6520	PORTF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	RF13	RF12	-	-	-	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	LATF13	LATF12	-	-	-	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	ODCF13	ODCF12	-	-	-	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCFO	$x x x x$
6550	CNPUF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	CNPUF13	CNPUF12	-	-	-	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUFO	xxxx
6560	CNPDF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	CNPDF13	CNPDF12	-	-	-	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570	CNCONF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
6580	CNENF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	CNIEF13	CNIEF12	-	-	-	CNIEF8	CNIEF7	-	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEFO	xxxx
6590	CNSTATF	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	$\begin{array}{\|c\|} \hline \text { CN } \\ \text { STATF13 } \end{array}$	$\begin{gathered} \mathrm{CN} \\ \text { STATF12 } \end{gathered}$	-	-	-	$\begin{gathered} \hline \text { CN } \\ \text { STATF8 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATF7 } \end{gathered}$	-	$\begin{gathered} \hline \text { CN } \\ \text { STATF5 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATF4 } \end{gathered}$	$\begin{array}{c\|} \hline \text { CN } \\ \text { STATF3 } \end{array}$	$\begin{gathered} \text { CN } \\ \text { STATF2 } \end{gathered}$	$\begin{gathered} \mathrm{CN} \\ \text { STATF1 } \end{gathered}$	$\begin{aligned} & \text { CN } \\ & \text { STATF0 } \end{aligned}$	xxxx

$\begin{array}{ll}\text { Legend: } & \quad x=\text { Unknown value on Reset; — = Unimplemented, read as ' } 0 \text { '; Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: } \\ \text { All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }\end{array}$

PIC32MX330／350／370／430／450／470

TABLE 12－12：PORTF REGISTER MAP FOR PIC32MX430F064L，PIC32MX450F128L，PIC32MX450F256L，AND PIC32MX470F512L DEVICES

słosey IIV			$\begin{array}{\|c\|c\|c} \hline \stackrel{\bullet}{\bullet} & \times \\ \stackrel{\circ}{\odot} & \times \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \stackrel{\otimes}{\bullet} & \times \\ \stackrel{\ominus}{\odot} & \times \\ \times \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \stackrel{\otimes}{\bullet} & \times \\ \stackrel{\rightharpoonup}{\odot} & \times \\ \times \end{array}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\ominus}{\bullet} & \times \\ \stackrel{\ominus}{\bullet} & \times \\ \times \end{array}$	$\begin{array}{l\|l} \hline \stackrel{\rightharpoonup}{\bullet} & \times \\ \stackrel{\ominus}{\bullet} & \times \\ \times \end{array}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\odot}{\bullet} & \stackrel{\odot}{\odot} \\ \hline \stackrel{\odot}{\circ} \end{array}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\odot}{\bullet} & \times \\ \stackrel{\ominus}{\bullet} & \times \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\odot}{\odot} \\ \stackrel{\odot}{4} \end{array}$	$\begin{aligned} & \hline \times \\ & \times \\ & \times \\ & \times \times \end{aligned}$
$\stackrel{n}{0}$	$\stackrel{\bigcirc}{\text { ¢ }}$	$\left.\begin{array}{\|c} \frac{0}{u} \\ \frac{\omega}{9} \\ \frac{9}{1} \end{array} \right\rvert\,$	1			$\begin{aligned} & 0 \\ & \frac{1}{2} \\ & \frac{2}{2} \\ & 2 \end{aligned}$	$1 \left\lvert\, \begin{aligned} & 0 \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	｜｜	$1 \left\lvert\,\right.$	1	z
	$\underset{N}{N}$		$1\left\|\frac{\bar{u}}{\underline{x}}\right\|$	$1 \left\lvert\, \frac{\underset{\sim}{4}}{\underset{S}{4}}\right.$	$1 \left\lvert\, \begin{aligned} & \text { ٓ } \\ & \hline \mathrm{U} \\ & 0 \end{aligned}\right.$		$1 \left\lvert\, \begin{aligned} & \bar{u} \\ & 0 \\ & 0 \\ & \vdots \end{aligned}\right.$	1 I	$1 \left\lvert\, \frac{\underset{U}{u}}{\underset{\sim}{u}}\right.$	1	z
	$\stackrel{\text { N }}{\text { ¢ }}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\mathcal{N}} \\ \frac{\underset{\sim}{\mathcal{N}}}{\stackrel{\sim}{2}} \\ \hline \end{gathered}\right.$	$1\left\|\begin{array}{l} \underset{\sim}{\mathbb{N}} \\ \underset{\sim}{\sim} \end{array}\right\|$			$1 \left\lvert\, \begin{aligned} & \text { N } \\ & \stackrel{N}{2} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}\right.$		｜ 1	$1 \left\lvert\, \begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{U} \\ & \hline \end{aligned}\right.$	1	<
	$\stackrel{\square}{\square}$		$1 \left\lvert\, \begin{gathered} \underset{\sim}{\tilde{L}} \\ \underset{\alpha}{c} \end{gathered}\right.$	$1\left\|\begin{array}{c} \frac{2}{4} \\ \stackrel{1}{4} \end{array}\right\|$				｜｜	$1 \left\lvert\, \begin{aligned} & \underset{U}{\sim} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}\right.$	1	乙
	N		$1 \left\lvert\, \begin{gathered} \underset{\sim}{7} \\ \underset{\sim}{4} \end{gathered}\right.$	$1 \left\lvert\, \frac{\underset{4}{4}}{\frac{1}{4}}\right.$		$1 \left\lvert\, \begin{aligned} & \underset{y}{4} \\ & \stackrel{y}{2} \\ & \frac{2}{2} \end{aligned}\right.$		｜｜		1	
	$\stackrel{\varrho}{\lambda}$	$\left\lvert\, \begin{gathered} \frac{n}{n} \\ \frac{\omega}{\frac{0}{\alpha}} \\ \frac{\sim}{r} \\ \hline \end{gathered}\right.$	$1 \frac{\stackrel{\leftrightarrow}{\mathbb{x}}}{\substack{2}}$	$1 \left\lvert\, \begin{aligned} & \frac{02}{4} \\ & \frac{1}{4} \end{aligned}\right.$		$1 \left\lvert\, \begin{array}{l\|l} \stackrel{n}{2} \\ \stackrel{n}{2} \\ \sum_{0}^{2} \end{array}\right.$		｜ 1	$1 \left\lvert\, \begin{aligned} & \stackrel{\sim}{U} \\ & \underset{\sim}{U} \\ & \hline \end{aligned}\right.$	1	<
	$\stackrel{\ominus}{\sim}$	1	1 I	11	1 I	｜	｜	1	1 ｜	I	1
	$\stackrel{N}{N}$	1	1 I	1 I	1 I	1 ｜	1 I	1 ｜	1 ｜	｜	1
	$\stackrel{\infty}{\underset{\sim}{d}}$		$1 \underset{\sim}{\infty} \underset{\sim}{\infty}$			$1 \left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \underset{\sim}{2} \\ & \end{aligned}\right.$	$\left\lvert\, \begin{array}{l\|l} \infty \\ \stackrel{\infty}{0} \\ \underset{\sim}{0} \\ \underset{0}{2} \end{array}\right.$	｜	$1 \left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\omega} \\ & \underset{\sim}{u} \\ & \hline \end{aligned}\right.$	1	<<
	ిiి	1	11	1 I	1 I	1 I	1 ｜	1	1 ｜	｜	1
	$\stackrel{\circ}{\stackrel{\circ}{0}}$	1	1 I	1 I	1 I	｜	1	1 I	｜	｜	1
	$\underset{N}{\underset{N}{N}}$	1	1 I	1 I	1 I	｜	1	1 ｜	I	I	1
	$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$		$1 \frac{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$			$1 \begin{gathered}\frac{N}{4} \\ \vdots \\ \frac{2}{乙} \\ \vdots\end{gathered}$		｜	$1 \left\lvert\, \begin{aligned} & \stackrel{N}{U} \\ & \underset{\sim}{U} \\ & \hline \end{aligned}\right.$	｜	¢
	$\stackrel{M}{\underset{\sim}{N}}$	$\left\|\begin{array}{l} \frac{m}{\stackrel{\omega}{\omega}} \\ \frac{\varrho}{\Gamma} \\ \frac{\alpha}{1} \end{array}\right\|$	$1\left\|\frac{m}{\frac{m}{\sim}}\right\|$		$\text { \| } \left\lvert\, \begin{aligned} & \frac{m}{\grave{U}} \\ & \hline \stackrel{0}{0} \end{aligned}\right.$	$1 \left\lvert\, \begin{aligned} & \frac{n}{2} \\ & \stackrel{y}{\partial} \\ & \frac{2}{乙} \\ & \hline \end{aligned}\right.$	$1 \left\lvert\, \begin{aligned} & \frac{m}{u} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}\right.$	$1 \frac{\stackrel{\rightharpoonup}{\omega}}{\omega}$	$1 \left\lvert\, \begin{array}{l\|l} \stackrel{m}{u} \\ \underset{\sim}{u} \end{array}\right.$	｜	<
	$\stackrel{\text { İ }}{\text { I }}$	｜	1 I	1 ｜	｜｜	｜	｜	1 ｜	｜	｜	1
	$\stackrel{n}{\bar{j}}$	1 ｜	1 I	1 ｜	｜	1 ｜	1	1 \％	｜	｜	1
әбuey ¥！		$\begin{array}{\|l\|l} \hline \frac{0}{\dot{M}} & \stackrel{0}{\dot{\rho}} \\ \hline \end{array}$	$\begin{array}{l\|l} \hline \stackrel{0}{\dot{m}} & \stackrel{0}{\stackrel{\rightharpoonup}{\circ}} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{\dot{\Gamma}} \stackrel{0}{\dot{\rho}} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{i} & \stackrel{O}{i} \\ \hline \stackrel{i}{c} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{\dot{m}} & \stackrel{\rightharpoonup}{\stackrel{ }{\circ}} \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \stackrel{0}{\dot{m}} & \stackrel{0}{\stackrel{\rightharpoonup}{\circ}} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{i} & \stackrel{O}{i} \\ \hline \stackrel{\circ}{c} \\ \hline \end{array}$	$\begin{array}{l\|l} \hline \stackrel{0}{\dot{m}} & \stackrel{0}{\stackrel{ }{\circ}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{0}{\dot{m}} \\ \hline \end{array}$	$\stackrel{\bigcirc}{\text { i }}$
		$\begin{aligned} & \frac{\omega}{\omega} \\ & \frac{\square}{\Gamma} \end{aligned}$	$\begin{aligned} & \text { 宸 } \\ & \text { 人 } \end{aligned}$	$\stackrel{4}{5}$	$\begin{aligned} & \text { U } \\ & 0 \end{aligned}$	$\frac{\stackrel{u}{\lambda}}{\substack{2}}$	$\frac{\Delta}{0}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \text { 屶 } \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{y}{c} \end{aligned}$
		$\frac{\stackrel{0}{4}}{6}$	$\begin{aligned} & \text { N్ల్ర } \\ & \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{6} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { 앙 } \end{aligned}$	융	$\stackrel{8}{\circ}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \hline 8 \\ & 00 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { 앙 } \\ & \hline \end{aligned}$

$\begin{array}{ll}\text { Legend：} & \quad x=\text { Unknown value on Reset；}-=\text { Unimplemented，read as＇} 0 \text {＇；Reset values are shown in hexadecimal．} \\ \text { Note } & \text { 1：} \\ \text { All registers in this table have corresponding CLR，SET and INV registers at its virtual address，plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text { ，respectively．See Section } 12.2 \text {＂CLR，SET，and INV Registers＂for }\end{array}$
TABLE 12-13: PORTF REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, AND PIC32MX370F512H DEVICES

$\begin{array}{ll}\text { Legend: } \quad x=\text { Unknown value on Reset; }-=\text { Unimplemented, read as ' } 0 \text { '; Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }\end{array}$ Note more information.

PIC32MX330/350/370/430/450/470

TABLE 12-14: PORTF REGISTER MAP FOR PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES

$\begin{array}{ll}\text { Legend: } & \quad x=\text { Unknown value on Reset; }-=\text { Unimplemented, read as ' } 0 \text { '; Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: } \\ \text { All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }\end{array}$
TABLE 12-15: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L, PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6600	ANSELG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	ANSELG9	ANSELG8	ANSELG7	ANSELG6	-	-	-	-	-	-	01C0
6610	TRISG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	TRISG15	TRISG14	TRISG13	TRISG12	-	-	TRISG9	TRISG8	TRISG7	TRISG6	-	-	TRISG3	TRISG2	TRISG1	TRISG0	xxxx
6620	PORTG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	RG15	RG14	RG13	RG12	-	-	RG9	RG8	RG7	RG6	-	-	RG3 ${ }^{(2)}$	RG2 ${ }^{(2)}$	RG1	RG0	xxxx
6630	LATG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	LATG15	LATG14	LATG13	LATG12	-	-	LATG9	LATG8	LATG7	LATG6	-	-	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	-	-	ODCG9	ODCG8	ODCG7	ODCG6	-	-	ODCG3	ODCG2	ODCG1	ODCG0	xxxx
6650	CNPUG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	-	-	CNPUG9	CNPUG8	CNPUG7	CNPUG6	-	-	CNPUG3	CNPUG2	CNPUG1	CNPUG0	xxxx
6660	CNPDG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	-	-	CNPDG9	CNPDG8	CNPDG7	CNPDG6	-	-	CNPDG3	CNPDG2	CNPDG1	CNPDG0	xxxx
6670	CNCONG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
6680	CNENG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	-	-	CNIEG9	CNIEG8	CNIEG7	CNIEG6	-	-	CNIEG3	CNIEG2	CNIEG1	CNIEG0	xxxx
6690	CNSTATG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CN STATG15	$\begin{array}{c\|} \hline \text { CN } \\ \text { STATG14 } \end{array}$	CN STATG13	$\begin{array}{c\|} \hline \text { CN } \\ \text { STATG12 } \end{array}$	-	-	CN STATG9	$\begin{gathered} \text { CN } \\ \text { STATG8 } \end{gathered}$	CN STATG7	$\begin{gathered} \text { CN } \\ \text { STATG6 } \end{gathered}$	-	-	CN STATG3	CN STATG2	$\begin{gathered} \text { CN } \\ \text { STATG1 } \end{gathered}$	$\begin{gathered} \text { CN } \\ \text { STATG0 } \end{gathered}$	xxxx

Legend:
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for This bit only implemented on devices without a USB module.

PIC32MX330/350/370/430/450/470

TABLE 12-16: PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,

Legend: $\quad \mathrm{X}=\mathrm{Unknown}$ value on Ret, more information.
2: This bit is only available on devices without a USB module.
TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
FA04	INT1R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	INT1R<3:0>				0000
FA08	INT2R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	INT2R<3:0>				0000
FAOC	INT3R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	INT3R<3:0>				0000
FA10	INT4R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	INT4R<3:0>				0000
FA18	T2CKR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	T2CKR<3:0>				0000
FA1C	T3CKR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	T3CKR<3:0>				0000
FA20	T4CKR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	T4CKR<3:0>				0000
FA24	T5CKR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	T5CKR<3:0>				0000
FA28	IC1R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	IC1R<3:0>				0000
FA2C	IC2R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	IC2R<3:0>				0000
FA30	IC3R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-		IC3			0000
		31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
	IC4R	15:0	-	-	-	-	-	-	-	-	-	-	-	-		IC4			0000
		31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-		IC5			0000
	OCFAR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
	OCFAR	15:0	-	-	-	-	-	-	-	-	-	-	-	-		OCF	3:0>		0000
		31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
FA50	U1RXR	15:0	-	-	-	-	-	-	-	-	-	-	-	-		U1R	3:0>		0000
Legen Note	$x=$	known egister	lue on not ava	$\begin{aligned} & \text { set; }= \\ & \text { le on } 64 \end{aligned}$	mplem device	d, read	$0 \text { '. Res }$	values a	hown in	adecim									

PIC32MX330/350/370/430/450/470

TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

[^8]TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

PIC32MX330/350/370/430/450/470

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
FB90	RPC4R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPC4<3:0>				0000
FBB4	RPC13R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPC13<3:0>				0000
FBB8	RPC14R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPC14<3:0>				0000
FBC0	RPDOR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD0<3:0>				0000
FBC4	RPD1R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD1<3:0>				0000
FBC8	RPD2R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD2<3:0>				0000
FBCC	RPD3R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD3<3:0>				0000
FBD0	RPD4R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD4<3:0>				0000
FBD4	RPD5R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD5<3:0>				0000
FBE0	RPD8R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD8<3:0>				0000
FBE4	RPD9R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD9<3:0>				0000
FBE8	RPD10R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD10<3:0>				0000
FBEC	RPD11R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD11<3:0>				0000
FBF0	RPD12R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD12<3:0>				0000
FBF8	RPD14R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD14<3:0>				0000
FBFC	RPD15R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPD15<3:0>				0000
FCOC	RPE3R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPE3<3:0>				0000
Legend Note	d: $x=$ un 1: This re 2: This re 3: This re	known gister is gister is gister is	lue on R not avail only ava not avail	$\begin{aligned} & \text { et; }-=1 \\ & \text { e on } 64- \\ & \text { sle on de } \\ & \text { e on } 64- \end{aligned}$	mpleme devices es with devices	d, read a USB m th a USB	0'. Res ule. module.	alues ar	hown in	adecim									

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

			Bits																$\begin{aligned} & \mathscr{y} \\ & \mathbb{む} \\ & 0 \\ & 0 \\ & \bar{\alpha} \end{aligned}$
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
FC14	RPE5R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPE5<3:0>				0000
FC20	RPE8R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPE8<3:0>				0000
FC24	RPE9R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPE9<3:0>				0000
FC40	RPFOR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF0<3:0>				0000
FC44	RPF1R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF1<3:0>				0000
FC48	RPF2R ${ }^{(3)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF2<3:0>				0000
FC4C	RPF3R ${ }^{(2)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF3<3:0>				0000
FC50	RPF4R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF4<3:0>				0000
FC54	RPF5R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF5<3:0>				0000
FC58	RPF6R ${ }^{(2)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF6<3:0>				0000
FC60	RPF8R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF8<3:0>				0000
FC70	RPF12R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF12<3:0>				0000
FC74	RPF13R ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPF13<3:0>				0000
FC80	RPGOR ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPG0<3:0>				0000
FC84	RPG12 ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPG1<3:0>				0000
FC98	RPG6R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPG6<3:0>				0000
FC9C	RPG7R	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	RPG7<3:0>				0000
Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values Note 1: This register is not available on 64-pin devices. 2: This register is only available on devices without a USB module. 3: This register is not available on 64-pin devices with a USB module.																			

PIC32MX330/350/370/430/450/470
TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	[pin name] $\mathrm{R}<3: 0>$			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-4 Unimplemented: Read as ' 0 '
bit 3-0 [pin name]R<3:0>: Peripheral Pin Select Input bits
Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table 12-1 for input pin selection values.

Note: \quad Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) $=0$.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	Bit $30 / 22 / 14 / 6$	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	-	-	RPnR<3:0>			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-4 Unimplemented: Read as ' 0 '
bit 3-0 RPnR<3:0>: Peripheral Pin Select Output bits
See Table 12-2 for output pin selection values.
Note: \quad Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) $=0$.

PIC32MX330/350/370/430/450/470

REGISTER 12-3: CNCONx: CHANGE NOTICE CONTROL FOR PORTx REGISTER (x = A - G)

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	ON	-	SIDL	-	-	-	-	-
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Change Notice (CN) Control ON bit $1=C N$ is enabled $0=C N$ is disabled
bit 14	Unimplemented: Read as ' 0 '
bit 13	SIDL: Stop in Idle Control bit
	1 = CPU Idle Mode halts CN operation $0=$ CPU Idle does not affect CN operation

bit 12-0 Unimplemented: Read as ' 0 '

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/ asynchronous 16 -bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

The following modes are supported:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
	ON ${ }^{(1)}$	-	SIDL	TWDIS	TWIP	-	-	-
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	-	TCKPS<1:0>		-	TSYNC	TCS	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as '0’
bit 15 ON: Timer On bit ${ }^{(1)}$
1 = Timer is enabled
$0=$ Timer is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
0 = Continue operation even in Idle mode
bit 12 TWDIS: Asynchronous Timer Write Disable bit
1 = Writes to TMR1 are ignored until pending write operation completes
0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11 TWIP: Asynchronous Timer Write in Progress bit
In Asynchronous Timer mode:
1 = Asynchronous write to TMR1 register in progress
0 = Asynchronous write to TMR1 register complete
In Synchronous Timer mode:
This bit is read as ' 0 '.
bit 10-8 Unimplemented: Read as ' 0 '
bit 7 TGATE: Timer Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
$0=$ Gated time accumulation is disabled
bit $6 \quad$ Unimplemented: Read as ' 0 '
bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits
$11=1: 256$ prescale value
$10=1: 64$ prescale value
$01=1: 8$ prescale value
$00=1: 1$ prescale value
bit 3 Unimplemented: Read as ' 0 '

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
When TCS = 1:
1 = External clock input is synchronized
0 = External clock input is not synchronized
When TCS = 0:
This bit is ignored.
bit 1 TCS: Timer Clock Source Select bit
1 = External clock from TxCKI pin
0 = Internal peripheral clock
bit $0 \quad$ Unimplemented: Read as ' 0 ’

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

14.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- Synchronous external 16-bit timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous internal 32-bit timer
- Synchronous internal 32-bit gated timer
- Synchronous external 32-bit timer

Note: In this chapter, references to registers, TxCON, TMRx and PRx, use ' x ' to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, ' x ' represents Timer2 or 4; 'y' represents Timer3 or 5.

14.1 Additional Supported Features

- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/ 3 in 32-bit mode)
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)

PIC32MX330/350/370/430/450/470

FIGURE 14-2: \quad TIMER2/3, $4 / 5$ BLOCK DIAGRAM (32-BIT) ${ }^{(1)}$

Note 1: In this diagram, the use of ' x ' in registers, TxCON, TMRx, PRx and TxCK, refers to either Timer2 or Timer4; the use of ' y ' in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5.
2: ADC event trigger is available only on the Timer2/3 pair.
14.2 Control Register

			Bits																			
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0				
0800	T2CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	ON	-	SIDL	-	-	-	-	-	TGATE	TCKPS<2:0>			T32	-	TCS	-	0000			
0810	TMR2	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	TMR2<15:0>																0000			
0820	PR2	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	PR2<15:0>																FFFF			
0A00	T3CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	ON	-	SIDL	-	-	-	-	-	TGATE		PPS<2		-	-	TCS	-	0000			
0A10	TMR3	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	TMR3<15:0>																0000			
0A20	PR3	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	PR3<15:0>																FFFF			
0C00	T4CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	ON	-	SIDL	-	-	-	-	-	TGATE	TCKPS<2:0>			T32	-	TCS	-	0000			
0C10	TMR4	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	TMR4<15:0>																0000			
0C20	PR4	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	PR4<15:0>																FFFF			
0E00	T5CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	ON	-	SIDL	-	-	-	-	-	TGATE	TCKPS<2:0>			-	-	TCS	-	0000			
0E10	TMR5	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	TMR5<15:0>																0000			
0E20	PR5	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000			
		15:0	PR5<15:0>																FFFF			
Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and more information.																						

PIC32MX330/350/370/430/450/470

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	Bit 27/19/11/3	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	ON ${ }^{(1,3)}$	-	SIDL ${ }^{(4)}$	-	-	-	-	-
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE ${ }^{(3)}$	TCKPS<2:0> ${ }^{(3)}$			T32 ${ }^{(2)}$	-	TCS ${ }^{(3)}$	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as '0'
bit 15 ON: Timer On bit ${ }^{(1,3)}$
1 = Module is enabled
$0=$ Module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit ${ }^{(4)}$
1 = Discontinue operation when device enters Idle mode
$0=$ Continue operation even in Idle mode
bit 12-8 Unimplemented: Read as ' 0 '
bit 7 TGATE: Timer Gated Time Accumulation Enable bit ${ }^{(3)}$
When TCS = 1:
This bit is ignored and is read as ' 0 '.
When TCS = 0:
1 = Gated time accumulation is enabled
$0=$ Gated time accumulation is disabled
bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits ${ }^{(3)}$
$111=1: 256$ prescale value
$110=1: 64$ prescale value
$101=1: 32$ prescale value
$100=1: 16$ prescale value
$011=1: 8$ prescale value
$010=1: 4$ prescale value
$001=1: 2$ prescale value
$000=1: 1$ prescale value

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: This bit is available only on even numbered timers (Timer2 and Timer4).
3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)
 bit $3 \quad$ T32: 32-Bit Timer Mode Select bit ${ }^{(2)}$
 1 = Odd numbered and even numbered timers form a 32-bit timer
 $0=$ Odd numbered and even numbered timers form a separate 16-bit timer
 bit 2 Unimplemented: Read as ' 0 '
 bit 1 TCS: Timer Clock Source Select bit ${ }^{(3)}$
 1 = External clock from TxCK pin
 0 = Internal peripheral clock
 bit $0 \quad$ Unimplemented: Read as ' 0 '

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: This bit is available only on even numbered timers (Timer2 and Timer4).
3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

PIC32MX330/350/370/430/450/470

NOTES:

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation $>$ Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.
The following are some of the key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 15-1: WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

15.1 Watchdog Timer Control Registers

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	$23 / 7$	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	WDTCON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
00	WDTCON	15:0	ON	-	-	-	-	-	-	-	-			TPS			WDTWINE	VTTCLR	0000

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0						
	ON ${ }^{(1,2)}$	-	-	-	-	-	-	-
7:0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
	-	SWDTPS<4:0>					WDTWINEN	WDTCLR

Legend:	$y=$ Values set from Configuration bits on POR	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=B i t$ is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Watchdog Timer Enable bit ${ }^{(1,2)}$
1 = Enables the WDT if it is not enabled by the device configuration
$0=$ Disable the WDT if it was enabled in software
bit 14-7 Unimplemented: Read as ' 0 '
bit 6-2 SWDTPS<4:0>: Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
bit 1 WDTWINEN: Watchdog Timer Window Enable bit
1 = Enable windowed Watchdog Timer
0 = Disable windowed Watchdog Timer
bit $0 \quad$ WDTCLR: Watchdog Timer Reset bit
1 = Writing a ' 1 ' will clear the WDT
$0=$ Software cannot force this bit to a ' 0 '

Note 1: A read of this bit results in a ' 1 ' if the Watchdog Timer is enabled by the device configuration or software.
2: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

NOTES:

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32 -bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:

- Simple capture event modes:
- Capture timer value on every falling edge of input at ICx pin
- Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Capture timer value on every edge (rising and falling), specified edge first.
- Prescaler capture event modes:
- Capture timer value on every 4 th rising edge of input at ICx pin
- Capture timer value on every 16 th rising edge of input at ICx pin
Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.
Other operational features include:
- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after $1,2,3$, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

Note: An ' x ' in a signal, register or bit name denotes the number of the capture channel.

PIC32MX330/350/370/430/450/470

16.1 Control Register

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x’ CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c\|} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	RW-0	R/W-0
	ON ${ }^{(1)}$	-	SIDL	-	-	-	FEDGE	C32
7:0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
	ICTMR	$\mathrm{ICl}<1: 0>$		ICOV	ICBNE	ICM<2:0>		

Legend:

$R=$ Readable bit	W = Writable bit
$-n=$ Bit Value at POR: (' 0 ', ' 1 ', $x=$ unknown $)$	$U=$ Unimplemented bit
	$P=$ Programmable bit $\quad r=$ Reserved bit

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Input Capture Module Enable bit ${ }^{(1)}$
1 = Module is enabled
0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Control bit
1 = Halt in CPU Idle mode
$0=$ Continue to operate in CPU Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit $9 \quad$ FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
1 = Capture rising edge first
0 = Capture falling edge first
bit $8 \quad$ C32: 32-bit Capture Select bit
$1=32$-bit timer resource capture
$0=16$-bit timer resource capture
bit 7 ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is ' 1 ')
$0=$ Timer3 is the counter source for capture
1 = Timer2 is the counter source for capture
bit 6-5 ICI<1:0>: Interrupt Control bits
11 = Interrupt on every fourth capture event
$10=$ Interrupt on every third capture event
$01=$ Interrupt on every second capture event
$00=$ Interrupt on every capture event
bit $4 \quad$ ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture overflow has occurred
0 = No input capture overflow has occurred
bit 3
ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
1 = Input capture buffer is not empty; at least one more capture value can be read
$0=$ Input capture buffer is empty
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x’ CONTROL REGISTER (CONTINUED)

bit 2-0 ICM<2:0>: Input Capture Mode Select bits
111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
110 = Simple Capture Event mode - every edge, specified edge first and every edge thereafter
101 = Prescaled Capture Event mode - every sixteenth rising edge
100 = Prescaled Capture Event mode - every fourth rising edge
011 = Simple Capture Event mode - every rising edge
010 = Simple Capture Event mode - every falling edge
001 = Edge Detect mode - every edge (rising and falling)
$000=$ Input Capture module is disabled
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

NOTES:

PIC32MX330/350/370/430/450/470

17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

17.1 Control Registers
TABLE 17-1: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 5 REGISTER MAP
słosəy II

			Bits															
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	$17 / 1$	16/0
3000	OC1CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3000	OCICON	15:0	ON	-	SIDL	-	-	-	-	-	-	-	OC32	OCFLT	OCTSEL		M<2	
3010	OC1R	31:16	OC1R<31:0>															
3020	OC1RS	$\begin{array}{\|c\|} \hline 31: 16 \\ \hline 15: 0 \\ \hline \end{array}$	OC1RS<31:0>															
3200	OC2CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	OC32	OCFLT	OCTSEL		CM<2	
3210	OC2R	31:16	OC2R<31:0>															
3220	OC2RS	$\begin{array}{\|c\|} \hline 31: 16 \\ \hline 15: 0 \\ \hline \end{array}$	OC2RS<31:0>															
3400	OC3CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	OC32	OCFLT	OCTSEL		CM<2	
3410	OC3R	$\begin{array}{\|c\|} \hline 31: 16 \\ \hline 15: 0 \\ \hline \end{array}$	OC3R<31:0>															
3420	OC3RS	$\begin{array}{\|c} \hline 31: 16 \\ 15: 0 \end{array}$								OC3	$1: 0>$							
3600	OC4CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		15:0	ON	-	SIDL	-	-	-	-	-	-	-	OC32	OCFLT	OCTSEL		CM<2	
3610	OC4R	$\begin{array}{\|c\|} \hline 31: 16 \\ \hline 15: 0 \\ \hline \end{array}$	OC4R<31:0>															
3620	OC4RS	$\begin{array}{\|c\|} \hline 31: 16 \\ 15: 0 \end{array}$	OC4RS<31:0>															
3800	OC5CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	OCSCON	15:0	ON	-	SIDL	-	-	-	-	-	-	-	OC32	OCFLT	OCTSEL		CM<2	
3810	OC5R	31:16	OC5R<31:0>															
3820	OC5RS	31:16	OC5RS<31:0>															

[^9]REGISTER 17-1: OCxCON: OUTPUT COMPARE ' x ' CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	ON ${ }^{(1)}$	-	SIDL	-	-	-	-	-
7:0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	OC32	OCFLT ${ }^{(2)}$	OCTSEL	OCM<2:0>		

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Output Compare Peripheral On bit ${ }^{(1)}$
1 = Output Compare peripheral is enabled
$0=$ Output Compare peripheral is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters Idle mode
0 = Continue operation in Idle mode
bit 12-6 Unimplemented: Read as ' 0 '
bit 5 OC32: 32-bit Compare Mode bit
$1=O C x R<31: 0>$ and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source
$0=O C x R<15: 0>$ and $O C x R S<15: 0>$ are used for comparisons to the 16 -bit timer source
bit 4 OCFLT: PWM Fault Condition Status bit ${ }^{(2)}$
$1=$ PWM Fault condition has occurred (cleared in HW only)
$0=$ No PWM Fault condition has occurred
bit 3 OCTSEL: Output Compare Timer Select bit
1 = Timer3 is the clock source for this Output Compare module
$0=$ Timer2 is the clock source for this Output Compare module
bit 2-0 OCM<2:0>: Output Compare Mode Select bits
111 = PWM mode on OCx; Fault pin is enabled
$110=$ PWM mode on OCx; Fault pin is disabled
101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
$100=$ Initialize OCx pin low; generate single output pulse on OCx pin
011 = Compare event toggles OCx pin
010 = Initialize OCx pin high; compare event forces OCx pin low
001 = Initialize OCx pin low; compare event forces OCx pin high
$000=$ Output compare peripheral is disabled but continues to draw current

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: This bit is only used when $O C M<2: 0>=$ ' 111 '. It is read as ' 0 ' in all other modes.

PIC32MX330/350/370/430/450/470

NOTES:

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola ${ }^{\circledR}$ SPI and SIOP interfaces.

The following are some of the key features of the SPI module:

- Master and Slave modes support
- Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
- FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during CPU Sleep and Idle mode
- Audio Codec Support:
- I^{2} S protocol
- Left-justified
- Right-justified
- PCM

FIGURE 18-1: SPI MODULE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

18.1 Control Registers

			Bits																$\begin{aligned} & \stackrel{n}{\overleftarrow{0}} \\ & \stackrel{0}{0} \\ & \stackrel{\psi}{ً} \end{aligned}$
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>			MCLKSEL	-	-	-	-	-	SPIFE	ENHBUF	0000
		15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISEL<1:0>		SRXISEL<1:0>		0000
5810	SPI1STAT	31:16	-	-	-	RXBUFELM<4:0>					-	-	-	TXBUFELM<4:0>					0000
		15:0	-	-	-	FRMERR	SPIBUSY	-	-	SPITUR	SRMT	SPIROV	SPIRBE	-	SPITBE	-	SPITBF	SPIRBF	19EB
5820	SPI1BUF	$31: 16$ $15: 0$	DATA<31:0>																0000
5830	SPI1BRG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-					BRG<8:0>					0000
5840	SPI1CON2	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	$\begin{gathered} \text { SPI } \\ \text { SGNEXT } \end{gathered}$	-	-	FRM ERREN	$\begin{gathered} \text { SPI } \\ \text { ROVEN } \end{gathered}$	$\begin{gathered} \hline \text { SPI } \\ \text { TUREN } \end{gathered}$	IGNROV	IGNTUR	AUDEN	-	-	-	AUD MONO	-	AUDM	D<1:0>	0000
5A00	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>			MCLKSEL	-	-	-	-	-	SPIFE	ENHBUF	0000
		15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXIS	1:0>	SRXIS	L<1:0>	0000
5A10	SPI2STAT	31:16	-	-	-	RXBUFELM<4:0>					-	-	-	TXBUFELM<4:0>					0000
5A10		15:0	-	-	-	FRMERR	SPIBUSY	-	-	SPITUR	SRMT	SPIROV	SPIRBE	-	SPITBE	-	SPITBF	SPIRBF	19EB
5A20	SPI2BUF	31:16	DATA<31:0>																0000
5A30	SPI2BRG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	BRG<8:0>									0000
		31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
5A40	SPI2CON2	15:0	$\begin{gathered} \text { SPI } \\ \text { SGNEXT } \end{gathered}$	-	-	FRM ERREN	$\begin{gathered} \text { SPI } \\ \text { ROVEN } \end{gathered}$	$\begin{gathered} \text { SPI } \\ \text { TUREN } \end{gathered}$	IGNROV	IGNTUR	AUDEN	-	-	-	AUD MONO	-	AUDM	D<1:0>	0000

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-0							
	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>		
23:16	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	MCLKSEL ${ }^{(2)}$	-	-	-	-	-	SPIFE	ENHBUF ${ }^{(2)}$
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	$\mathrm{ON}{ }^{(1)}$	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ${ }^{(3)}$
7:0	R/W-0							
	SSEN	CKP(${ }^{(4)}$	MSTEN	DISSDI	STXISEL<1:0>		SRXISEL<1:0>	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ '

bit 31 FRMEN: Framed SPI Support bit
1 = Framed SPI support is enabled ($\overline{\mathrm{SSx}}$ pin used as FSYNC input/output)
$0=$ Framed SPI support is disabled
bit 30 FRMSYNC: Frame Sync Pulse Direction Control on $\overline{\text { SSx }}$ pin bit (Framed SPI mode only)
1 = Frame sync pulse input (Slave mode)
$0=$ Frame sync pulse output (Master mode)
bit 29 FRMPOL: Frame Sync / Slave Select Polarity bit (Framed SPI or Master Transmit modes only)
1 = Frame pulse or SSx pin is active-high
$0=$ Frame pulse or SSx pin is active-low
bit 28 MSSEN: Master Mode Slave Select Enable bit
1 = Slave select SPI support enabled. The $\overline{\mathrm{SS}}$ pin is automatically driven during transmission in
Master mode. Polarity is determined by the FRMPOL bit.
$0=$ Slave select SPI support is disabled.
bit 27 FRMSYPW: Frame Sync Pulse Width bit
1 = Frame sync pulse is one character wide
$0=$ Frame sync pulse is one clock wide
bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in FRAMED_SYNC mode.
111 = Reserved; do not use
110 = Reserved; do not use
101 = Generate a frame sync pulse on every 32 data characters
$100=$ Generate a frame sync pulse on every 16 data characters
$011=$ Generate a frame sync pulse on every 8 data characters
$010=$ Generate a frame sync pulse on every 4 data characters
$001=$ Generate a frame sync pulse on every 2 data characters
$000=$ Generate a frame sync pulse on every data character
bit 23 MCLKSEL: Master Clock Enable bit ${ }^{(2)}$
$1=$ REFCLK is used by the Baud Rate Generator
$0=$ PBCLK is used by the Baud Rate Generator
bit 22-18 Unimplemented: Read as ' 0 '

Note 1: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: \quad This bit can only be written when the ON bit $=0$.
3: This bit is not used in the Framed SPI mode. The user should program this bit to ' 0 ' for the Framed SPI mode (FRMEN = 1).
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of CKP.

PIC32MX330/350/370/430/450/470

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
$1=$ Frame synchronization pulse coincides with the first bit clock
$0=$ Frame synchronization pulse precedes the first bit clock
bit 16 ENHBUF: Enhanced Buffer Enable bit ${ }^{(2)}$
1 = Enhanced Buffer mode is enabled
0 = Enhanced Buffer mode is disabled
bit 15 ON: SPI Peripheral On bit ${ }^{(1)}$
$1=$ SPI Peripheral is enabled 0 = SPI Peripheral is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters in Idle mode
0 = Continue operation in Idle mode
bit 12 DISSDO: Disable SDOx pin bit
1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
$0=$ SDOx pin is controlled by the module
bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits
When AUDEN = 1:

MODE32	MODE16	Communication
1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN $=0$:		
MODE32	MODE16	Communication
1	x	32-bit
0	1	16 -bit
0	0	8 -bit

bit 9 SMP: SPI Data Input Sample Phase bit
Master mode (MSTEN = 1):
1 = Input data sampled at end of data output time
$0=$ Input data sampled at middle of data output time
Slave mode (MSTEN = 0):
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP $=0$.
bit 8 CKE: SPI Clock Edge Select bit ${ }^{(3)}$
1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
$0=$ Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
bit $7 \quad$ SSEN: Slave Select Enable (Slave mode) bit
$1=\overline{S S x}$ pin used for Slave mode
$0=\overline{S S x}$ pin not used for Slave mode, pin controlled by port function.
bit $6 \quad$ CKP: Clock Polarity Select bit ${ }^{(4)}$
1 = Idle state for clock is a high level; active state is a low level
$0=$ Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
$0=$ Slave mode

Note 1: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: \quad This bit can only be written when the ON bit $=0$.
3: This bit is not used in the Framed SPI mode. The user should program this bit to ' 0 ' for the Framed SPI mode (FRMEN = 1).
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of CKP.

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

bit 4 DISSDI: Disable SDI bit
1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
$0=$ SDI pin is controlled by the SPI module
bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
$10=$ Interrupt is generated when the buffer is empty by one-half or more
$01=$ Interrupt is generated when the buffer is completely empty
$00=$ Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
$11=$ Interrupt is generated when the buffer is full
$10=$ Interrupt is generated when the buffer is full by one-half or more
01 I Interrupt is generated when the buffer is not empty
$00=$ Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
Note 1: When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: \quad This bit can only be written when the ON bit $=0$.
3: This bit is not used in the Framed SPI mode. The user should program this bit to ' 0 ' for the Framed SPI mode (FRMEN = 1).
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of CKP.

PIC32MX330/350/370/430/450/470

REGISTER 18-2: SPIxCON2: SPI CONTROL REGISTER 2

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ 26 / 18 / 10 / 2 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{array}{\|c\|} \text { Bit } \\ 24 / 16 / 8 / 0 \end{array}$
31:24	$\mathrm{U}-0$	U-0						
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SPISGNEXT	-	-	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	AUDEN ${ }^{(1)}$	-	-	-	AUDMONO ${ }^{(1,2)}$	-	AUDMOD	<1:0> ${ }^{(1,2)}$

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
1 = Data from RX FIFO is sign extended
$0=$ Data from RX FIFO is not sign extened
bit 14-13 Unimplemented: Read as ' 0 '
bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit
1 = Frame Error overflow generates error events
0 = Frame Error does not generate error events
bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
1 = Receive overflow generates error events
$0=$ Receive overflow does not generate error events
bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
1 = Transmit Underrun Generates Error Events
0 = Transmit Underrun Does Not Generates Error Events
bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
$1=\mathrm{AROV}$ is not a critical error; during ROV data in the fifo is not overwritten by receive data
$0=$ A ROV is a critical error which stop SPI operation
bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
0 = A TUR is a critical error which stop SPI operation
bit 7 AUDEN: Enable Audio CODEC Support bit ${ }^{(1)}$
1 = Audio protocol is enabled
$0=$ Audio protocol is disabled
bit 6-5 Unimplemented: Read as ' 0 '
bit 3 AUDMONO: Transmit Audio Data Format bit ${ }^{(1,2)}$
1 = Audio data is mono (Each data word is transmitted on both left and right channels)
$0=$ Audio data is stereo
bit 2 Unimplemented: Read as ' 0 '
bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit ${ }^{(1,2)}$
$11=$ PCM/DSP mode
$10=$ Right Justified mode
01 = Left Justified mode
$00=I^{2} S$ mode

Note 1: This bit can only be written when the ON bit $=0$.
2: \quad This bit is only valid for AUDEN $=1$.

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	-	-	-	RXBUFELM<4:0>				
23:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	-	-	-	TXBUFELM<4:0>				
15:8	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
	-	-	-	FRMERR	SPIBUSY	-	-	SPITUR
7:0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
	SRMT	SPIROV	SPIRBE	-	SPITBE	-	SPITBF	SPIRBF

Legend:	$C=$ Clearable bit	$H S=$ Set in hardware
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-29 Unimplemented: Read as ' 0 '
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF =1)
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 FRMERR: SPI Frame Error status bit
1 = Frame error is detected
$0=$ No Frame error is detected
This bit is only valid when FRMEN = 1 .
bit 11 SPIBUSY: SPI Activity Status bit
1 = SPI peripheral is currently busy with some transactions
$0=$ SPI peripheral is currently idle
bit 10-9 Unimplemented: Read as ' 0 '
bit 8 SPITUR: Transmit Under Run bit
1 = Transmit buffer has encountered an underrun condition
$0=$ Transmit buffer has no underrun condition
This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit $=0$) and re-enabling (ON bit = 1) the module, or writing a ' 0 ' to SPITUR.
bit $7 \quad$ SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)
1 = When SPI module shift register is empty
$0=$ When SPI module shift register is not empty
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new data is completely received and discarded. The user software has not read the previous data in
the SPIxBUF register.
$0=$ No overflow has occurred
This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit =1) the module, or by writing a ' 0 ' to SPIROV.
bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)
1 = RX FIFO is empty (CRPTR = SWPTR)
$0=$ RX FIFO is not empty (CRPTR \neq SWPTR)
bit 4 Unimplemented: Read as ' 0 '

PIC32MX330/350/370/430/450/470

REGISTER 18-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
1 = Transmit buffer, SPIxTXB is empty
$0=$ Transmit buffer, SPIxTXB is not empty
Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.
Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
bit 2 Unimplemented: Read as ' 0 '
bit 1 SPITBF: SPI Transmit Buffer Full Status bit
1 = Transmit not yet started, SPITXB is full
$0=$ Transmit buffer is not full
Standard Buffer Mode:
Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.
Enhanced Buffer Mode:
Set when CWPTR + 1 = SRPTR; cleared otherwise
bit $0 \quad$ SPIRBF: SPI Receive Buffer Full Status bit
1 = Receive buffer, SPIxRXB is full
0 = Receive buffer, SPIxRXB is not full
Standard Buffer Mode:
Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.
Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
Enhanced Buffer Mode:
Set when SWPTR + 1 = CRPTR; cleared otherwise

19.0 INTER-INTEGRATED CIRCUIT (${ }^{2} \mathrm{C}$)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "InterIntegrated Circuit (${ }^{2} \mathrm{C}$)" (DS60001116), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/ pic32).

The $\mathrm{I}^{2} \mathrm{C}$ module provides complete hardware support for both Slave and Multi-Master modes of the $\mathrm{I}^{2} \mathrm{C}$ serial communication standard. Figure 19-1 illustrates the $1^{2} \mathrm{C}$ module block diagram.
Each $I^{2} C$ module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.
Each $I^{2} \mathrm{C}$ module offers the following key features:

- $\mathrm{I}^{2} \mathrm{C}$ interface supporting both master and slave operation
- $I^{2} \mathrm{C}$ Slave mode supports 7 -bit and 10 -bit addressing
- $I^{2} C$ Master mode supports 7 -bit and 10 -bit addressing
- $\mathrm{I}^{2} \mathrm{C}$ port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the $\mathrm{I}^{2} \mathrm{C}$ port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- $I^{2} \mathrm{C}$ supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

PIC32MX330/350/370/430/450/470

FIGURE 19-1: $\quad{ }^{2}$ C BLOCK DIAGRAM

19.1 Control Registers

		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{N}{\tilde{N}} \\ & \stackrel{\sim}{\star} \end{aligned}$	Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	$25 / 9$	$24 / 8$	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
5000	I2C1CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	BFFF
5010	I2C1STAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	12COV	D_A	P	S	R_W	RBF	TBF	0000
5020	I2C1ADD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	Address Register										0000
5030	I2C1MSK	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	Address Mask Register										0000
5040	I2C1BRG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	Baud Rate Generator Register												0000
5050	I2C1TRN	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	Transmit Register								0000
5060	I2C1RCV	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	Receive Register								0000
5100	I2C2CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	BFFF
5110	I2C2STAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF	0000
5120	I2C2ADD	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	Address Register										0000
5130	I2C2MSK	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	Address Mask Register										0000
5140	I2C2BRG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	Baud Rate Generator Register												0000
5150	I2C2TRN	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-	Transmit Register								0000
5160	I2C2RCV	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	-				Receive	egister				0000

$\begin{array}{ll}\text { Legend: } & \mathrm{x}=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note 1: } & \text { All registers in this table except I2CxRCV have }\end{array}$
Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and

PIC32MX330/350/370/430/450/470

REGISTER 19-1: I2CxCON: ${ }^{2}$ C CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\text { 29/21/13/5 }}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
	ON(1)	-	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC				
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	$\mathrm{HC}=$ Cleared in Hardware	
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: $I^{2} \mathrm{C}$ Enable bit ${ }^{(1)}$
1 = Enables the $I^{2} \mathrm{C}$ module and configures the SDA and SCL pins as serial port pins
$0=$ Disables the $I^{2} \mathrm{C}$ module; all $\mathrm{I}^{2} \mathrm{C}$ pins are controlled by PORT functions
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 SCLREL: SCLx Release Control bit (when operating as $I^{2} \mathrm{C}$ slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write ' 0 ' to initiate stretch and write ' 1 ' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.
If STREN = 0:
Bit is R/S (i.e., software can only write ' 1 ' to release clock). Hardware clear at beginning of slave transmission.
bit 11 STRICT: Strict $I^{2} \mathrm{C}$ Reserved Address Rule Enable bit
1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
$0=$ Strict ${ }^{2} \mathrm{C}$ Reserved Address Rule is not enabled
bit 10 A10M: 10-bit Slave Address bit
$1=12 C x A D D$ is a 10 -bit slave address
$0=I 2 C \times A D D$ is a 7 -bit slave address
bit 9 DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
$0=$ Slew rate control is enabled
bit 8 SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMBus specification
$0=$ Disable SMBus input thresholds

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 19-1: I2CxCON: I ${ }^{2} \mathrm{C}$ CONTROL REGISTER (CONTINUED)

bit $7 \quad$ GCEN: General Call Enable bit (when operating as $\mathrm{I}^{2} \mathrm{C}$ slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
$0=$ General call address disabled
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as ${ }^{2} \mathrm{C}$ slave)
Used in conjunction with SCLREL bit.
1 = Enable software or receive clock stretching
$0=$ Disable software or receive clock stretching
bit 5 ACKDT: Acknowledge Data bit (when operating as $I^{2} \mathrm{C}$ master, applicable during master receive)
Value that is transmitted when the software initiates an Acknowledge sequence.
1 = Send NACK during Acknowledge
0 = Send ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit
(when operating as $\mathrm{I}^{2} \mathrm{C}$ master, applicable during master receive)
1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.
Hardware clear at end of master Acknowledge sequence.
$0=$ Acknowledge sequence not in progress
bit 3 RCEN: Receive Enable bit (when operating as $I^{2} \mathrm{C}$ master)
1 = Enables Receive mode for $I^{2} C$. Hardware clear at end of eighth bit of master receive data byte.
$0=$ Receive sequence not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as $I^{2} \mathrm{C}$ master)
1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
0 = Stop condition not in progress
bit 1 RSEN: Repeated Start Condition Enable bit (when operating as $I^{2} \mathrm{C}$ master)
1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
$0=$ Repeated Start condition not in progress
bit $0 \quad$ SEN: Start Condition Enable bit (when operating as $I^{2} \mathrm{C}$ master)
1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

REGISTER 19-2: I2CxSTAT: $I^{2} \mathrm{C}$ STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
	ACKSTAT	TRSTAT	-	-	-	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
	IWCOL	I2COV	D_A	P	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared $\quad C=$ Clearable bit

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ACKSTAT: Acknowledge Status bit
(when operating as $I^{2} \mathrm{C}$ master, applicable to master transmit operation)
1 = Acknowledge was not received from slave
0 = Acknowledge was received from slave
Hardware set or clear at end of slave Acknowledge.
bit 14 TRSTAT: Transmit Status bit (when operating as $I^{2} \mathrm{C}$ master, applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
$0=$ Master transmit is not in progress
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13-11 Unimplemented: Read as ' 0 '
bit 10 BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
$0=$ No collision
Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit $=0$) and re-enabling (ON bit = 1) the module.
bit 9 GCSTAT: General Call Status bit
1 = General call address was received
$0=$ General call address was not received
Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8 ADD10: 10-bit Address Status bit
$1=10$-bit address was matched
$0=10$-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit $7 \quad$ IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the $I^{2} \mathrm{C}$ module is busy
$0=$ No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6 I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit $5 \quad$ D_A: Data/Address bit (when operating as $I^{2} \mathrm{C}$ slave)
1 = Indicates that the last byte received was data
$0=$ Indicates that the last byte received was device address
Hardware clear at device address match. Hardware set by reception of slave byte.

REGISTER 19-2: I2CxSTAT: $I^{2} \mathrm{C}$ STATUS REGISTER (CONTINUED)

bit $4 \quad$ P: Stop bit
1 = Indicates that a Stop bit has been detected last
$0=$ Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3 S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
$0=$ Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2 R_W: Read/Write Information bit (when operating as $I^{2} \mathrm{C}$ slave)
1 = Read - indicates data transfer is output from slave
$0=$ Write - indicates data transfer is input to slave
Hardware set or clear after reception of $I^{2} \mathrm{C}$ device address byte.
bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
$0=$ Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit $0 \quad$ TBF: Transmit Buffer Full Status bit
$1=$ Transmit in progress, I2CxTRN is full
$0=$ Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

PIC32MX330/350/370/430/450/470

NOTES:

PIC32MX330/350/370/430/450/470

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in the PIC32MX330/350/370/430/450/470 family of devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN and IrDA ${ }^{\circledR}$. The module also supports the hardware flow control option, with $\overline{U \times C T S}$ and $\overline{U \times R T S}$ pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 30 Mbps at 120 MHz
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with $16 x$ baud clock output for external IrDA encoder/decoder support
Figure 20-1 illustrates a simplified block diagram of the UART.

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

[^10]20.1 Control Registers

			Bits																¢$\stackrel{0}{0}$0$\stackrel{\sim}{*}$$\stackrel{4}{4}$
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6000	U1MODE ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL	0000
6010	U1STA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	ADM_EN	ADDR<7:0>								0000
		15:0	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020	U1TXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	TX8	Transmit Register								0000
6030	U1RXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	RX8	Receive Register								0000
6040	U1BRG ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	Baud Rate Generator Prescaler																0000
6200	U2MODE ${ }^{(1)}$	$\begin{gathered} 31: 16 \\ 15: 0 \end{gathered}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
			ON	-	SIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL	0000
6210	U2STA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	ADM_EN	ADDR<7:0>								0000
		15:0	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6220	U2TXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	TX8	Transmit Register								0000
6230	U2RXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	RX8	Receive Register								0000
6240	U2BRG ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	Baud Rate Generator Prescaler																0000
6400	U3MODE ${ }^{(1)}$	$\begin{gathered} 31: 16 \\ 15: 0 \end{gathered}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
			ON	-	SIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL	0000
6410	U3STA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	ADM_EN	ADDR<7:0>								0000
		15:0	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	TX8	Transmit Register								0000
6430	U3RXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	RX8	Receive Register								0000

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more informa-
TABLE 20-1: UART1 THROUGH UART5 REGISTER MAP (CONTINUED)

			Bits																$\begin{aligned} & \stackrel{y}{む} \\ & \stackrel{y}{0} \\ & 0 \\ & \bar{\alpha} \end{aligned}$
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
6440	U3BRG ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	Baud Rate Generator Prescaler																0000
6600	U4MODE ${ }^{(1)}$	$\left\lvert\, \begin{gathered} 31: 16 \\ 15: 0 \end{gathered}\right.$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
			ON	-	SIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL	0000
6610	U4STA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	ADM_EN	ADDR<7:0>								0000
		15:0	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6620	U4TXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	TX8	Transmit Register								0000
6630	U4RXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	RX8	Receive Register								0000
6640	U4BRG ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	Baud Rate Generator Prescaler																0000
6800	U5MODE ${ }^{(1)}$	$\left\lvert\, \begin{gathered} 31: 16 \\ 15: 0 \end{gathered}\right.$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
			ON	-	SIDL	IREN	RTSMD	-	UEN<1:0>		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL	0000
6810	U5STA ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	ADM_EN	ADDR<7:0>								0000
		15:0	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6820	U5TXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	TX8				Transm	Register				0000
830	U5RXREG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	-	-	-	-	-	RX8				Receiv	egister				0000
6840	U5BRG ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0								Rate Gen	ator Pre	caler							0000

[^11]Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more informa-

PIC32MX330/350/370/430/450/470

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	ON ${ }^{(1)}$	-	SIDL	IREN	RTSMD	-	UEN<1:0>	
7:0	R/W-0							
	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>		STSEL

Legend:

$\mathrm{R}=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: UARTx Enable bit ${ }^{(1)}$
1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN < 1:0> and UTXEN control bits
$0=$ UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
0 = Continue operation in Idle mode
bit 12 IREN: IrDA Encoder and Decoder Enable bit
$1=1 r D A$ is enabled
$0=\operatorname{IrDA}$ is disabled
bit 11 RTSMD: Mode Selection for $\overline{U \times R T S}$ Pin bit
$1=\overline{U x R T S}$ pin is in Simplex mode
$0=\overline{\text { UxRTS }}$ pin is in Flow Control mode
bit 10 Unimplemented: Read as ' 0 '
bit 9-8 UEN<1:0>: UARTx Enable bits
$11=U \times T X, U \times R X$ and $U x B C L K$ pins are enabled and used; $\overline{U \times C T S}$ pin is controlled by corresponding bits in the PORTx register
$10=$ UxTX, UxRX, UxCTS and $\overline{U x R T S}$ pins are enabled and used
$01=U x T X, U x R X$ and $\overline{U x R T S}$ pins are enabled and used; $\overline{U x C T S}$ pin is controlled by corresponding bits in the PORTx register
$00=$ UxTX and UxRX pins are enabled and used; $\overline{U x C T S}$ and $\overline{U x R T S} / U x B C L K$ pins are controlled by corresponding bits in the PORTx register
bit $7 \quad$ WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
1 = Wake-up is enabled
$0=$ Wake-up is disabled
bit 6 LPBACK: UARTx Loopback Mode Select bit
1 = Loopback mode is enabled
$0=$ Loopback mode is disabled
Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 5 ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character - requires reception of Sync character (0x55); cleared by hardware upon completion
$0=$ Baud rate measurement disabled or completed
bit 4 RXINV: Receive Polarity Inversion bit
$1=\mathrm{UxRX}$ Idle state is ' 0 '
$0=U x R X$ Idle state is ' 1 '
bit 3 BRGH: High Baud Rate Enable bit
$1=$ High-Speed mode $-4 x$ baud clock enabled
0 = Standard Speed mode - 16x baud clock enabled
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
$11=9$-bit data, no parity
$10=8$-bit data, odd parity
$01=8$-bit data, even parity
$00=8$-bit data, no parity
bit 0 STSEL: Stop Selection bit
$1=2$ Stop bits
$0=1$ Stop bit

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0	R/W-0						
	-	-	-	-	-	-	-	ADM_EN
23:16	RW-0	R/W-0						
	ADDR<7:0>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1
	UTXISEL<1:0>		UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7:0	RW-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0
	URXISEL<1:0>		ADDEN	RIDLE	PERR	FERR	OERR	URXDA

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

$-n=$ Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared $\quad x=$ Bit is unknown
bit 31-25 Unimplemented: Read as ' 0 '
bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
$1=$ Automatic Address Detect mode is enabled
$0=$ Automatic Address Detect mode is disabled
bit 23-16 ADDR<7:0>: Automatic Address Mask bits
When the ADM_EN bit is ' 1 ', this value defines the address character to use for automatic address detection.
bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
11 = Reserved, do not use
$10=$ Interrupt is generated and asserted while the transmit buffer is empty
01 = Interrupt is generated and asserted when all characters have been transmitted
$00=$ Interrupt is generated and asserted while the transmit buffer contains at least one empty space
bit 13 UTXINV: Transmit Polarity Inversion bit
If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is ' 0 '):
$1=\mathrm{UxTX}$ Idle state is ' 0 '
$0=U \times T X$ Idle state is ' 1 '
If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is ' 1 '):
1 = IrDA encoded UxTX Idle state is ' 1 '
$0=\operatorname{IrDA}$ encoded UxTX Idle state is ' 0 '
bit 12 URXEN: Receiver Enable bit
1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON =1)
$0=$ UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.
bit 11 UTXBRK: Transmit Break bit
1 = Send Break on next transmission. Start bit followed by twelve ' 0 ' bits, followed by Stop bit; cleared by hardware upon completion
$0=$ Break transmission is disabled or completed
bit 10 UTXEN: Transmit Enable bit
1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON =1)
$0=$ UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
$0=$ Transmit buffer is not full, at least one more character can be written

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 8 TRMT: Transmit Shift Register is Empty bit (read-only)
1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
$0=$ Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit
11 = Reserved; do not use
$10=$ Interrupt flag bit is asserted while receive buffer is $3 / 4$ or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is $1 / 2$ or more full (i.e., has 4 or more data characters) $00=$ Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5 ADDEN: Address Character Detect bit (bit 8 of received data $=1$)
1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect
$0=$ Address Detect mode is disabled
bit 4 RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
$0=$ Data is being received
bit 3 PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character
$0=$ Parity error has not been detected
bit 2 FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character
$0=$ Framing error has not been detected
bit 1 OERR: Receive Buffer Overrun Error Status bit.
This bit is set in hardware and can only be cleared (=0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
1 = Receive buffer has overflowed
$0=$ Receive buffer has not overflowed
bit 0 URXDA: Receive Buffer Data Available bit (read-only)
1 = Receive buffer has data, at least one more character can be read
$0=$ Receive buffer is empty

PIC32MX330/350/370/430/450/470

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

PIC32MX330/350/370/430/450/470

21.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable.

The following are key features of the PMP module:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options
- Individual read and write strobes, or
- Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support
- Legacy addressable
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Freeze option for in-circuit debugging

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

FIGURE 21-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

PIC32MX330/350/370/430/450/470
21.1 Control Registers

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
7000	PMCON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN	CSF<1:0>		ALP	CS2P	CS1P	-	WRSP	RDSP	0000
7010	PMMODE	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	BUSY	IRQM<1:0>		INCM<1:0>		MODE16	MODE<1:0>		WAITB<1:0>		WAITM<3:0>				WAITE<1:0>		0000
7020	PMADDR	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	CS2	CS1	ADDR<13:0>														0000
7030	PMDOUT	31:16	DATAOUT<31:0>																0000
		15:0																	0000
7040	PMDIN	31:16	DATAIN $<31: 0>$																0000
		15:0																	0000
7050	PMAEN	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	PTEN<15:0>																0000
7060	PMSTAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	IBF	IBOV	-	-	IB3F	IB2F	IB1F	IBOF	OBE	OBUF	-	-	OB3E	OB2E	OB1E	OBOE	BFBF

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\text { 29/21/13/5 }}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ON ${ }^{(1)}$	-	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	CSF<1:0> ${ }^{(2)}$		ALP ${ }^{(2)}$	CS2P ${ }^{(2)}$	CS1P(2)	-	WRSP	RDSP

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ '

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Parallel Master Port Enable bit ${ }^{(1)}$
1 = PMP is enabled
$0=$ PMP is disabled, no off-chip access performed
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
$0=$ Continue module operation in Idle mode
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
$11=$ Lower 8 bits of address are multiplexed on $\mathrm{PMD}<15: 0>$ pins
$10=$ All 16 bits of address are multiplexed on $\mathrm{PMD}<7: 0>$ pins
$01=$ Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
$00=$ Address and data appear on separate pins
bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffer
bit 9 PTWREN: Write Enable Strobe Port Enable bit
$1=$ PMWR/PMENB port is enabled
$0=$ PMWR/PMENB port is disabled
bit 8 PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port is enabled
$0=$ PMRD/PMWR port is disabled
bit 7-6 CSF<1:0>: Chip Select Function bits ${ }^{(2)}$
11 = Reserved
$10=$ PMCS1 and PMCS2 function as Chip Select
01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
$00=$ PMCS1 and PMCS2 function as address bits 14 and 15, respectively
bit 5 ALP: Address Latch Polarity bit ${ }^{(2)}$
1 = Active-high (PMALL and PMALH)
$0=$ Active-low ($\overline{\text { PMALL }}$ and $\overline{\text { PMALH }})$
bit $4 \quad$ CS2P: Chip Select 0 Polarity bit ${ }^{(2)}$
1 = Active-high (PMCS2)
$0=$ Active-low (PMCS2)
Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.

2: These bits have no effect when their corresponding pins are used as address lines.

PIC32MX330/350/370/430/450/470

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
bit 3 CS1P: Chip Select 0 Polarity bit ${ }^{(2)}$
1 = Active-high (PMCS1)
0 = Active-low (PMCS1)
bit 2 Unimplemented: Read as ' 0 '
bit 1 WRSP: Write Strobe Polarity bit
For Slave Modes and Master mode 2 (MODE<1:0> $=00,01,10$):
1 = Write strobe active-high (PMWR)
$0=$ Write strobe active-low (PMWR)
For Master mode 1 (MODE<1:0> = 11):
1 = Enable strobe active-high (PMENB)
0 = Enable strobe active-low (PMENB)
bit $0 \quad$ RDSP: Read Strobe Polarity bit
For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):
1 = Read Strobe active-high (PMRD)
0 = Read Strobe active-low (PMRD)
For Master mode 1 (MODE<1:0> = 11):
1 = Read/write strobe active-high (PMRD/PMWR)
$0=$ Read/write strobe active-low ($\overline{\text { PMRD }} / P M W R$)
Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0	R/W-0						
	BUSY	IRQM<1:0>		INCM<1:0>		MODE16	MODE<1:0>	
7:0	R/W-0							
	WAITB<1:0> ${ }^{(1)}$		WAITM<3:0>(1)				WAITE<1:0>(1)	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 BUSY: Busy bit (Master mode only)
1 = Port is busy
$0=$ Port is not busy
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits (4)
11 = Reserved, do not use
$10=$ Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
$01=$ Interrupt generated at the end of the read/write cycle
$00=$ No Interrupt generated
bit 12-11 INCM<1:0>: Increment Mode bits
$11=$ Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
$10=$ Decrement ADDR<15:0> by 1 every read/write cycle ${ }^{(2)}$
01 = Increment ADDR<15:0> by 1 every read/write cycle ${ }^{(2)}$
$00=$ No increment or decrement of address
bit 10 MODE16: 8/16-bit Mode bit
$1=16$-bit mode: a read or write to the data register invokes a single 16-bit transfer
$0=8$-bit mode: a read or write to the data register invokes a single 8-bit transfer
bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA $<x: 0>$, PMD $<7: 0>$ and PMD $<8: 15>{ }^{(3)}$)
$10=$ Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15> ${ }^{(3)}$)
01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
$00=$ Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)
bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits ${ }^{(1)}$
11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
$10=$ Data wait of 3 TPB; multiplexed address phase of 3 TPB
01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

Note 1: Whenever WAITM $<3: 0>=0000$, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB $=1$ TPB cycle, WAITE $=0$ TPB cycles for a read operation.
2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
3: These pins are active when MODE16 $=1$ (16-bit mode).
4: These bits only control the generation of the PMP - Parallel Master Port interrupt. The PMPE - Parallel Master Port Error is ALWAYS generated.

PIC32MX330/350/370/430/450/470

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits ${ }^{(1)}$
1111 = Wait of 16 TPB
-
-
-
0001 = Wait of 2 TPB
0000 = Wait of 1 TPB (default)
bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits ${ }^{(1)}$
$11=$ Wait of 4 TPB
$10=$ Wait of 3 Tрв
$01=$ Wait of 2 Tрв
$00=$ Wait of 1 TPB (default)
For Read operations:
$11=$ Wait of 3 Tpв
$10=$ Wait of 2 Tpв
01 = Wait of 1 TPB
$00=$ Wait of 0 TPB (default)
Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB $=1$ TPB cycle, WAITE $=0$ TPB cycles for a read operation.
2: Address bits, A 15 and A 14 , are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
3: These pins are active when MODE16 = 1 (16-bit mode).
4: These bits only control the generation of the PMP - Parallel Master Port interrupt. The PMPE - Parallel Master Port Error is ALWAYS generated.

REGISTER 21-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\underset{\text { Bit }}{\text { 27/19/11/3 }}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0							
	CS2 ${ }^{(1)}$	CS1 ${ }^{(3)}$	ADDR<13:8>					
	ADDR15 ${ }^{(2)}$	ADDR14 ${ }^{(4)}$						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0	R/W-0
	ADDR<7:0>							

Legend:

$\mathrm{R}=$ Readable bit	$W=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 ’
bit $15 \quad$ CS2: Chip Select 2 bit ${ }^{(1)}$
1 = Chip Select 2 is active
$0=$ Chip Select 2 is inactive
bit 15 ADDR<15>: Destination Address bit 15 ${ }^{(2)}$
bit $14 \quad$ CS1: Chip Select 1 bit ${ }^{(3)}$
$1=$ Chip Select 1 is active
$0=$ Chip Select 1 is inactive
bit 14 ADDR<14>: Destination Address bit $14{ }^{(4)}$
bit 13-0 ADDR<13:0>: Address bits

Note 1: When the $C S F<1: 0>$ bits $(P M C O N<7: 6>)=10$ or 01.
2: When the CSF $<1: 0>$ bits $($ PMCON $<7: 6>)=00$.
3: When the CSF<1:0> bits (PMCON<7:6>) $=10$.
4: When the CSF<1:0> bits $(\mathrm{PMCON}<7: 6>)=00$ or 01 .

PIC32MX330/350/370/430/450/470

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\text { 29/21/13/5 }}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0							
	$\text { PTEN }<15: 14 \gg^{(1)}$		PTEN<13:8>					
7:0	R/W-0							
	PTEN<7:2>						PTEN<1:0> ${ }^{(2)}$	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Write '0'; ignore read
bit 15-14 PTEN<15:14>: PMCSx Address Port Enable bits
$1=$ PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1 ${ }^{(1)}$
$0=$ PMA15 and PMA14 function as port I/O
bit 13-2 PTEN<13:2>: PMP Address Port Enable bits
$1=$ PMA<13:2> function as PMP address lines
0 = PMA<13:2> function as port I/O
bit 1-0 PTEN<1:0>: PMALH/PMALL Address Port Enable bits
1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL ${ }^{(2)}$
$0=$ PMA1 and PMA0 pads function as port I/O
Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF $<1: 0>$ bits (PMCON $<7: 6>$).
2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R-0	RW-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
	IBF	IBOV	-	-	IB3F	IB2F	IB1F	IB0F
7:0	R-1	RW-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
	OBE	OBUF	-	-	OB3E	OB2E	OB1E	OBOE

Legend:	HS = Set by Hardware	SC = Cleared by software
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 IBF: Input Buffer Full Status bit
1 = All writable input buffer registers are full
$0=$ Some or all of the writable input buffer registers are empty
bit 14 IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full input byte buffer occurred (must be cleared in software) ${ }^{(1)}$
$0=$ No overflow occurred
bit 13-12 Unimplemented: Read as ' 0 '
bit 11-8 IBxF: Input Buffer ' x ' Status Full bits
$1=$ Input Buffer contains data that has not been read (reading buffer will clear this bit)
$0=$ Input Buffer does not contain any unread data
bit 7 OBE: Output Buffer Empty Status bit
1 = All readable output buffer registers are empty
$0=$ Some or all of the readable output buffer registers are full
bit 6 OBUF: Output Buffer Underflow Status bit
1 = A read occurred from an empty output byte buffer (must be cleared in software) ${ }^{(1)}$
$0=$ No underflow occurred
bit 5-4 Unimplemented: Read as ' 0 '
bit 3-0 OBxE: Output Buffer ' x ' Status Empty bits
$1=$ Output buffer is empty (writing data to the buffer will clear this bit)
$0=$ Output buffer contains data that has not been transmitted
Note 1: This will generate a PMPE - Parallel Master Port Error interrupt.

PIC32MX330/350/370/430/450/470

NOTES:

PIC32MX330/350/370/430/450/470

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time.

The following are key features of the RTCC module:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ± 0.66 seconds error per month
- Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

FIGURE 22-1: RTCC BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\underset{\text { Bit }}{31 / 23 / 15 / 7}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{array}{\|c\|} \text { Bit } \\ 29 / 21 / 13 / 5 \end{array}$	$\begin{array}{\|c\|} \text { Bit } \\ 28 / 20 / 12 / 4 \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ 26 / 18 / 10 / 2 \end{array}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ 24 / 16 / 8 / 0 \end{array}$
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	-	-	-	-	-	-	CAL<9:8>	
23:16	RW-0	R/W-0	RW-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CAL<7:0>							
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	$\mathrm{ON}{ }^{(1,2)}$	-	SIDL	-	-	-	-	-
7:0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0
	RTSECSEL ${ }^{(3)}$	RTCCLKON	-	-	RTCWREN ${ }^{(4)}$	RTCSYNC	HALFSEC ${ }^{(5)}$	RTCOE

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ '

bit 31-26 Unimplemented: Read as ' 0 '

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute
.
-
0000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute $00000000000=$ No adjustment
1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute
-
$1000000000=$ Maximum negative adjustment, subtracts 512 clock pulses every one minute
bit 15 ON: RTCC On bit ${ }^{(1,2)}$
1 = RTCC module is enabled
$0=$ RTCC module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Disables the PBCLK to the RTCC when CPU enters in Idle mode
$0=$ Continue normal operation in Idle mode
bit 12-8 Unimplemented: Read as ' 0 '
bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit ${ }^{(3)}$
1 = RTCC Seconds Clock is selected for the RTCC pin
$0=$ RTCC Alarm Pulse is selected for the RTCC pin
bit 6 RTCCLKON: RTCC Clock Enable Status bit
1 = RTCC Clock is actively running
$0=$ RTCC Clock is not running
bit 5-4 Unimplemented: Read as ' 0 '
Note 1: The ON bit is only writable when RTCWREN $=1$.
2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
3: Requires $\mathrm{RTCOE}=1(\mathrm{RTCCON}<0>)$ for the output to be active.
4: The RTCWREN bit can be set only when the write sequence is enabled.
5: This bit is read-only. It is cleared to ' 0 ' on a write to the seconds bit fields (RTCTIME<14:8>).

[^12]
PIC32MX330/350/370/430/450/470

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

bit 3 RTCWREN: RTC Value Registers Write Enable bit ${ }^{(4)}$

1 = RTC Value registers can be written to by the user
$0=$ RTC Value registers are locked out from being written to by the user
bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid
$0=$ RTC Value registers can be read without concern about a rollover ripple
bit 1 HALFSEC: Half-Second Status bit ${ }^{(5)}$
1 = Second half period of a second
$0=$ First half period of a second
bit $0 \quad$ RTCOE: RTCC Output Enable bit
1 = RTCC clock output is enabled - clock presented onto an I/O
$0=$ RTCC clock output is disabled
Note 1: \quad The ON bit is only writable when RTCWREN $=1$.
2: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
3: Requires RTCOE $=1(\operatorname{RTCCON}<0>)$ for the output to be active.
4: The RTCWREN bit can be set only when the write sequence is enabled.
5: This bit is read-only. It is cleared to ' 0 ' on a write to the seconds bit fields (RTCTIME<14:8>).

[^13]REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Bit Range	Bit 31/23/15/7	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	Bit 27/19/11/3	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	ALRMEN ${ }^{(1,2)}$	CHIME ${ }^{(2)}$	PIV ${ }^{(2)}$	ALRMSYNC ${ }^{(3)}$	AMASK<3:0> ${ }^{(3)}$			
7:0	R/W-0							
	ARPT<7:0> ${ }^{(3)}$							
Legend:								
$\mathrm{R}=$ Readable bit			W = Writable bit		$U=$ Unimplemented bit, read as ' 0 '			
-n = Value at POR			' 1 ' = Bit is set		' 0 ' = Bit is cleared		$x=$ Bit is unknown	

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ALRMEN: Alarm Enable bit ${ }^{(1,2)}$
1 = Alarm is enabled
$0=$ Alarm is disabled
bit 14 CHIME: Chime Enable bit ${ }^{(2)}$
$1=$ Chime is enabled $-\mathrm{ARPT}<7: 0>$ is allowed to rollover from 0×00 to $0 \times F F$
$0=$ Chime is disabled - ARPT $<7: 0>$ stops once it reaches 0×00
bit 13 PIV: Alarm Pulse Initial Value bit ${ }^{(2)}$
When ALRMEN $=0$, PIV is writable and determines the initial value of the Alarm Pulse.
When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.
bit 12 ALRMSYNC: Alarm Sync bit ${ }^{(3)}$
$1=\mathrm{ARPT}<7: 0>$ and ALRMEN may change as a result of a half second rollover during a read.
The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
$0=$ ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is >32 RTC clocks away from a half-second rollover
bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits ${ }^{(3)}$
0000 = Every half-second
0001 = Every second
0010 = Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
$0110=$ Once a day
0111 = Once a week
1000 = Once a month
1001 = Once a year (except when configured for February 29, once every four years)
1010 = Reserved; do not use
1011 = Reserved; do not use
11xx = Reserved; do not use
Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> $=00$ and CHIME $=0$.
2: \quad This field should not be written when the RTCC ON bit = ' 1 ' ($\mathrm{RTCCON}<15>$) and ALRMSYNC $=1$.
3: This assumes a CPU read will execute in less than 32 PBCLKs.
Note: \quad This register is reset only on a Power-on Reset (POR).

PIC32MX330/350/370/430/450/470

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)
bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits ${ }^{(3)}$
11111111 = Alarm will trigger 256 times
.
-
00000000 = Alarm will trigger one time
The counter decrements on any alarm event. The counter only rolls over from 0×00 to $0 x F F$ if CHIME $=1$.
Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> $=00$ and CHIME $=0$.
2: This field should not be written when the RTCC ON bit = ' 1 ' $($ RTCCON $<15>)$ and ALRMSYNC $=1$.
3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: \quad This register is reset only on a Power-on Reset (POR).

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/W-x							
	HR10<3:0>				HR01<3:0>			
23:16	R/W-x							
	MIN10<3:0>				MIN01<3:0>			
15:8	R/W-x							
	SEC10<3:0>				SEC01<3:0>			
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 s place digits; contains a value from 0 to 2 bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9 bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 s place digits; contains a value from 0 to 5 bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 s place digit; contains a value from 0 to 9 bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9 bit 7-0 Unimplemented: Read as ' 0 '

Note: \quad This register is only writable when RTCWREN $=1($ RTCCON $<3>)$.

PIC32MX330/350/370/430/450/470

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

Bit Range	$\underset{31 / 23 / 15 / 7}{\text { Bit }}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-x							
	YEAR10<3:0>				YEAR01<3:0>			
23:16	R/W-x							
	MONTH10<3:0>				MONTH01<3:0>			
15:8	R/W-x							
	DAY10<3:0>				DAY01<3:0>			
7:0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
	-	-	-	-	WDAY01<3:0>			
Legend:								
$\mathrm{R}=$ Readable bit			W = Writable bit		$\mathrm{U}=$ Unimplemented bit, read as ' 0 '			
$-n=$ Value at POR			' 1 ' = Bit is set		' 0 ' = Bit is cleared		$\mathrm{x}=\mathrm{Bit}$ is unknown	

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digits
bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1s place digit
bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 s place digits; contains a value of 0 or 1 bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 s place digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 s place digits; contains a value from 0 to 3
bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 s place digit; contains a value from 0 to 9
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits, 1s place digit; contains a value from 0 to 6

Note: \quad This register is only writable when RTCWREN $=1$ (RTCCON<3>).

REGISTER 22-5: ALRMTIME: ALARM TIME VALUE REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-x							
	HR10<3:0>				HR01<3:0>			
23:16	R/W-x							
	MIN10<3:0>				MIN01<3:0>			
15:8	R/W-x							
	SEC10<3:0>				SEC01<3:0>			
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10 s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1 s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10 s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1 s place digit; contains a value from 0 to 9 bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10 s place digits; contains a value from 0 to 5 bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1 s place digit; contains a value from 0 to 9 bit 7-0 Unimplemented: Read as ' 0 '

PIC32MX330/350/370/430/450/470

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	R/W-x							
	MONTH10<3:0>				MONTH01<3:0>			
15:8	R/W-x							
	DAY10<1:0>				DAY01<3:0>			
7:0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
	-	-	-	-	WDAY01<3:0>			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-24 Unimplemented: Read as ' 0 '

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 s place digits; contains a value of 0 or 1
bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 s place digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 s place digits; contains a value from 0 to 3
bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 s place digit; contains a value from 0 to 9
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1s place digit; contains a value from 0 to 6

PIC32MX330/350/370/430/450/470

23.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Ana-log-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1 Msps conversion speed
- Up to 28 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold Amplifier (SHA)
- Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable buffer fill modes
- Eight conversion result format options
- Operation during CPU Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 23-1. The 10-bit ADC has up to 28 analog input pins, designated ANO-AN27. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

FIGURE 23-1: ADC1 MODULE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

Note 1: See Section 31.0 "Electrical Characteristics" for the exact FRC clock value.
2: Refer to Figure 8-1 in Section 8.0 "Oscillator Configuration" for more information.
23.1 Control Registers

	Register Name		Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	$18 / 2$	17/1	16/0	
9000	AD1CON1 ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	-	SIDL	-	-	FORM<2:0>			SSRC<2:0>			CLRASAM	-	ASAM	SAMP	DONE	0000
9010	AD1CON2 ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	VCFG<2:0>			OFFCAL	-	CSCNA	-	-	BUFS	-	SMPI<3:0>				BUFM	ALTS	0000
9020	AD1CON3 ${ }^{(1)}$	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ADRC	-	-	SAMC<4:0>					ADCS<7:0>								0000
9040	AD1CHS ${ }^{(1)}$	31:16	CHONB	-	-	CH0SB<4:0>					CHONA	-	-	CH0SA<4:0>					0000
		15:0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
9050	AD1CSSL ${ }^{(1)}$	31:16	-	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24	CSSL23	CSSL22	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16	0000
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16	ADC Result Word 0 (ADC1BUF0<31:0>)																0000
		15:0																	0000
9080	ADC1BUF1	31:16	ADC Result Word 1 (ADC1BUF1<31:0>)																0000
		15:0																	0000
9090	ADC1BUF2	31:16	ADC Result Word 2 (ADC1BUF2<31:0>)																0000
		15:0																	0000
90A0	ADC1BUF3	31:16	ADC Result Word 3 (ADC1BUF3<31:0>)																0000
		15:0																	0000
90B0	ADC1BUF4	31:16	ADC Result Word 4 (ADC1BUF4<31:0>)																0000
		15:0																	0000
90C0	ADC1BUF5	31:16	ADC Result Word 5 (ADC1BUF5<31:0>)																0000
		15:0																	0000
90D0	ADC1BUF6	31:16	ADC Result Word 6 (ADC1BUF6<31:0>)																0000
		15:0																	0000
90E0	ADC1BUF7	31:16	ADC Result Word 7 (ADC1BUF7<31:0>)																0000
		15:0																	0000
90F0	ADC1BUF8	31:16	ADC Result Word 8 (ADC1BUF8<31:0>)																0000
		15:0																	0000
9100	ADC1BUF9	31:16	ADC Result Word 9 (ADC1BUF9<31:0>)																0000
		15:0																	0000

Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 23-1: ADC REGISTER MAP (CONTINUED)

	Register		Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	$21 / 5$	20/4	19/3	18/2	17/1	16/0	
9110	ADC1BUFA	31:16	ADC Result Word A (ADC1BUFA<31:0>)																0000
		15:0																	0000
9120	ADC1BUFB	31:16	ADC Result Word B (ADC1BUFB<31:0>)																0000
		15:0																	0000
9130	ADC1BUFC	31:16	ADC Result Word C (ADC1BUFC<31:0>)																0000
		15:0																	0000
9140	ADC1BUFD	31:16	ADC Result Word D (ADC1BUFD<31:0>)																0000
		15:0																	0000
9150	ADC1BUFE	31:16	ADC Result Word E (ADC1BUFE<31:0>)																0000
		15:0																	0000
9160	ADC1BUFF	31:16	ADC Result Word F (ADC1BUFF <31 :0>)																0000
		15:0																	0000

$\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note 1: } & \text { All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus }\end{array}$
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{array}{\|c} \hline \text { Bit } \\ 27 / 19 / 11 / 3 \end{array}$	$\begin{gathered} \hline \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	ON(1)	-	SIDL	-	-	FORM<2:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
	SSRC<2:0>			CLRASAM	-	ASAM	SAMP(2)	DONE ${ }^{(3)}$

Legend:

$R=$ Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared
$x=$ Bit is unknown		

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: ADC Operating Mode bit ${ }^{(1)}$
1 = ADC module is operating
$0=$ ADC module is not operating
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
$0=$ Continue module operation in Idle mode
bit 12-11 Unimplemented: Read as ' 0 '
bit 10-8 FORM<2:0>: Data Output Format bits
$011=$ Signed Fractional 16-bit (DOUT $=0000000000000000$ sddd dddd dd00 0000)
$010=$ Fractional 16-bit (DOUT $=0000000000000000$ dddd dddd dd00 0000)
$001=$ Signed Integer 16 -bit (DOUT $=0000000000000000$ ssss sssd ddd dddd)
$000=$ Integer 16-bit (DOUT $=00000000000000000000$ 00dd dddd dddd)
111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 000000000000 0000)
$110=$ Fractional 32-bit (DOUT = dddd dddd dd00 0000000000000000 0000)
$101=$ Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
$100=$ Integer 32-bit (DOUT $=00000000000000000000$ 00dd dddd dddd)
bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits
111 = Internal counter ends sampling and starts conversion (auto convert)
$110=$ Reserved
101 = Reserved
$100=$ Reserved
011 = CTMU ends sampling and starts conversion
$010=$ Timer 3 period match ends sampling and starts conversion
001 = Active transition on INTO pin ends sampling and starts conversion
$000=$ Clearing SAMP bit ends sampling and starts conversion

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: If ASAM $=0$, software can write a ' 1 ' to start sampling. This bit is automatically set by hardware if ASAM $=1$. If SSRC $=0$, software can write a ' 0 ' to end sampling and start conversion. If SSRC $\neq 0$, this bit is automatically cleared by hardware to end sampling and start conversion.
3: This bit is automatically set by hardware when ADC is complete. Software can write a ' 0 ' to clear this bit (a write of ' 1 ' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

PIC32MX330/350/370/430/450/470

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated)
$1=$ Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
$0=$ Normal operation, buffer contents will be overwritten by the next conversion sequence
bit 3 Unimplemented: Read as ' 0 '
bit 2 ASAM: ADC Sample Auto-Start bit
1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
$0=$ Sampling begins when SAMP bit is set
bit 1 SAMP: ADC Sample Enable bit ${ }^{(2)}$
$1=$ The ADC sample and hold amplifier is sampling
$0=$ The ADC sample/hold amplifier is holding
When ASAM $=0$, writing ' 1 ' to this bit starts sampling.
When SSRC $=000$, writing ' 0 ' to this bit will end sampling and start conversion.
bit 0 DONE: Analog-to-Digital Conversion Status bit ${ }^{(3)}$
$1=$ Analog-to-digital conversion is done
$0=$ Analog-to-digital conversion is not done or has not started
Clearing this bit will not affect any operation in progress.
Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: If ASAM $=0$, software can write a ' 1 ' to start sampling. This bit is automatically set by hardware if ASAM $=1$. If SSRC $=0$, software can write a ' 0 ' to end sampling and start conversion. If SSRC $\neq 0$, this bit is automatically cleared by hardware to end sampling and start conversion.
3: This bit is automatically set by hardware when ADC is complete. Software can write a ' 0 ' to clear this bit (a write of ' 1 ' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 23-2: AD1CON2: ADC CONTROL REGISTER 2

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0
	VCFG<2:0>			OFFCAL	-	CSCNA	-	-
7:0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	RW-0	RW-0
	BUFS	-	SMPI<3:0>				BUFM	ALTS

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Vrefh		
000	AVDD	AREFL
001	External VreF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
$1 x x$	AVDD	AVss

bit 12 OFFCAL: Input Offset Calibration Mode Select bit
1 = Enable Offset Calibration mode
Positive and negative inputs of the sample and hold amplifier are connected to Vrefl
$0=$ Disable Offset Calibration mode
The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL
bit 11 Unimplemented: Read as ' 0 '
bit 10 CSCNA: Input Scan Select bit
1 = Scan inputs
0 = Do not scan inputs
bit 9-8 Unimplemented: Read as ' 0 '
bit 7 BUFS: Buffer Fill Status bit
Only valid when BUFM $=1$.
$1=$ ADC is currently filling buffer $0 \times 8-0 x F$, user should access data in $0 \times 0-0 \times 7$
$0=$ ADC is currently filling buffer $0 \times 0-0 \times 7$, user should access data in $0 \times 8-0 \times F$
bit 6 Unimplemented: Read as ' 0 '
bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
$1111=$ Interrupts at the completion of conversion for each $16^{\text {th }}$ sample/convert sequence
$1110=$ Interrupts at the completion of conversion for each $15^{\text {th }}$ sample/convert sequence
-
-
$0001=$ Interrupts at the completion of conversion for each $2^{\text {nd }}$ sample/convert sequence $0000=$ Interrupts at the completion of conversion for each sample/convert sequence
bit 1 BUFM: ADC Result Buffer Mode Select bit
$1=$ Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
$0=$ Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
bit $0 \quad$ ALTS: Alternate Input Sample Mode Select bit
1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
0 = Always use Sample A input multiplexer settings

PIC32MX330/350/370/430/450/470

REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADRC	-	-	SAMC<4:0>(1)				
7:0	RW-0	RW-0	RW-0	RW-0	R/W-0	RW-0	RW	RW-0
	ADCS $<7: 0>{ }^{(2)}$							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ADRC: ADC Conversion Clock Source bit
1 = Clock derived from FRC
0 = Clock derived from Peripheral Bus Clock (PBCLK)
bit 14-13 Unimplemented: Read as ' 0 '
bit 12-8 SAMC<4:0>: Auto-Sample Time bits ${ }^{(1)}$
11111 = 31 TAD
-
-
-
$00001=1$ TAD
$00000=0$ TAD (Not allowed)
bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits ${ }^{(2)}$
$11111111=$ TPB $\cdot 2 \cdot(\mathrm{ADCS}<7: 0>+1)=512 \cdot \operatorname{TPB}=$ TAD
-
-
-
$00000001=$ TPB $\cdot 2 \cdot(\operatorname{ADCS}<7: 0>+1)=4 \cdot \operatorname{TPB}=\operatorname{TAD}^{2}$
$00000000=$ TPB $\cdot 2 \cdot($ ADCS $<7: 0>+1)=2 \cdot \operatorname{TPB}=$ TAD
Note 1: This bit is only used if the SSRC<2:0> bits $(A D 1 C O N 1<7: 5>)=111$.
2: This bit is not used if the ADRC bit (AD1CON3<15>) $=1$.

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ \text { 29/21/13/5 } \end{array}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CHONB	-	-	CHOSB<4:0>				
23:16	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CHONA ${ }^{(3)}$	-	-	CHOSA<4:0>				
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0							
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31 CHONB: Negative Input Select bit for Sample B
1 = Channel 0 negative input is AN1
$0=$ Channel 0 negative input is VREFL
bit 30-29 Unimplemented: Read as ' 0 '
bit 28-24 CHOSB<4:0>: Positive Input Select bits for Sample B
$11110=$ Channel 0 positive input is Open ${ }^{(1)}$
$11101=$ Channel 0 positive input is CTMU temperature sensor (CTMUT) ${ }^{(\mathbf{2})}$
$11100=$ Channel 0 positive input is IVREF ${ }^{(3)}$
11011 = Channel 0 positive input is AN27
-
-
-
00001 = Channel 0 positive input is AN1
$00000=$ Channel 0 positive input is ANO
bit 23 CHONA: Negative Input Select bit for Sample A Multiplexer Setting ${ }^{(3)}$
1 = Channel 0 negative input is AN1
$0=$ Channel 0 negative input is VREFL
bit 22-21 Unimplemented: Read as ' 0 '
bit 20-16 CHOSA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting
$11110=$ Channel 0 positive input is Open ${ }^{(1)}$
11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ${ }^{(2)}$
$11100=$ Channel 0 positive input is IVREF ${ }^{(3)}$
11011 = Channel 0 positive input is AN27
-
-
-
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is ANO
bit 15-0 Unimplemented: Read as ' 0 '
Note 1: This selection is only used with CTMU capacitive and time measurement.
2: See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.
3: See Section 25.0 "Comparator Voltage Reference (CVREF)" for more information.

PIC32MX330/350/370/430/450/470

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{29 / 21 / 13 / 5}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{array}{\|c} \text { Bit } \\ \text { 27/19/11/3 } \end{array}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	$\mathrm{U}-0$	R/W-0						
	-	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24
23:16	R/W-0							
	CSSL23	CSSL21	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16
15:8	R/W-0							
	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7:0	RW-0							
	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CSSL<30:0>: ADC Input Pin Scan Selection bits ${ }^{(1,2)}$
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: \quad CSSL $=A N x$, where $x=0-27$; CSSL30 selects Vss for scan; CSSL29 selects CTMU input for scan; CSSL28 selects IVREF for scan.
2: On devices with less than 28 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

24.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains two comparators that can be configured in a variety of ways.
The following are key features of the Comparator module:

- Selectable inputs available include:
- Analog inputs multiplexed with I/O pins
- On-chip internal absolute voltage reference (IVRef)
- Comparator voltage reference (CVREF)
- Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 24-1.

FIGURE 24-1: COMPARATOR BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

24.1 Control Registers

			Bits																n$\stackrel{y}{0}$0w¢
			31/15	30/14	29/13	28/12	$27 / 11$	26/10	25/9	24/8	$23 / 7$	22/6	21/5	$20 / 4$	19/3	18/2	17/1	16/0	
A000	CM1CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	CoE	CPOL	-	-	-	-	COUT	EVPOL<1:0>		-	CREF	-	-	CCH <1:0>		E1C3
A010	CM2CON	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ON	COE	CPOL	-	-	-	-	COUT	EVPOL<1:0>		-	CREF	-	-	$\mathrm{CCH}<1: 0>$		E1C3
A060	CMSTAT	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	-	-	SIDL	-	-	-	-	-	-	-	-	-	-	-	C2OUT	C10UT	0000

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 24-1: CMxCON: COMPARATOR CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
	ON ${ }^{(1)}$	COE	$\mathrm{CPOL}^{(2)}$	-	-	-	-	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
	EVPOL<1:0>		-	CREF	-	-	$\mathrm{CCH}<1: 0>$	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ '

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Comparator ON bit ${ }^{(1)}$
$1=$ Module is enabled. Setting this bit does not affect the other bits in this register
$0=$ Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
bit 14 COE: Comparator Output Enable bit
1 = Comparator output is driven on the output CxOUT pin
$0=$ Comparator output is not driven on the output CxOUT pin
bit 13 CPOL: Comparator Output Inversion bit ${ }^{(2)}$
1 = Output is inverted
$0=$ Output is not inverted
bit 12-9 Unimplemented: Read as ' 0 '
bit 8 COUT: Comparator Output bit
1 = Output of the Comparator is a ' 1 '
$0=$ Output of the Comparator is a ' 0 '
bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
$11=$ Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
$10=$ Comparator interrupt is generated on a high-to-low transition of the comparator output
01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
$00=$ Comparator interrupt generation is disabled
bit 5 Unimplemented: Read as ' 0 '
bit 4 CREF: Comparator Positive Input Configure bit
$1=$ Comparator non-inverting input is connected to the internal CVREF
$0=$ Comparator non-inverting input is connected to the CxINA pin
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 $\mathbf{C C H}<1: 0>$: Comparator Negative Input Select bits for Comparator
11 = Comparator inverting input is connected to the IVREF
$10=$ Comparator inverting input is connected to the CxIND pin
$01=$ Comparator inverting input is connected to the CxINC pin
$00=$ Comparator inverting input is connected to the CxINB pin
Note 1: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

PIC32MX330/350/370/430/450/470

REGISTER 24-2: CMSTAT: COMPARATOR STATUS REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	-	-	SIDL	-	-	-	-	-
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
	-	-	-	-	-	-	C2OUT	C10UT

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-14 Unimplemented: Read as '0’
bit 13 SIDL: Stop in IDLE Control bit
1 = All Comparator modules are disabled in IDLE mode
$0=$ All Comparator modules continue to operate in the IDLE mode
bit 12-2 Unimplemented: Read as ' 0 '
bit 1 C2OUT: Comparator Output bit
1 = Output of Comparator 2 is a ' 1 '
$0=$ Output of Comparator 2 is a ' 0 '
bit $0 \quad$ C1OUT: Comparator Output bit
1 = Output of Comparator 1 is a ' 1 '
$0=$ Output of Comparator 1 is a ' 0 '

PIC32MX330/350/370/430/450/470

25.0 COMPARATOR VOLTAGE REFERENCE (CVref)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVref)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The CVRef module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them.

A block diagram of the module is illustrated in Figure 25-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.
The CVREF module has the following features:

- High and low range selection
- Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

FIGURE 25-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

25.1 Control Register

			Bits																
			31/15	30/14	29/13	28/12	$27 / 11$	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	ctrcon	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
	ckron	15:0	ON	-	-	-	-	-	-	-	-	CVROE	CVRR	CVRSS					0000

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note more information.

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0	U-O	U-0	U-0	U-0	U-0	U-0	U-0
	-	-	-	-	-	-	-	-
15:8	R/W-0	U-0						
	ON ${ }^{(1)}$	-	-	-	-	-	-	-
7:0	U-0	R/W-0						
	-	CVROE	CVRR	CVRSS	CVR<3:0>			

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Comparator Voltage Reference On bit ${ }^{(1)}$
1 = Module is enabled
Setting this bit does not affect other bits in the register.
$0=$ Module is disabled and does not consume current
Clearing this bit does not affect the other bits in the register.
bit 14-7 Unimplemented: Read as ' 0 '
bit 6 CVROE: CVREFOUT Enable bit
$1=$ Voltage level is output on CVREFOUT pin
$0=$ Voltage level is disconnected from CVREFOUT pin
bit 5 CVRR: CVREF Range Selection bit
$1=0$ to 0.67 CVRSRC, with CVRSRC/24 step size
$0=0.25$ CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
bit 4 CVRSS: CVREF Source Selection bit
1 = Comparator voltage reference source, CVRSRC $=($ VREF +$)-($ VREF- $)$
$0=$ Comparator voltage reference source, CVRSRC $=$ AVDD - AVSS
bit 3-0 CVR<3:0>: CVREF Value Selection $0 \leq C V R<3: 0>\leq 15$ bits
When CVRR = 1:
CVREF $=($ CVR $<3: 0>/ 24) \cdot($ CVRSRC $)$
When CVRR = 0:
CVREF $=1 / 4 \bullet(C V R S R C)+(C V R<3: 0>/ 32) \bullet(C V R S R C)$
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX330/350/370/430/450/470

NOTES:

26.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:

- Up to 13 channels available for capacitive or time measurement input
- On-chip precision current source
- 16-edge input trigger sources
- Selection of edge or level-sensitive inputs
- Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- Integrated temperature sensing diode
- Control of current source during auto-sampling
- Four current source ranges
- Time measurement resolution of one nanosecond A block diagram of the CTMU is shown in Figure 26-1.

FIGURE 26-1: CTMU BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	Bit 28/20/12/4	Bit $27 / 19 / 11 / 3$	Bit $26 / 18 / 10 / 2$	Bit 25/17/9/1	Bit $24 / 16 / 8 / 0$
31:24	R/W-0							
	EDG1MOD	EDG1POL	EDG1SEL<3:0>				EDG2STAT	EDG1STAT
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
	EDG2MOD	EDG2POL	EDG2SEL<3:0>				-	-
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ON	-	CTMUSIDL	TGEN ${ }^{(1)}$	EDGEN	EDGSEQEN	IDISSEN ${ }^{(2)}$	CTTRIG
7:0	R/W-0							
	ITRIM<5:0>						IRNG<1:0>	

Legend:

| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| :--- | :--- | :--- | :--- |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit
1 = Input is edge-sensitive
$0=$ Input is level-sensitive
bit 30 EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 programmed for a positive edge response
0 = Edge 1 programmed for a negative edge response
bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits
1111 = Reserved
$1110=$ C2OUT pin is selected
$1101=$ C1OUT pin is selected
$1100=$ IC3 Capture Event is selected
1011 = IC2 Capture Event is selected
$1010=$ IC1 Capture Event is selected
$1001=$ CTED8 pin is selected
$1000=$ CTED7 pin is selected
0111 = CTED6 pin is selected
$0110=$ CTED5 pin is selected
$0101=$ CTED4 pin is selected
$0100=$ CTED3 pin is selected
0011 = CTED1 pin is selected
$0010=$ CTED2 pin is selected
$0001=$ OC1 Compare Event is selected
0000 = Timer1 Event is selected
bit 25 EDG2STAT: Edge 2 Status bit
Indicates the status of Edge 2 and can be written to control edge source
1 = Edge 2 has occurred
0 = Edge 2 has not occurred
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ' 1110 ' to select C2OUT.
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to ' 1 ', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
4: This bit setting is not available for the CTMU temperature diode.

PIC32MX330/350/370/430/450/470

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

bit 24 EDG1STAT: Edge 1 Status bit
Indicates the status of Edge 1 and can be written to control edge source
1 = Edge 1 has occurred
0 = Edge 1 has not occurred
bit 23 EDG2MOD: Edge 2 Edge Sampling Select bit
1 = Input is edge-sensitive
$0=$ Input is level-sensitive
bit 22 EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 programmed for a positive edge response
$0=$ Edge 2 programmed for a negative edge response
bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits
1111 = Reserved
$1110=$ C2OUT pin is selected
$1101=$ C1OUT pin is selected
$1100=$ PBCLK clock is selected
1011 = IC3 Capture Event is selected
1010 = IC2 Capture Event is selected
1001 = IC1 Capture Event is selected
1000 = CTED13 pin is selected
0111 = CTED12 pin is selected
$0110=$ CTED11 pin is selected
0101 = CTED10 pin is selected
$0100=$ CTED9 pin is selected
0011 = CTED1 pin is selected
$0010=$ CTED2 pin is selected
$0001=$ OC1 Compare Event is selected
$0000=$ Timer1 Event is selected
bit 17-16 Unimplemented: Read as ' 0 '
bit 15 ON: ON Enable bit
1 = Module is enabled
$0=$ Module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 CTMUSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 TGEN: Time Generation Enable bit ${ }^{(1)}$
1 = Enables edge delay generation
0 = Disables edge delay generation
bit 11 EDGEN: Edge Enable bit
1 = Edges are not blocked
$0=$ Edges are blocked
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ' 1110 ' to select C2OUT.
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to ' 1 ', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
4: This bit setting is not available for the CTMU temperature diode.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

bit 10 EDGSEQEN: Edge Sequence Enable bit
1 = Edge 1 must occur before Edge 2 can occur
$0=$ No edge sequence is needed
bit 9 IDISSEN: Analog Current Source Control bit ${ }^{(2)}$
1 = Analog current source output is grounded
$0=$ Analog current source output is not grounded
bit 8 CTTRIG: Trigger Control bit
1 = Trigger output is enabled
$0=$ Trigger output is disabled
bit 7-2 ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current 011110
-
.
$000001=$ Minimum positive change from nominal current
000000 = Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current
-
.
100010
100001 = Maximum negative change from nominal current
bit 1-0 IRNG<1:0>: Current Range Select bits ${ }^{(3)}$
$11=100$ times base current
$10=10$ times base current
01 = Base current level
$00=1000$ times base current ${ }^{(4)}$
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to ' 1110 ' to select C2OUT.
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to ' 1 ', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
4: This bit setting is not available for the CTMU temperature diode.

PIC32MX330/350/370/430/450/470

NOTES:

27.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "PowerSaving Features" (DS60001130), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX330/350/370/430/450/470 family of devices. These PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

27.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.
In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

27.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock
running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

27.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

27.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.
Sleep mode includes the following characteristics:

- The CPU is Halted.
- The system clock source is typically shutdown. See Section 27.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

PIC32MX330/350/370/430/450/470

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz . When the PB clock divisor of $1: 2$ is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to $1 / 2$ its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.

2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit ($\mathrm{OSCCON}<4>$) is clear and a WAIT instruction is executed.
The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.
Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.
To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

PIC32MX330/350/370/430/450/470

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

To disable a peripheral, the associated PMDx bit must be set to ' 1 '. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.
Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ${ }^{(1)}$	PMDx bit ${ }^{\text {ame }}{ }^{(1)}$	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
CTMU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
USB ${ }^{(2)}$	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.
2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

PIC32MX330/350/370/430/450/470

27.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

27.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.
To set or clear PMDLOCK, an unlock sequence must be executed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

27.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

PIC32MX330/350/370/430/450/470

28.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFGO: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

TABLE 28-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

Note 1: Reset values are dependent on the device variant.

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P
	-	-	-	CP	-	-	-	BWP
23:16	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
	-	-	-	-	PWP<7:4>			
15:8	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1
	PWP<3:0>				-	-	-	-
7:0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
	-	-	-	ICESEL<1:0>		JTAGEN ${ }^{(1)}$	DEBUG<1:0>	

Legend:	$r=$ Reserved bit	$P=$ Programmable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31 Reserved: Write ' 0 '
bit 30-29 Reserved: Write ' 1 '
bit 28 CP: Code-Protect bit
Prevents boot and program Flash memory from being read or modified by an external programming device.
1 = Protection is disabled
$0=$ Protection is enabled
bit 27-25 Reserved: Write ' 1 '
bit 24 BWP: Boot Flash Write-Protect bit
Prevents boot Flash memory from being modified during code execution.
1 = Boot Flash is writable
$0=$ Boot Flash is not writable
bit 23-20 Reserved: Write ' 1 '
bit 19-12 PWP<7:0>: Program Flash Write-Protect bits
Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages.

```
11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00_5FFF
11111000 = 0xBD00_6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00_8FFF
11110101 = 0xBD00_9FFF
11110100 = 0xBD00_AFFF
11110011 = 0xBD00 BFFF
11110010 = 0xBD00_CFFF
11110001 = 0xBD00_DFFF
11110000 = 0xBD00_EFFF
11101111 = 0xBD00_FFFF
.
01111111 = 0xBD07_FFFF
```

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

PIC32MX330/350/370/430/450/470

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 11-5 Reserved: Write ' 1 '
bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
11 = PGEC1/PGED1 pair is used
$10=$ PGEC2/PGED2 pair is used
01 = PGEC3/PGED3 pair is used
00 = Reserved
bit 2 JTAGEN: JTAG Enable bit ${ }^{(1)}$
1 = JTAG is enabled
$0=$ JTAG is disabled
bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ' 11 ' if code-protect is enabled)
$1 \mathrm{x}=$ Debugger is disabled
$0 x=$ Debugger is enabled
Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	Bit 29/21/13/5	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ 25 / 17 / 9 / 1 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	r-1	r-1	r-1	r-1	$\mathrm{r}-1$	r-1	R/P	R/P
	-	-	-	-	-	-	FWDTWINSZ<1:0>	
23:16	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P
	FWDTEN	WINDIS	-	WDTPS<4:0>				
15:8	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P
	FCKSM<1:0>		FPBDIV<1:0>		-	OSCIOFNC	POSCMOD<1:0>	
7:0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P
	IESO	-	FSOSCEN	-	-	FNOSC<2:0>		

Legend:	$r=$ Reserved bit	$P=$ Programmable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-26 Reserved: Write ' 1 '
bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits
11 = Window size is 25%
10 = Window size is 37.5%
$01=$ Window size is 50%
$00=$ Window size is 75%
bit 23 FWDTEN: Watchdog Timer Enable bit
1 = Watchdog Timer is enabled and cannot be disabled by software
$0=$ Watchdog Timer is not enabled; it can be enabled in software
bit 22
WINDIS: Watchdog Timer Window Enable bit
1 = Watchdog Timer is in non-Window mode
$0=$ Watchdog Timer is in Window mode
bit 21 Reserved: Write ' 1 '
bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits
$10100=1: 1048576$
$10011=1: 524288$
$10010=1: 262144$
$10001=1: 131072$
$10000=1: 65536$
$01111=1: 32768$
$01110=1: 16384$
$01101=1: 8192$
$01100=1: 4096$
$01011=1: 2048$
$01010=1: 1024$
$01001=1: 512$
$01000=1: 256$
$00111=1: 128$
$00110=1: 64$
$00101=1: 32$
$00100=1: 16$
$00011=1: 8$
$00010=1: 4$
$00001=1: 2$
$00000=1: 1$
All other combinations not shown result in operation $=10100$

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

PIC32MX330/350/370/430/450/470

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

```
bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
    1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
    01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
    00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
    11 = PBCLK is SYSCLK divided by }
    10 = PBCLK is SYSCLK divided by 4
    01 = PBCLK is SYSCLK divided by 2
    00 = PBCLK is SYSCLK divided by 1
bit 11 Reserved: Write '1'
bit 10 OSCIOFNC: CLKO Enable Configuration bit
    1 = CLKO output is disabled
    0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the
    External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits
        11 = Primary Oscillator is disabled
        10 = HS Oscillator mode is selected
        01 = XT Oscillator mode is selected
        00 = External Clock mode is selected
bit 7 IESO: Internal External Switchover bit
        1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
        0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
bit 6 Reserved: Write '1'
bit 5 FSOSCEN: Secondary Oscillator Enable bit
        1 = Enable Secondary Oscillator
        0 = Disable Secondary Oscillator
bit 4-3 Reserved: Write '1'
bit 2-0 FNOSC<2:0>: Oscillator Selection bits
        111 = Fast RC Oscillator with divide-by-N (FRCDIV)
        110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
        101 = Low-Power RC Oscillator (LPRC)
        100 = Secondary Oscillator (Sosc)
        011 = Primary Oscillator (POSC) with PLL module (XT+PLL, HS+PLL, EC+PLL)
        010 = Primary Oscillator (XT, HS, EC) (1)
        001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
        000 = Fast RC Oscillator (FRC)
```

Note 1: Do not disable the Posc (POSCMOD =11) when using this oscillator source.

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	$\mathrm{r}-1$	r-1	$\mathrm{r}-1$	r-1	$\mathrm{r}-1$	r-1	r-1	r-1
	-	-	-	-	-	-	-	-
23:16	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
	-	-	-	-	-	FPLLODIV<2:0>		
15:8	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
	UPLLEN ${ }^{(1)}$	-	-	-	-	UPLLIDIV<2:0> ${ }^{(1)}$		
7:0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
	-	FPLLMUL<2:0>			-	FPLLIDIV<2:0>		

Legend:	$r=$ Reserved bit	$P=$ Programmable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31-19 Reserved: Write '1'
bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits
111 = PLL output divided by 256
$110=$ PLL output divided by 64
$101=$ PLL output divided by 32
$100=$ PLL output divided by 16
011 = PLL output divided by 8
$010=$ PLL output divided by 4
$001=$ PLL output divided by 2
$000=$ PLL output divided by 1
bit 15 UPLLEN: USB PLL Enable bit ${ }^{(1)}$
1 = Disable and bypass USB PLL
0 = Enable USB PLL
bit 14-11 Reserved: Write '1'
bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits ${ }^{(1)}$
$111=12 x$ divider
$110=10 x$ divider
$101=6 x$ divider
$100=5 x$ divider
$011=4 x$ divider
$010=3 x$ divider
$001=2 x$ divider $000=1 x$ divider
bit 7 Reserved: Write '1'
bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits
$111=24 x$ multiplier
$110=21 \mathrm{x}$ multiplier
$101=20 x$ multiplier
$100=19 x$ multiplier
$011=18 x$ multiplier
$010=17 x$ multiplier
$001=16 x$ multiplier
$000=15 x$ multiplier
bit 3 Reserved: Write ' 1 '

Note 1: This bit is available on PIC32MX4XX devices only.

PIC32MX330/350/370/430/450/470

REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)
bit 2-0 FPLLIDIV<2:0>: PLL Input Divider bits
$111=12 x$ divider
$110=10 x$ divider
$101=6 x$ divider
$100=5 x$ divider
$011=4 x$ divider
$010=3 x$ divider
$001=2 x$ divider $000=1 x$ divider
Note 1: This bit is available on PIC32MX4XX devices only.

REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3

$\begin{gathered} \text { Bit } \\ \text { Range } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{\text { 29/21/13/5 }}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/P	R/P	R/P	R/P	U-0	U-0	U-0	U-0
	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	-	-	-	-
23:16	U-0	U-0	U-0	U-0	U-0	R/P	R/P	R/P
	-	-	-	-	-	FSRSSEL<2:0>		
15:8	R/P							
	USERID<15:8>							
7:0	R/P							
	USERID<7:0>							

Legend:	$r=$ Reserved bit	$P=$ Programmable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31 FVBUSONIO: USB VBUS_ON Selection bit
1 = VbuSOn pin is controlled by the USB module $0=$ VBUSON pin is controlled by the port function
bit 30 FUSBIDIO: USB USBID Selection bit
1 = USBID pin is controlled by the USB module
$0=$ USBID pin is controlled by the port function
bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
bit 27-19 Unimplemented: Read as ' 0 '
bit 18-16 FSRSSEL<2:0>: Shadow Register Set Priority Select bit These bits assign an interrupt priority to a shadow register.
$111=$ Shadow register set used with interrupt priority 7
$110=$ Shadow register set used with interrupt priority 6
$101=$ Shadow register set used with interrupt priority 5
$100=$ Shadow register set used with interrupt priority 4
011 = Shadow register set used with interrupt priority 3
$010=$ Shadow register set used with interrupt priority 2
$001=$ Shadow register set used with interrupt priority 1
$000=$ Shadow register set used with interrupt priority 0
bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP ${ }^{\text {TM }}$ and JTAG

PIC32MX330/350/370/430/450/470

REGISTER 28-5: CFGCON: CONFIGURATION CONTROL REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	Bit 27/19/11/3	Bit 26/18/10/2	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	-	-	IOLOCK ${ }^{(1)}$	PMDLOCK ${ }^{(1)}$	-	-	-	-
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1
	-	-	-	-	JTAGEN	TROEN	-	TDOEN

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 31-14 Unimplemented: Read as ' 0 '
bit 13 IOLOCK: Peripheral Pin Select Lock bit ${ }^{(1)}$
1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
$0=$ Peripheral Pin Select is not locked. Writes to PPS registers is allowed
bit 12 PMDLOCK: Peripheral Module Disable bit ${ }^{(1)}$
1 = Peripheral module is locked. Writes to PMD registers is not allowed
0 = Peripheral module is not locked. Writes to PMD registers is allowed
bit 11-4 Unimplemented: Read as ' 0 '
bit 3 JTAGEN: JTAG Port Enable bit
1 = Enable the JTAG port
0 = Disable the JTAG port
bit 2 TROEN: Trace Output Enable bit
1 = Enable trace outputs and start trace clock (trace probe must be present)
$0=$ Disable trace outputs and stop trace clock
bit 1 Unimplemented: Read as ' 0 '
bit 0 TDOEN: TDO Enable for 2-Wire JTAG
1 = 2-wire JTAG protocol uses TDO
$0=2$-wire JTAG protocol does not use TDO
Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\underset{\text { Bit }}{29 / 21 / 13 / 5}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R	R	R	R	R	R	R	R
	$\mathrm{VER}<3: 0>{ }^{(1)}$				DEVID<27:24> ${ }^{(1)}$			
23:16	R	R	R	R	R	R	R	R
	DEVID<23:16> ${ }^{(1)}$							
15:8	R	R	R	R	R	R	R	R
	DEVID<15:8> ${ }^{(1)}$							
7:0	R	R	R	R	R	R	R	R
	DEVID $<7: 0>{ }^{(1)}$							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 31-28 VER<3:0>: Revision Identifier bits ${ }^{(1)}$
bit 27-0 DEVID<27:0>: Device ID ${ }^{(1)}$

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

PIC32MX330/350/370/430/450/470

28.2 On-Chip Voltage Regulator

All PIC32MX330/350/370/430/450/470 devices' core and digital logic are designed to operate at a nominal 1.8 V . To simplify system designs, most devices in the PIC32MX330/350/370/430/450/470 family incorporate an on-chip regulator providing the required core logic voltage from VDD.
A low-ESR capacitor (such as tantalum) must be connected to the Vcap pin (see Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Section 31.1 "DC Characteristics".

Note: It is important that the low-ESR capacitor is placed as close as possible to the VCAP pin.

28.2.1 HIGH VOLTAGE DETECT (HVD)

The HVD module monitors the core voltage at the Vcap pin. If a voltage above the required level is detected on Vcap, the I/O pins are disabled and the device is held in Reset as long as the HVD condition persists. See parameter HV10 (VHVD) in Table 31-11 in Section 31.1 "DC Characteristics" for more information.

28.2.2 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

28.2.3 ON-CHIP REGULATOR AND BOR

PIC32MX330/350/370/430/450/470 devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit ($\mathrm{RCON}<1>$). The brown-out voltage levels are specific in Section 31.1 "DC Characteristics".

FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

28.3 Programming and Diagnostics

PIC32MX330/350/370/430/450/470 devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics
PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 28-2: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

29.0 INSTRUCTION SET

The PIC32MX330/350/370/430/450/470 family instruction set complies with the MIPS32 ${ }^{\circledR}$ Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

[^14]
PIC32MX330/350/370/430/450/470

NOTES:

30.0 DEVELOPMENT SUPPORT

The PIC ${ }^{\circledR}$ microcontrollers (MCU) and dsPIC ${ }^{\circledR}$ digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB ${ }^{\circledR}$ XIDE Software
- Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM ${ }^{\text {TM }}$ Assembler
- MPLINK ${ }^{\text {TM }}$ Object Linker/ MPLIB ${ }^{\text {TM }}$ Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE ${ }^{\text {TM }}$ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit ${ }^{\text {TM }} 3$
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows ${ }^{\circledR}$, Linux and Mac OS ${ }^{\circledR} \mathrm{X}$. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.
Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- Built-in support for Bugzilla issue tracker

PIC32MX330/350/370/430/450/470

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.
The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel ${ }^{\circledR}$ standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

PIC32MX330/350/370/430/450/470

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In -Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Seria Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128×64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

PIC32MX330/350/370/430/450/470

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM $^{\text {™ }}$ and dsPICDEM ${ }^{\text {TM }}$ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, $\mathrm{KEELOQ}{ }^{\circledR}$ security ICs, CAN, IrDA ${ }^{\circledR}$, PowerSmart battery management, SEEVAL ${ }^{\circledR}$ evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.
Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent ${ }^{\circledR}$ and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika ${ }^{\circledR}$

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.
Absolute Maximum Ratings
(See Note 1)
Ambient temperature under bias. $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on VDD with respect to Vss -0.3 V to +4.0 V
Voltage on any pin that is not 5 V tolerant, with respect to Vss (Note 3) -0.3 V to ($\mathrm{VDD}+0.3 \mathrm{~V}$)
Voltage on any 5 V tolerant pin with respect to Vss when VdD $\geq 2.3 \mathrm{~V}$ (Note 3) -0.3 V to +6.0 V
Voltage on any 5 V tolerant pin with respect to Vss when VDD $<2.3 \mathrm{~V}$ (Note 3). -0.3 V to +3.6 V
Voltage on D+ or D- pin with respect to VUSB3V3 -0.3 V to (Vusb3V3 +0.3 V)
Voltage on Vbus with respect to Vss -0.3 V to +5.5 V
Maximum current out of Vss pin(s) 200 mA
Maximum current into VDD pin(s) (Note 2). 200 mA
Maximum output current sourced/sunk by any 4 x I/O pin 15 mA
Maximum output current sourced/sunk by any 8 x I/O pin 25 mA
Maximum current sunk by all ports 150 mA
Maximum current sourced by all ports (Note 2). 150 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
3: See the "Device Pin Tables" section for the 5V tolerant pins.

PIC32MX330/350/370/430/450/470

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Characteristic	Vdd Range (in Volts)	Temp. Range (in ${ }^{\circ} \mathrm{C}$)	Max. Frequency
			PIC32MX330/350/370/430/450/470
DC5	$2.3-3.6 \mathrm{~V}^{(1)}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	100 MHz
DC5b	2.3-3.6V(1)	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	80 MHz
DC5c	$2.3-3.6 \mathrm{~V}^{(1)}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	120 MHz

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below Vddmin. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Commercial Temperature Devices Operating Junction Temperature Range Operating Ambient Temperature Range	$\begin{aligned} & \text { TJ } \\ & \text { TA } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\begin{aligned} & +115 \\ & +70 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Industrial Temperature Devices Operating Junction Temperature Range Operating Ambient Temperature Range	$\begin{aligned} & \mathrm{TJ} \\ & \mathrm{TA} \end{aligned}$	$\begin{aligned} & -40 \\ & -40 \end{aligned}$	-	$\begin{gathered} +125 \\ +85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
V-temp Temperature Devices Operating Junction Temperature Range Operating Ambient Temperature Range	$\begin{aligned} & \text { TJ } \\ & \text { TA } \end{aligned}$	$\begin{aligned} & -40 \\ & -40 \end{aligned}$	-	$\begin{aligned} & +140 \\ & +105 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH I/O Pin Power Dissipation: $\mathrm{I} / \mathrm{O}=\mathrm{S}((\{\mathrm{VDD}-\mathrm{VOH}\} \times \mathrm{IOH})+\mathrm{S}(\mathrm{VOL} \times \mathrm{IOL}))$	PD	PINT + Pl/o			W
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/ θ JA			W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	Notes
Package Thermal Resistance, 64-pin QFN $(9 \times 9 \times 0.9 \mathrm{~mm})$	$\theta \mathrm{JA}$	28	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathbf{1}$
Package Thermal Resistance, 64-pin TQFP $(10 \times 10 \times 1 \mathrm{~mm})$	$\theta \mathrm{JA}$	47	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathbf{1}$
Package Thermal Resistance, $100-$ pin TQFP $(12 \times 12 \times 1 \mathrm{~mm})$	$\theta \mathrm{JA}$	43	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathbf{1}$
Package Thermal Resistance, $100-$ pin TQFP $(14 \times 14 \times 1 \mathrm{~mm})$	$\theta \mathrm{JA}$	43	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathbf{1}$
Package Thermal Resistance, 124-pin VTLA	$\theta \mathrm{JA}$	21	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	$\mathbf{1}$

Note 1: Junction to ambient thermal resistance, Theta-JA ($\theta \mathrm{JA}$) numbers are achieved by package simulations.

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Operating Voltage							
DC10	VDD	Supply Voltage	2.3	-	3.6	V	-
DC12	VDR	RAM Data Retention Voltage (Note 1)	1.75	-	-	V	-
DC16	VPOR	VdD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	-	2.1	V	-
DC17	SVDD	Vdd Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	-	0.115	V/ $\mu \mathrm{s}$	-

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

PIC32MX330/350/370/430/450/470

TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp		
Parameter No.	Typical ${ }^{(3)}$	Maximum	Units		ons
Operating Current (IDD) ${ }^{(1,2)}$					
DC20	2.5	4	mA	4 MHz	
DC21	6	9	mA	10 MHz (Note 4)	
DC22	11	17	mA	20 MHz (Note 4)	
DC23	21	32	mA	40 MHz (Note 4)	
DC24	30	45	mA	60 MHz (Note 4)	
DC25	40	60	mA	80 MHz	
DC25a	50	75	mA	$100 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$	
DC25c	72	84	mA	$120 \mathrm{MHz}, 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$	
DC26	100	-	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	LPRC (31 k

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.
2: The test conditions for IDD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor $=1: 8$
- CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating (ON bit $=0$), but the associated PMD bit is clear
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\mathrm{MCLR}}=\mathrm{VDD}$
- CPU executing while(1) statement from Flash
- RTCC and JTAG are disabled

3: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp			
Parameter No.	Typical ${ }^{(2)}$	Maximum	Units	Conditions		
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)						
DC30a	1	2.2	mA	4 MHz		
DC31a	3	5	mA	10 MHz (Note 3)		
DC32a	5	7	mA	20 MHz (Note 3)		
DC33a	8	13	mA	40 MHz (Note 3)		
DC34a	11	18	mA	60 MHz (Note 3)		
DC34b	15	24	mA	80 MHz		
DC34c	19	29	mA	$100 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$		
DC34d	25	34	mA	$120 \mathrm{MHz}, 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$		
DC37a	100	-	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	3.3 V	LPRC (31 kHz) (Note 3)
DC37b	250	-	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$		
DC37c	380	-	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$		

Note 1: The test conditions for IIDLE measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor $=1: 8$
- CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\mathrm{MCLR}}=\mathrm{VDD}$
- RTCC and JTAG are disabled

2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: This parameter is characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp		
Param. No.	Typ. ${ }^{(2)}$	Max.	Units		Conditions
PIC32MX330 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	20	55	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC40I	38	55	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	128	167	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	261	419	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX430 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	12	28	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC40I	21	28	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	128	167	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	261	419	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX350F128 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	31	70	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC401	45	70	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	175	280	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	415	600	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX450F128 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	19	35	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC401	28	35	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	175	280	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	415	600	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor $=1: 8$
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\mathrm{MCLR}}=\mathrm{VDD}$
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)

2: Data in the "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: $\quad 120 \mathrm{MHz}$ commercial devices only $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp		
Param. No.	Typ. ${ }^{(2)}$	Max.	Units		Conditions
PIC32MX350F256 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	38	80	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC40I	57	80	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	220	352	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	513	749	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX450F256 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	26	42	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC40o	26	42	$\mu \mathrm{A}$	$0^{\circ} \mathrm{C}^{(5)}$	
DC40I	26	42	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40p	250	352	$\mu \mathrm{A}$	$+70^{\circ} \mathrm{C}^{(5)}$	
DC40n	250	352	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	513	749	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor $=1: 8$
- CPU is in Sleep mode, program Flash memory Wait states $=7$, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\mathrm{MCLR}}=\mathrm{VDD}$
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)

2: Data in the "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: $\quad 120 \mathrm{MHz}$ commercial devices only $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.

PIC32MX330/350/370/430/450/470

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3 V to $\mathbf{3 . 6 V}$ (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp		
Param. No.	Typ. ${ }^{(2)}$	Max.	Units		Conditions
PIC32MX370 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	55	95	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC401	81	95	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40n	281	450	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	559	895	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX470 Devices Only					
Power-Down Current (IPD) (Note 1)					
DC40k	33	78	$\mu \mathrm{A}$	$-40^{\circ} \mathrm{C}$	Base Power-Down Current
DC40o	33	78	$\mu \mathrm{A}$	$0^{\circ}{ }^{(5)}$	
DC401	49	78	$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	
DC40p	281	450	$\mu \mathrm{A}$	$+70^{\circ} \mathrm{C}^{(5)}$	
DC40n	281	450	$\mu \mathrm{A}$	$+85^{\circ} \mathrm{C}$	
DC40m	559	895	$\mu \mathrm{A}$	$+105^{\circ} \mathrm{C}$	
PIC32MX330/350/370/430/450/470 Devices					
Module Differential Current					
DC41e	6.7	20	$\mu \mathrm{A}$	3 V	Watchdog Timer Current: $\operatorname{\Delta IWDT}$ (Note 3)
DC42e	29.1	50	$\mu \mathrm{A}$	3 V	RTCC + Timer1 w/32 kHz Crystal: Δ IRTCC (Note 3)
DC43d	1000	1200	$\mu \mathrm{A}$	3 V	ADC: \triangle IADC ((${ }^{\text {ates 3,4) }}$

Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor $=1: 8$
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\mathrm{MCLR}}=\mathrm{VDD}$
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)

2: Data in the "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
5: $\quad 120 \mathrm{MHz}$ commercial devices only $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHA	RACTE	RISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symb.	Characteristics	Min.	Typ. ${ }^{(1)}$	Max.	Units	Conditions
$\begin{array}{\|l} \text { DI10 } \\ \text { DI18 } \\ \text { DI19 } \end{array}$	VIL	Input Low Voltage I/O Pins with PMP I/O Pins SDAx, SCLx SDAx, SCLx	Vss Vss Vss Vss	—	$\begin{gathered} 0.15 \text { VDD } \\ 0.2 \text { VDD } \\ 0.3 \text { VDD } \\ \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	SMBus disabled (Note 4) SMBus enabled (Note 4)
DI20	VIH	Input High Voltage I/O Pins not 5V-tolerant ${ }^{(5)}$ I/O Pins 5V-tolerant with PMP ${ }^{(5)}$ I/O Pins 5V-tolerant ${ }^{(5)}$ SDAx, SCLx SDAx, SCLx	$\begin{gathered} 0.65 \mathrm{VDD} \\ 0.25 \mathrm{VDD}+0.8 \mathrm{~V} \\ \\ 0.65 \mathrm{VDD} \\ 0.65 \mathrm{VDD} \\ \\ 2.1 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \text { VDD } \\ 5.5 \\ \\ 5.5 \\ 5.5 \\ \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	(Note 4,6) (Note 4,6) SMBus disabled (Note 4,6) SMBus enabled, $2.3 \mathrm{~V} \leq \text { VPIN } \leq 5.5$ (Note 4,6)
DI30	ICNPU	Change Notification Pull-up Current	-	-	-50	$\mu \mathrm{A}$	$\begin{aligned} & \text { VDD }=3.3 \mathrm{~V}, \text { VPIN }=\mathrm{VsS} \\ & \text { (Note 3,6) } \end{aligned}$
DI31	ICNPD	Change Notification Pull-down Current ${ }^{(4)}$	50	-	-	$\mu \mathrm{A}$	$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VPIN}=\mathrm{VDD}$

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the "Device Pin Tables" section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (Vss - 0.3). Characterized but not tested.
8: VIH source $>(\mathrm{VDD}+0.3)$ for non- 5 V tolerant pins only.
9: Digital 5 V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
10: Injection currents $>|0|$ can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD +0.3) or VIL source < (Vss - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) / $R S$). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) \leq Vsource $\leq(V D D+$ 0.3), injection current $=0$.

PIC32MX330/350/370/430/450/470

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHA	RACTE	RISTICS	Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symb.	Characteristics	Min.	Typ. ${ }^{(1)}$	Max.	Units	Conditions
$\begin{aligned} & \text { DI50 } \\ & \text { DI51 } \\ & \text { DI55 } \\ & \text { DI56 } \end{aligned}$	IIL	Input Leakage Current (Note 3) I/O Ports Analog Input Pins $\overline{M C L R}^{(2)}$ OSC1			$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	Vss \leq VPIN \leq VDD, Pin at high-impedance Vss \leq VPIN \leq VDD, Pin at high-impedance Vss \leq VPIN \leq VDD Vss \leq VPIN \leq VDD, XT and HS modes
DI60a	IICL	Input Low Injection Current	0	-	$-5^{(7,10)}$	mA	Pins with Analog functions. Exceptions: $[\mathrm{N} / \mathrm{A}]=0 \mathrm{~mA}$ max Digital 5V tolerant designated pins. Exceptions: [N/A] $=0 \mathrm{~mA} \max$ Digital non-5V tolerant designated pins. Exceptions: [$\mathrm{N} / \mathrm{A}]=0 \mathrm{~mA}$ max

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the "Device Pin Tables" section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of IcNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (Vss - 0.3). Characterized but not tested.
8: \quad VIH source $>(V D D+0.3)$ for non- 5 V tolerant pins only.
9: Digital 5 V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
10: Injection currents $>|0|$ can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD +0.3) or VIL source < (Vss - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss -0.3)-VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD +0.3$)) /$ $R S$). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) $\leq \mathrm{VsOURCE} \leq(\mathrm{VDD}+$ 0.3), injection current $=0$.

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symb.	Characteristics	Min.	Typ. ${ }^{(1)}$	Max.	Units	Conditions
DI60b	IICH	Input High Injection Current	0	-	$+5^{(8,9,10)}$	mA	Pins with Analog functions. Exceptions: [SOSCI, SOSCO, OSC1, D+, D-] = 0 mA max.
							Digital 5V tolerant designated pins $\left(\mathrm{V}_{\mathrm{IH}}<5.5 \mathrm{~V}\right)^{(9)}$. Exceptions: $[\mathrm{All}]=0 \mathrm{~mA}$ max.
							Digital non-5V tolerant designated pins. Exceptions: $[\mathrm{N} / \mathrm{A}]=0 \mathrm{~mA}$ max.
DI60c	$\Sigma \mathrm{IICT}$	Total Input Injection Current (sum of all I/O and control pins)	$-20^{(11)}$	-	$+20^{(11)}$	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins $\left(\mid\right.$ IICL $+\mid$ IICH \|) $\leq \sum$ IICT

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the "Device Pin Tables" section for the 5V tolerant pins.
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
7: VIL source < (Vss - 0.3). Characterized but not tested.
8: $\quad \mathrm{VIH}$ source > (VDD +0.3) for non- 5 V tolerant pins only.
9: Digital 5 V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
10: Injection currents $>|0|$ can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD +0.3) or VIL source < (Vss - 0.3)).
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL $=(((\mathrm{Vss}-0.3)-\mathrm{VIL}$ source $) / \mathrm{Rs})$. If Note 8, IICH $=((\mathrm{IICH}$ source $-(\mathrm{VDD}+0.3)) /$ $R S$). $R S=$ Resistance between input source voltage and device pin. If (Vss -0.3) \leq Vsource \leq (VDD + 0.3), injection current $=0$.

PIC32MX330/350/370/430/450/470

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8 x Sink Driver pins	-	-	0.4	V	$\mathrm{IOL} \leq 9 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15, RD2, RD10, RF6, RG6	-	-	0.4	V	$\mathrm{IOL} \leq 15 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
DO20	VOH	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8 x Source Driver pins	2.4	-	-	V	$\mathrm{IOH} \geq-10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	2.4	-	-	V	$\mathrm{IOH} \geq-15 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
DO20A	Voh1	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8 x Sink Driver pins	$1.5{ }^{(1)}$	-	-	V	$\mathrm{IOH} \geq-14 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
			$2.0{ }^{(1)}$	-	-		$\mathrm{IOH} \geq-12 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
			$3.0{ }^{(1)}$	-	-		$\mathrm{IOH} \geq-7 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	$1.5{ }^{(1)}$	-	-	V	$\mathrm{IOH} \geq-22 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
			$2.0^{(1)}$	-	-		$\mathrm{IOH} \geq-18 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$
			$3.0{ }^{(1)}$	-	-		$\mathrm{IOH} \geq-10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}$

Note 1: Parameters are characterized, but not tested.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)				
Param. No.	Symbol	Characteristics	Min. ${ }^{(1)}$	Typical	Max.	Units	Conditions
BO10	VBor	BOR Event on VDD transition high-to-low	2.0	-	2.3	V	-

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No. ${ }^{1)}$	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
HV10	VHVD	High Voltage Detect on VCAP pin	-	2.5	-	V	-

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

PIC32MX330/350/370/430/450/470

TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY ${ }^{(3)}$

DC CHA	RACTERI	ISTICS	Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical ${ }^{(1)}$	Max.	Units	Conditions
D130	Ep	Cell Endurance	20,000	-	-	E/W	-
D131	VPR	Vdd for Read	2.3	-	3.6	V	-
D132	Vpew	VDD for Erase or Write	2.3	-	3.6	V	-
D134	TRETD	Characteristic Retention	20	-	-	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	-	10	-	mA	-
D138	Tww	Word Write Cycle Time ${ }^{(4)}$	44	-	59	$\mu \mathrm{s}$	-
D136	TRW	Row Write Cycle Time ${ }^{(2,4)}$	2.8	3.3	3.8	ms	-
D137	TPE	Page Erase Cycle Time ${ }^{(4)}$	22	-	29	ms	-
D139	TCE	Chip Erase Cycle Time ${ }^{(4)}$	86	-	116	ms	-

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.
2: The minimum SYSCLK for row programming is 8 MHz . Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).
3: Refer to the "PIC32 Flash Programming Specification" (DS60001145) for operating conditions during programming and erase cycles.
4: Translating this value to seconds depends on the FRC accuracy (see Table 31-20) and the FRC tuning values (see Register 8-2).

TABLE 31-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATE

DC CHARACTERISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp		
Required Flash Wait States	SYSCLK	Units	Conditions
0 Wait State	0-40	MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	0-30	MHz	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
1 Wait State	41-80	MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	31-60	MHz	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
2 Wait States	81-100	MHz	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	61-80	MHz	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
3 Wait States	101-120	MHz	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

TABLE 31-14: COMPARATOR SPECIFICATIONS

DC CHA	RACTERI	STICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)			
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D300	VIofF	Input Offset Voltage	-	± 7.5	± 25	mV	$\begin{aligned} & \mathrm{AVDD}=\mathrm{VDD}, \\ & \mathrm{AVSS}=\mathrm{Vss} \end{aligned}$
D301	VICM	Input Common Mode Voltage	0	-	VDD	V	$\begin{aligned} & \hline \text { AVDD = VDD, } \\ & \text { AVss = VSs } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$
D302	CMRR	Common Mode Rejection Ratio	55	-	-	dB	$\begin{aligned} & \text { Max VICM }=(\mathrm{VDD}-1) \mathrm{V} \\ & \text { (Note 2) } \end{aligned}$
D303	TRESP	Response Time	-	150	400	ns	$\begin{aligned} & \hline \mathrm{AVDD}=\mathrm{VDD}, \\ & \mathrm{AVSS}=\mathrm{Vss} \\ & \text { (Notes 1,2) } \\ & \hline \end{aligned}$
D304	ON2ov	Comparator Enabled to Output Valid	-	-	10	$\mu \mathrm{S}$	Comparator module is configured before setting the comparator ON bit (Note 2)
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	-

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to Vdd.
2: These parameters are characterized but not tested.
3: Settling time measured while CVRR = 1 and CVR $<3: 0>$ transitions from ' 0000 ' to ' 1111 '. This parameter is characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typ.	Max.	Units	Comments
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	-	-	10	$\mu \mathrm{s}$	See Note 1
D313	DACreft	CVREF Input Voltage Reference Range	AVss	-	AVDD	V	CVRSRC with CVRSS $=0$
			Vref-	-	VREF+	V	CVRSRC with CVRSS $=1$
D314	DVREF	CVREF Programmable Output Range	0	-	$\begin{gathered} 0.625 x \\ \text { DACREFH } \end{gathered}$	V	0 to 0.625 DACREFH with DACREFH/24 step size
			0.25 x DACREFH	-	$\begin{gathered} 0.719 \mathrm{x} \\ \text { DACREFH } \end{gathered}$	V	$0.25 \times$ DACREFH to 0.719 DACREFH with DACREFH/ 32 step size
D315	DACRES	Resolution	-	-	DACrefh/24		CVRCON<CVRR> $=1$
			-	-	DACrefh/32		CVRCON<CVRR> $=0$
D316	DACACC	Absolute Accuracy ${ }^{(2)}$	-	-	1/4	LSB	DACREFH/24, CVRCON<CVRR> = 1
			-	-	1/2	LSB	$\begin{aligned} & \text { DACREFH/32, } \\ & \text { CVRCON<CVRR> }=0 \end{aligned}$

Note 1: Settling time was measured while CVRR $=1$ and CVR<3:0> transitions from ' 0000 ' to ' 1111 '. This parameter is characterized, but is not tested in manufacturing.
2: These parameters are characterized but not tested.

TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHA	RACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10	-	$\mu \mathrm{F}$	Capacitor must be low series resistance (3 ohm). Typical voltage on the Vcap pin is 1.8 V .

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX330/350/370/430/450/470 AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Load Condition 1 - for all pins except OSC2 Load Condition 2 - for OSC2	
	$\begin{aligned} & \mathrm{RL}=464 \Omega \\ & \mathrm{CL}=50 \mathrm{pF} \text { for all pins } \end{aligned}$ $50 \mathrm{pF} \text { for OSC2 pin (EC mode) }$

TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical ${ }^{(1)}$	Max.	Units	Conditions
DO50	Cosco	OSC2 pin	-	-	15	pF	In XT and HS modes when an external crystal is used to drive OSC1
DO56	Cıo	All I/O pins and OSC2	-	-	50	pF	EC mode
DO58	Св	SCLx, SDAx	-	-	400	pF	In $\mathrm{I}^{2} \mathrm{C}$ mode

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

PIC32MX330/350/370/430/450/470

TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical ${ }^{(1)}$	Max.	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	$\begin{gathered} \hline \text { DC } \\ 4 \end{gathered}$	-	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	EC (Note 4) ECPLL (Note 3)
OS11		Oscillator Crystal Frequency	3	-	10	MHz	XT (Note 4)
OS12			4	-	10	MHz	XTPLL (Notes 3,4)
OS13			10	-	25	MHz	HS (Note 4)
OS14			10	-	25	MHz	HSPLL (Notes 3,4)
OS15			32	32.768	100	kHz	Sosc (Note 4)
OS20	Tosc	TOSC $=1 / \mathrm{FOSC}=\mathrm{TCY}$ (Note 2)	-	-	-	-	See parameter OS10 for Fosc value
OS30	$\begin{aligned} & \text { TosL, } \\ & \text { TosH } \end{aligned}$	External Clock In (OSC1) High or Low Time	$0.45 \times$ Tosc	-	-	ns	EC (Note 4)
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	-	-	$0.05 \times$ Tosc	ns	EC (Note 4)
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	-	1024	-	Tosc	(Note 4)
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	-	2	-	ms	(Note 4)
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	-	12	-	mA/V	$\begin{aligned} & \text { VDD }=3.3 \mathrm{~V} \text {, } \\ & \mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \end{aligned}$

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are characterized but are not tested.
2: Instruction cycle period (TcY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.
3: PLL input requirements: $4 \mathrm{MHz} \leq$ FPLLIN $\leq 5 \mathrm{MHz}$ (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.
4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-19: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical	Max.	Units	Conditions
OS50	FPLLI	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	3.92	-	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes
OS51a	Fsys	On-Chip VCO System Frequency	60	-	120	MHz	Commercial devices
OS51b			60	-	100	MHz	Industrial devices
OS51c			60	-	80	MHz	V-temp devices
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	-	2	ms	-
OS53	DcLK	$\begin{aligned} & \text { CLKO Stability }{ }^{(\mathbf{2})} \\ & \text { (Period Jitter or Cumulative) } \end{aligned}$	-0.25	-	+0.25	\%	Measured over 100 ms period

Note 1: These parameters are characterized, but not tested in manufacturing.
2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$
\text { EffectiveJitter }=\frac{D_{\text {CLK }}}{\sqrt{\frac{\text { SYSCLK }}{\text { CommunicationClock }}}}
$$

For example, if SYSCLK $=40 \mathrm{MHz}$ and SPI bit rate $=20 \mathrm{MHz}$, the effective jitter is as follows:

$$
\text { EffectiveJitter }=\frac{D_{C L K}}{\sqrt{\frac{40}{20}}}=\frac{D_{C L K}}{1.41}
$$

TABLE 31-20: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated)				
		Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions
Internal FRC Accuracy @ $8.00 \mathbf{~ M H z}{ }^{(1)}$						
F20b	FRC	-0.9	-	+0.9	\%	-

Note 1: Frequency calibrated at $25^{\circ} \mathrm{C}$ and 3.3 V . The TUN bits can be used to compensate for temperature drift.

PIC32MX330/350/370/430/450/470

TABLE 31-21: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions
LPRC @ 31.25 kHz ${ }^{(1)}$						
F21	LPRC	-15	-	+15	\%	-

Note 1: Change of LPRC frequency as VDD changes.
FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-22: I/O TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS \quadStandar (unless Operatin	Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(2)}$	Min.	Typical ${ }^{(1)}$	Max.	Units	Conditions
DO31	TıoR	Port Output Rise Time	-	5	15	ns	VDD < 2.5 V
			-	5	10	ns	$\mathrm{VDD}>2.5 \mathrm{~V}$
DO32	TıOF	Port Output Fall Time	-	5	15	ns	$\mathrm{VDD}<2.5 \mathrm{~V}$
			-	5	10	ns	$\mathrm{VDD}>2.5 \mathrm{~V}$
DI35	TINP	INTx Pin High or Low Time	10	-	-	ns	-
DI40	TRBP	CNx High or Low Time (input)	2	-	-	TsYScLK	-

Note 1: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated.
2: This parameter is characterized, but not tested in manufacturing.

FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS
Internal Voltage Regulator Enabled
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)

Internal Voltage Regulator Enabled Clock Sources = (HS, HSPLL, XT, XTPLL and Sosc)

Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VDDMIN).
2: Includes interval voltage regulator stabilization delay.

PIC32MX330/350/370/430/450/470

FIGURE 31-5: EXTERNAL RESET TIMING CHARACTERISTICS

TABLE 31-23: RESETS TIMING

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical ${ }^{(2)}$	Max.	Units	Conditions
SYOO	Tpu	Power-up Period Internal Voltage Regulator Enabled	-	400	600	$\mu \mathrm{s}$	-
SY02	Tsysdiy	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	-	$1 \mu \mathrm{~s}+$ 8 SYSCLK cycles	-	-	-
SY20	TMCLR	$\overline{\mathrm{MCLR}}$ Pulse Width (low)	2	-	-	$\mu \mathrm{S}$	-
SY30	Tbor	BOR Pulse Width (low)	-	1	-	$\mu \mathrm{s}$	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typ" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Characterized by design but not tested.

FIGURE 31-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS

Note: Refer to Figure 31-1 for load conditions.

TABLE 31-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS ${ }^{(1)}$

AC CHARACTERISTICS				Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(2)}$		Min.	Typical	Max.	Units	Conditions
TA10	TtxH	TxCK High Time	Synchronous, with prescaler	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	-	ns	Must also meet parameter TA15
			Asynchronous, with prescaler	10	-	-	ns	-
TA11	TTXL	TxCK Low Time	Synchronous, with prescaler Asynchronous, with prescaler	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	-	ns	Must also meet parameter TA15
				10	-	-	ns	-
TA15	TtxP	TxCK Input Period	Synchronous, with prescaler	[(Greater of 25 ns or 2 TpB)/N] +30 ns	-	-	ns	VDD > 2.7 V
				[(Greater of 25 ns or 2 TpB)/N] + 50 ns	-	-	ns	VDD < 2.7V
			Asynchronous, with prescaler	20	-	-	ns	$\begin{aligned} & \text { VDD > 2.7V } \\ & \text { (Note 3) } \end{aligned}$
				50	-	-	ns	$\begin{aligned} & \text { VDD < 2.7V } \\ & \text { (Note 3) } \end{aligned}$
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit ($\mathrm{T} 1 \mathrm{CON}<1>$))		32	-	100	kHz	-
TA20	TCKEXTMRL	Delay from Clock Edge Increment	xternal TxCK o Timer	-		1	TPB	-

Note 1: Timer1 is a Type A.
2: This parameter is characterized, but not tested in manufacturing.
3: $\quad N=$ Prescale Value (1, $8,64,256$).

PIC32MX330/350/370/430/450/470

TABLE 31-25: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$		Min.	Max.	Units	Conditions	
TB10	TTXH	TxCK High Time	Synchronous, with prescaler	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	ns	Must also meet parameter TB15	$\mathrm{N}=$ prescalevalue$(1,2,4,8$,$16,32,64$,$256)$
TB11	TTXL	TxCK Low Time	Synchronous, with prescaler	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	ns	Must also meet parameter TB15	
TB15	TTXP	TxCK Input Period	Synchronous, with prescaler	[(Greater of [(25 ns or 2 TPB)/N] + 30 ns	-	ns	VDD $>2.7 \mathrm{~V}$	
				[(Greater of [(25 ns or 2 TPB)/N] + 50 ns	-	ns	VDD < 2.7V	
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		-	1	TPB	-	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

Note: Refer to Figure 31-1 for load conditions.

TABLE 31-26: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp					
Param. No.	Symbol	Characteristics ${ }^{(1)}$		Min.	Max.	Units	Conditions	
IC10	TccL	ICx Inp	Low Time	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	ns	Must also meet parameter IC15.	$\mathrm{N}=$ prescale value (1, 4, 16)
IC11	Tcch	ICx Inp	High Time	$\begin{gathered} {[(12.5 \mathrm{~ns} \text { or } 1 \mathrm{TPB}) / \mathrm{N}]} \\ +25 \mathrm{~ns} \end{gathered}$	-	ns	Must also meet parameter IC15.	
IC15	TccP	ICx Inp	Period	$\begin{gathered} {\left[\begin{array}{c} (25 \mathrm{~ns} \text { or } 2 \mathrm{TPB}) / \mathrm{N}] \\ \\ +50 \mathrm{~ns} \end{array}\right.} \end{gathered}$	-	ns	-	

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

FIGURE 31-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	RACTER	STICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical ${ }^{(2)}$	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	-	-	-	ns	See parameter DO32
OC11	TccR	OCx Output Rise Time	-	-	-	ns	See parameter DO31

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS
\square

TABLE 31-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param No.	Symbol	Characteristics ${ }^{(1)}$	Min	Typical ${ }^{(2)}$	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	-	-	50	ns	-
OC20	Tflt	Fault Input Pulse Width	50	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC32MX330/350/370/430/450/470

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-29: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical ${ }^{(2)}$	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	-	-	ns	-
SP11	Tsch	SCKx Output High Time (Note 3)	Tsck/2	-	-	ns	-
SP20	TscF	SCKx Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	-	-	-	ns	See parameter DO31
SP30	TdoF	SDOx Data Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP31	TDoR	SDOx Data Output Rise Time (Note 4)	-	-	-	ns	See parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	15	ns	VDD > 2.7V
			-	-	20	ns	VDD < 2.7V
SP40	TdiV2sch, TdIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-30: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standar (unless Operatin	$-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp			3 V to 3.6 V $+70^{\circ} \mathrm{C}$ for Commercial $\leq+85^{\circ} \mathrm{C}$ for Industrial $\leq+105^{\circ} \mathrm{C}$ for V-temp
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	TSck/2	-	-	ns	-
SP11	Tsch	SCKx Output High Time (Note 3)	Tsck/2	-	-	ns	-
SP20	TscF	SCKx Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	-	-	-	ns	See parameter DO32
SP30	TdoF	SDOx Data Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP31	TDoR	SDOx Data Output Rise Time (Note 4)	-	-	-	ns	See parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	15	ns	VDD $>2.7 \mathrm{~V}$
			-	-	20	ns	$\mathrm{VDD}<2.7 \mathrm{~V}$
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	15	-	-	ns	-
SP40	TdiV2sch, TdIV2scL	Setup Time of SDIx Data Input to SCKx Edge	15	-	-	ns	$\mathrm{VDD}>2.7 \mathrm{~V}$
			20	-	-	ns	VDD $<2.7 \mathrm{~V}$
SP41	TscH2dIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	15	-	-	ns	VDD > 2.7 V
			20	-	-	ns	$\mathrm{VDD}<2.7 \mathrm{~V}$

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 50 pF load on all SPIx pins.

PIC32MX330/350/370/430/450/470

FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to $\mathbf{3 . 6 V}$(unless otherwise stated)Operating temperature$0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	-	-	ns	-
SP71	Tsch	SCKx Input High Time (Note 3)	Tsck/2	-	-	ns	-
SP72	TscF	SCKx Input Fall Time	-	-	-	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	-	-	-	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	-	-	-	ns	See parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	15	ns	VDD $>2.7 \mathrm{~V}$
			-	-	20	ns	VDD < 2.7V
SP40	TdiV2sch, TdIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-
SP41	TscH2DIL, TscL2DiL	Hold Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-
SP50	$\begin{aligned} & \hline \text { TssL2scH, } \\ & \text { TssL2scL } \end{aligned}$	$\overline{\text { SSx }} \downarrow$ to SCKx \uparrow or SCKx Input	175	-	-	ns	-
SP51	TssH2doZ	$\overline{S S x} \uparrow$ to SDOx Output High-Impedance (Note 3)	5	-	25	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns .
4: Assumes 50 pF load on all SPIx pins.

TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated)				
			Operating temperature			$0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp	
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units	Conditions
SP52	$\begin{aligned} & \hline \text { TscH2ssH } \\ & \text { TscL2ssH } \end{aligned}$	SSx after SCKx Edge	$\begin{gathered} \hline \text { TsCK + } \\ 20 \end{gathered}$	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns .
4: Assumes 50 pF load on all SPIx pins.

PIC32MX330/350/370/430/450/470

FIGURE 31-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 31-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical ${ }^{(2)}$	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	-	-	ns	-
SP71	Tsch	SCKx Input High Time (Note 3)	Tsck/2	-	-	ns	-
SP72	TscF	SCKx Input Fall Time	-	5	10	ns	-
SP73	TscR	SCKx Input Rise Time	-	5	10	ns	-
SP30	TdoF	SDOx Data Output Fall Time (Note 4)	-	-	-	ns	See parameter DO32
SP31	TDoR	SDOx Data Output Rise Time (Note 4)	-	-	-	ns	See parameter DO31
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	-	20	ns	VDD > 2.7V
			-	-	30	ns	$\mathrm{VDD}<2.7 \mathrm{~V}$
SP40	TdiV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-
SP41	TscH2DIL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns .
4: Assumes 50 pF load on all SPIx pins.

PIC32MX330/350/370/430/450/470

TABLE 31-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typical ${ }^{(2)}$	Max.	Units	Conditions
SP50	TssL2scH, TssL2scL	$\overline{\text { SSx }} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	-	-	ns	-
SP51	TssH2doZ	$\overline{S S x} \uparrow$ to SDOx Output High-Impedance (Note 4)	5	-	25	ns	-
SP52	TscH2ssH TscL2ssH		$\begin{gathered} \text { Tsck + } \\ 20 \end{gathered}$	-	-	ns	-
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	-	-	25	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at $3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 40 ns .
4: Assumes 50 pF load on all SPIx pins.

PIC32MX330/350/370/430/450/470

FIGURE 31-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

Note: Refer to Figure 31-1 for load conditions.

FIGURE 31-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

Note: Refer to Figure 31-1 for load conditions.

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp			
Param. No.	Symbol	Characteristics		Min. ${ }^{(1)}$	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{S}$	-
			400 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	-
			$\begin{aligned} & \hline 1 \mathrm{MHz} \text { mode } \\ & \text { (Note 2) } \end{aligned}$	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	-
IM11	THi:SCL	Clock High Time	100 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	-
			400 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	-
			1 MHz mode (Note 2)	TPB * (BRG + 2)	-	$\mu \mathrm{S}$	-
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	-	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ Cв	300	ns	
			1 MHz mode (Note 2)	-	100	ns	
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	-	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ Св	300	ns	
			1 MHz mode (Note 2)	-	300	ns	
IM25	Tsu:DAT	Data Input Setup Time	100 kHz mode	250	-	ns	-
			400 kHz mode	100	-	ns	
			$\begin{array}{\|l} 1 \mathrm{MHz} \text { mode } \\ \text { (Note 2) } \end{array}$	100	-	ns	
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	-	$\mu \mathrm{s}$	-
			400 kHz mode	0	0.9	$\mu \mathrm{S}$	
			1 MHz mode (Note 2)	0	0.3	$\mu \mathrm{s}$	
IM30	Tsu:STA	Start Condition Setup Time	100 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	Only relevant for Repeated Start condition
			400 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	
			1 MHz mode (Note 2)	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	After this period, the first clock pulse is generated
			400 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{S}$	
			$\begin{array}{\|l} 1 \mathrm{MHz} \text { mode } \\ \text { (Note 2) } \end{array}$	TPB * (BRG + 2)	-	$\mu \mathrm{S}$	
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	-
			400 kHz mode	TPB * (BRG + 2)	-	$\mu \mathrm{S}$	
			1 MHz mode (Note 2)	TPB * (BRG + 2)	-	$\mu \mathrm{s}$	

Note 1: $\quad \mathrm{BRG}$ is the value of the $\mathrm{I}^{2} \mathrm{C}$ Baud Rate Generator.
2: Maximum pin capacitance $=10 \mathrm{pF}$ for all I2Cx pins (for 1 MHz mode only).
3: The typical value for this parameter is 104 ns .

PIC32MX330/350/370/430/450/470

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp			
Param. No.	Symbol	Characteristics		Min. ${ }^{(1)}$	Max.	Units	Conditions
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	TPB * (BRG + 2)	-	ns	-
			400 kHz mode	TPB * (BRG + 2)	-	ns	
			$\begin{array}{\|l} \hline 1 \mathrm{MHz} \text { mode } \\ \text { (Note 2) } \\ \hline \end{array}$	TPB * (BRG + 2)	-	ns	
IM40	TAA:SCL	Output Valid from Clock	100 kHz mode	-	3500	ns	-
			400 kHz mode	-	1000	ns	-
			$\begin{array}{\|l} \hline 1 \mathrm{MHz} \text { mode } \\ \text { (Note 2) } \end{array}$	-	350	ns	-
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	The amount of time the bus must be free before a new transmission can start
			400 kHz mode	1.3	-	$\mu \mathrm{s}$	
			$\begin{array}{\|l} \hline 1 \mathrm{MHz} \text { mode } \\ \text { (Note 2) } \end{array}$	0.5	-	$\mu \mathrm{s}$	
IM50	Св	Bus Capacitive Loading		-	400	pF	-
IM51	TPGD	Pulse Gobbler Delay		52	312	ns	See Note 3

Note 1: $\quad \mathrm{BRG}$ is the value of the $\mathrm{I}^{2} \mathrm{C}$ Baud Rate Generator.
2: Maximum pin capacitance $=10 \mathrm{pF}$ for all I2Cx pins (for 1 MHz mode only).
3: The typical value for this parameter is 104 ns .

FIGURE 31-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

Note: Refer to Figure 31-1 for load conditions.

FIGURE 31-17: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

PIC32MX330/350/370/430/450/470

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)			
				Operating temperature 0		$0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp	
Param. No.	Symbol	Charac	ristics	Min.	Max.	Units	Conditions
IS10	Tlo:SCL	Clock Low Time	100 kHz mode	4.7	-	$\mu \mathrm{s}$	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	-	$\mu \mathrm{s}$	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	-	$\mu \mathrm{s}$	-
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	$\mu \mathrm{s}$	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	-	$\mu \mathrm{s}$	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	-	$\mu \mathrm{S}$	-
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	-	300	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ Cв	300	ns	
			1 MHz mode (Note 1)	-	100	ns	
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	-	1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	$20+0.1$ Cв	300	ns	
			1 MHz mode (Note 1)	-	300	ns	
IS25	Tsu:DAT	Data Input Setup Time	100 kHz mode	250	-	ns	-
			400 kHz mode	100	-	ns	
			1 MHz mode (Note 1)	100	-	ns	
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	-	ns	-
			400 kHz mode	0	0.9	$\mu \mathrm{s}$	
			1 MHz mode (Note 1)	0	0.3	$\mu \mathrm{S}$	
IS30	Tsu:sta	Start Condition Setup Time	100 kHz mode	4700	-	ns	Only relevant for Repeated Start condition
			400 kHz mode	600	-	ns	
			1 MHz mode (Note 1)	250	-	ns	
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000	-	ns	After this period, the first clock pulse is generated
			400 kHz mode	600	-	ns	
			1 MHz mode (Note 1)	250	-	ns	
IS33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4000	-	ns	-
			400 kHz mode	600	-	ns	
			1 MHz mode (Note 1)	600	-	ns	

Note 1: Maximum pin capacitance $=10 \mathrm{pF}$ for all 12 Cx pins (for 1 MHz mode only).

PIC32MX330/350/370/430/450/470

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated)			
				Operating temperature		$0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp	
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions
IS34	Thd:Sto	Stop Condition Hold Time	100 kHz mode	4000	-	ns	-
			400 kHz mode	600	-	ns	
			1 MHz mode (Note 1)	250		ns	
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	-
			400 kHz mode	0	1000	ns	
			1 MHz mode (Note 1)	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	-	$\mu \mathrm{S}$	The amount of time the bus must be free before a new transmission can start
			400 kHz mode	1.3	-	$\mu \mathrm{S}$	
			1 MHz mode (Note 1)	0.5	-	$\mu \mathrm{S}$	
IS50	Св	Bus Capacitive Loading		-	400	pF	-

Note 1: Maximum pin capacitance $=10 \mathrm{pF}$ for all I2Cx pins (for 1 MHz mode only).

PIC32MX330/350/370/430/450/470

TABLE 31-35: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS ${ }^{(5)}$			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Device Supply							
AD01	AVDD	Module VDD Supply	Greater of VDD-0.3 or 2.5	-	Lesser of VdD +0.3 or 3.6	V	-
AD02	AVss	Module Vss Supply	Vss	-	Vss + 0.3	V	-
Reference Inputs							
AD05	VREFH	Reference Voltage High	AVss + 2.0	-	AVDD	V	(Note 1)
AD05a			2.5	-	3.6	V	VREFH = AVdd (Note 3)
AD06	Vrefl	Reference Voltage Low	AVss	-	VREFH-2.0	V	(Note 1)
AD07	VRef	Absolute Reference Voltage (Vrefh - Vrefl)	2.0	-	AVDD	V	(Note 3)
AD08	IREF	Current Drain	-	250	$\begin{gathered} 400 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	ADC operating ADC off

Analog Input

AD12	VINH-VINL	Full-Scale Input Span	VREFL	-	VReft	V	-
AD13	VInL	Absolute VINL Input Voltage	AVss - 0.3	-	AVDD/2	V	-
AD14	VIN	Absolute Input Voltage	AVss - 0.3	-	AVDD + 0.3	V	-
AD15		Leakage Current	-	+/-0.001	+/-0.610	$\mu \mathrm{A}$	$\begin{aligned} & \text { VINL = AVSS = VREFL }=0 \mathrm{~V}, \\ & \text { AVDD = VREFH }=3.3 \mathrm{~V} \\ & \text { Source Impedance }=10 \mathrm{k} \Omega \end{aligned}$
AD17	RIN	Recommended Impedance of Analog Voltage Source	-	-	5K	Ω	(Note 1)

ADC Accuracy - Measurements with External Vref+/Vref-

AD20c	Nr	Resolution	10 data bits			bits	-
AD21c	INL	Integral Nonlinearity	>-1	-	< 1	LSb	$\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=\mathrm{VREFH}=3.3 \mathrm{~V} \end{aligned}$
AD22c	DNL	Differential Nonlinearity	>-1	-	< 1	LSb	VINL $=\mathrm{AV}$ SS $=$ VREFL $=0 \mathrm{~V}$, $\mathrm{AVDD}=\mathrm{VREFH}=3.3 \mathrm{~V}$ (Note 2)
AD23c	GERR	Gain Error	>-1	-	<1	LSb	$\begin{aligned} & \text { VINL }=\mathrm{AVSS}=\mathrm{VREFL}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=\mathrm{VREFH}=3.3 \mathrm{~V} \end{aligned}$
AD24n	Eoff	Offset Error	>-1	-	< 1	LSb	$\begin{aligned} & \mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=3.3 \mathrm{~V} \end{aligned}$
AD25c	-	Monotonicity	-	-	-	-	Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.
2: With no missing codes.
3: These parameters are characterized, but not tested in manufacturing.
4: Characterized with a 1 kHz sine wave.
5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for Vbormin values.

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

AC CHA	RACTERI	TICS ${ }^{(5)}$	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
ADC Accuracy - Measurements with Internal Vref+/Vref-							
AD20d	Nr	Resolution		data bits		bits	(Note 3)
AD21d	INL	Integral Nonlinearity	>-1	-	<1	LSb	$\begin{aligned} & \mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \\ & \text { AVDD }=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$
AD22d	DNL	Differential Nonlinearity	>-1	-	<1	LSb	$\begin{aligned} & \hline \mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}, \\ & \mathrm{AVDD}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \text { (Notes 2,3) } \\ & \hline \end{aligned}$
AD23d	GERR	Gain Error	>-4	-	< 4	LSb	$\mathrm{VINL}=\mathrm{AVSS}=0 \mathrm{~V}$, $\mathrm{AVDD}=2.5 \mathrm{~V}$ to 3.6 V (Note 3)
AD24d	Eoff	Offset Error	>-2	-	<2	LSb	$\mathrm{VINL}=\mathrm{AVss}=0 \mathrm{~V}$, $\mathrm{AVDD}=2.5 \mathrm{~V}$ to 3.6 V (Note 3)
AD25d	-	Monotonicity	-	-	-	-	Guaranteed
Dynamic Performance							
AD31b	SINAD	Signal to Noise and Distortion	55	58	-	dB	(Notes 3,4)
AD34b	ENOB	Effective Number of Bits	9	9.5	-	bits	(Notes 3,4)

Note 1: These parameters are not characterized or tested in manufacturing.
2: With no missing codes.
3: These parameters are characterized, but not tested in manufacturing.
4: Characterized with a 1 kHz sine wave.
5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for Vbormin values.

PIC32MX330/350/370/430/450/470

TABLE 31-36: 10-BIT CONVERSION RATE PARAMETERS

AC CHARACTERISTICS ${ }^{(2)}$				$\begin{aligned} & \text { Standard Operating Conditions: 2.3V to } \mathbf{3 . 6 \mathrm { V }} \\ & \text { (unless otherwise stated) } \\ & \text { Operating temperature } \begin{array}{l} 0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C} \text { for Commercial } \\ \\ \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\ \\ -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-temp } \end{array} \end{aligned}$		
ADC Input	ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
AN0-AN14	$\begin{aligned} & \hline 1 \text { Msps to } 400 \\ & \text { ksps }^{(1)} \end{aligned}$	65 ns	132 ns	500Ω	3.0 V to 3.6V	
	Up to 400 ksps	200 ns	200 ns	$5.0 \mathrm{k} \Omega$	2.5 V to 3.6 V	
AN15-AN27	$400 \mathrm{ksps}^{(1)}$	154 ns	1000 ns	500Ω	3.0 V to 3.6 V	

Note 1: External VREF- and VREF+ pins must be used for correct operation.
2: These parameters are characterized, but not tested in manufacturing.

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
$\begin{gathered} \text { Param. } \\ \text { No. } \end{gathered}$	Symbol	Characteristics	Min.	Typical ${ }^{(1)}$	Max.	Units	Conditions
Clock Parameters							
AD50	TAD	ADC Clock Period ${ }^{(2)}$	65	-	-	ns	See Table 31-36
Conversion Rate							
AD55	Tconv	Conversion Time	-	12 TAD	-	-	-
AD56	FcNV	Throughput Rate	-	-	1000	ksps	AVDD $=3.0 \mathrm{~V}$ to 3.6 V
		(Sampling Speed) ${ }^{(4)}$	-	-	400	ksps	$\mathrm{AVDD}=2.5 \mathrm{~V}$ to 3.6 V
AD57	Tsamp	Sample Time	2 TAD	-	-	-	-
Timing Parameters							
AD60	TpCs	Conversion Start from Sample Trigger ${ }^{(3)}$	-	1.0 TAD	-	-	Auto-Convert Trigger (SSRC<2:0> = 111) not selected
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD	-	1.5 TAD	-	-
AD62	Tcss	Conversion Completion to Sample Start $(\text { ASAM }=1)^{(3)}$	-	0.5 TAD	-	-	-
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ${ }^{(3)}$	-	-	2	$\mu \mathrm{s}$	-

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
3: Characterized by design but not tested.
4: Refer to Table 31-36 for detailed conditions.

PIC32MX330/350/370/430/450/470

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING
CHARACTERISTICS (ASAM $=0, S S R C<2: 0>=000)$

FIGURE 31-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM $=1$, SSRC $<2: 0>=111$, SAMC $<4: 0>=00001$)

PIC32MX330/350/370/430/450/470

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

TABLE 31-38: PARALLEL SLAVE PORT REQUIREMENTS

AC CH	ARACTER	RISTICS	Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
$\begin{gathered} \text { Para } \\ \text { m.No. } \end{gathered}$	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ.	Max.	Units	Conditions
PS1	$\begin{array}{\|l\|} \hline \text { TdtV2wr } \\ \mathrm{H} \end{array}$	Data In Valid before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ Inactive (setup time)	20	-	-	ns	-
PS2	TwrH2dt	$\overline{\mathrm{WR}}$ or $\overline{\mathrm{CS}}$ Inactive to Data-In Invalid (hold time)	40	-	-	ns	-
PS3	TrdL2dt V	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ Active to Data-Out Valid	-	-	60	ns	-
PS4	TrdH2dtı	$\overline{\mathrm{RD}}$ Active or $\overline{\mathrm{CS}}$ Inactive to Data-Out Invalid	0	-	10	ns	-
PS5	Tcs	$\overline{\mathrm{CS}}$ Active Time	TPB + 40	-	-	ns	-
PS6	TWR	$\overline{\text { WR Active Time }}$	TPB + 25	-	-	ns	-
PS7	TRD	$\overline{\mathrm{RD}}$ Active Time	TPB + 25	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ.	Max.	Units	Conditions
PM1	Tlat	PMALL/PMALH Pulse Width	-	1 TPB	-	-	-
PM2	TAdsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	-	2 TPB	-	-	-
PM3	TAdHold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	-	1 TPB	-	-	-
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	-	-	ns	-
PM5	TRD	PMRD Pulse Width	-	1 TPB	-	-	-
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	-	-	ns	-
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 TPB	-	-	-	PMP Clock

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

FIGURE 31-22: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 31-40: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Comm				
			Opera		ture	$\begin{aligned} & C \leq T A \leq \\ & \sigma^{\circ} \mathrm{C} \leq T \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T} \end{aligned}$	C for Comme $5^{\circ} \mathrm{C}$ for Indus $05^{\circ} \mathrm{C}$ for V-te
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ.	Max.	Units	Conditions
PM11	TwR	PMWR Pulse Width	-	1 TPB	-	-	-
PM12	TDvsu	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	-	2 TPB	-	-	-
PM13	TDVHold	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	-	1 TPB	-	-	-

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-41: OTG ELECTRICAL SPECIFICATIONS

AC CHA	RACTERI	TICS	Stand (unle Oper	Ope other g tem	ing Co e stat ature	$\begin{aligned} & \text { ditions } \\ & \text { l) } \end{aligned}$	2.3V to 3.6V $\leq+70^{\circ} \mathrm{C}$ for Commercial $\mathrm{A} \leq+85^{\circ} \mathrm{C}$ for Industrial A $\leq+105^{\circ} \mathrm{C}$ for V-temp
Param. No.	Symbol	Characteristics ${ }^{(1)}$	Min.	Typ.	Max.	Units	Conditions
USB313	Vusb3V3	USB Voltage	3.0	-	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	-	-	0.8	V	-
USB316	Vihusb	Input High Voltage for USB Buffer	2.0	-	-	V	-
USB318	VDIFS	Differential Input Sensitivity	-	-	0.2	V	The difference between D+ and Dmust exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	-	2.5	V	-
USB320	Zout	Driver Output Impedance	28.0	-	44.0	Ω	-
USB321	Vol	Voltage Output Low	0.0	-	0.3	V	$\begin{aligned} & 1.425 \mathrm{k} \Omega \text { load } \\ & \text { connected to VuSB3V3 } \end{aligned}$
USB322	VoH	Voltage Output High	2.8	-	3.6	V	$14.25 \mathrm{k} \Omega$ load connected to ground

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

TABLE 31-42: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) Operating temperature $0^{\circ} \mathrm{C} \leq T A \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp				
Param No.	Symbol	Characteristic	Min.	Typ.	Max.	Units	Conditions
CTMU Current Source							
CTMUI1	Iout1	Base Range ${ }^{(1)}$	-	0.55	-	$\mu \mathrm{A}$	CTMUICON<9:8> $=01$
CTMUI2	Iout2	10x Range ${ }^{(1)}$	-	5.5	-	$\mu \mathrm{A}$	CTMUICON<9:8> $=10$
CTMUI3	Iout3	100x Range ${ }^{(1)}$	-	55	-	$\mu \mathrm{A}$	CTMUICON<9:8> $=11$
CTMUI4	IOUT4	1000x Range ${ }^{(1)}$	-	550	-	$\mu \mathrm{A}$	CTMUICON<9:8> $=00$
CTMUFV1	VF	Temperature Diode Forward Voltage ${ }^{(1,2)}$	-	0.598	-	V	$\begin{aligned} & \mathrm{TA}=+25^{\circ} \mathrm{C}, \\ & \text { CTMUICON }\langle 9: 8>=01 \end{aligned}$
			-	0.658	-	V	$\begin{aligned} & \mathrm{TA}=+25^{\circ} \mathrm{C}, \\ & \text { CTMUICON }<9: 8>=10 \end{aligned}$
			-	0.721	-	V	$\begin{aligned} & \mathrm{TA}=+25^{\circ} \mathrm{C}, \\ & \text { CTMUICON }<9: 8>=11 \end{aligned}$
CTMUFV2	VFVR	Temperature Diode Rate of Change ${ }^{(1,2)}$	-	-1.92	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	CTMUICON<9:8> $=01$
			-	-1.74	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	CTMUICON<9:8> $=10$
			-	-1.56	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	CTMUICON<9:8> = 11

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).
2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- $\mathrm{VREF}+=\mathrm{AVDD}=3.3 \mathrm{~V}$
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared ($\mathrm{PMDx}=0$)
- Executing a while(1) statement
- Device operating from the FRC with no PLL

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS

TABLE 31-43: EJTAG TIMING REQUIREMENTS

AC CHA	RACTERISTI		Stand (unle Oper	rd Ope other ng tem	ise sta erature	nditions: 2.3V to 3.6 V d) $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for Commercial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for Industrial $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}$ for V-temp
Param. No.	Symbol	Description ${ }^{(1)}$	Min.	Max.	Units	Conditions
EJ1	Tтсксус	TCK Cycle Time	25	-	ns	-
EJ2	TтскнıGн	TCK High Time	10	-	ns	-
EJ3	TTCKLOW	TCK Low Time	10	-	ns	-
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	-	ns	-
EJ5	Tthold	TAP Signals Hold Time After Rising TCK	3	-	ns	-
EJ6	Ttdoout	TDO Output Delay Time from Falling TCK	-	5	ns	-
EJ7	Ttdozstate	TDO 3-State Delay Time from Falling TCK	-	5	ns	-
EJ8	TtRStLow	TRST Low Time	25	-	ns	-
EJ9	TRF	TAP Signals Rise/Fall Time, All Input and Output	-	-	ns	-

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX330/350/370/430/450/470

NOTES:

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS | Note: | $\begin{array}{l}\text { The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes } \\ \text { only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating } \\ \text { range (e.g., outside specified power supply range) and therefore, outside the warranted range. }\end{array}$ |
| :--- | :--- |

PIC32MX330/350/370/430/450/470

FIGURE 32-11: TYPICAL IDD CURRENT @ VdD = 3.3V

PIC32MX330/350/370/430/450/470

FIGURE 32-15: TYPICAL LPRC FREQUENCY @ Vdd = 3.3V

FIGURE 32-16: TYPICAL CTMU TEMPERATURE DIODE

FIGURE 32-14: TYPICAL FRC FREQUENCY @ VdD = 3.3V

PIC32MX330/350/370/430/450/470

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

Example

Example

F/r \boldsymbol{T}^{32}

PIC32MX330F 064L-I/PF е3 0510017

Example

100-Lead TQFP ($12 \times 12 \times 1 \mathrm{~mm}$)

Legend:	XX...X	Customer-specific information YY WW
	YNN	Year code (last digit of calendar year) (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)
	$*$	This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

PIC32MX330/350/370/430/450/470

33.1 Package Marking Information (Continued)

64-Lead QFN (9x9x0.9 mm) with 5.40×5.40 Exposed Pad

$X X X X X X X X X X$
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN

Example

11 PIC32

PIC32MX330F
128H-I/MR
e3)
0510017

64-Lead QFN $(9 \times 9 \times 0.9 \mathrm{~mm})$ with 4.7×4.7 Exposed Pad

$X X X X X X X X X X$
XXXXXXXXXX
XXXXXXXXXX YYWWNNN

Example

PIC32MX330F 064H-I/RG
e3
0510017

124-Lead VTLA ($9 \times 9 \times 0.9 \mathrm{~mm}$)

Example

Legend: XX...X Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

PIC32MX330/350/370/430/450/470

33.2 Package Details

The following sections give the technical details of the packages.

64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	64		
Lead Pitch	e	0.50 BSC		
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ϕ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	c	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085B

PIC32MX330/350/370/430/450/470

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C 1		11.40	
Contact Pad Spacing	C 2		11.40	
Contact Pad Width (X64)	X 1			0.30
Contact Pad Length (X64)	Y 1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	e		50 BS	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		. 00 RE	
Foot Angle	ϕ	0°	$3.5{ }^{\circ}$	7°
Overall Width	E		.00 BS	
Overall Length	D		. 00 BS	
Molded Package Width	E1		.00 BS	
Molded Package Length	D1		.00 BS	
Lead Thickness	c	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-110B

PIC32MX330/350/370/430/450/470

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
(MAX			
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2110B

100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N		100	
Lead Pitch	e		40 BS	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		00 R	
Foot Angle	ϕ	0°	3.5°	7°
Overall Width	E		.00 BS	
Overall Length	D		. 00 BS	
Molded Package Width	E1		. 00 BS	
Molded Package Length	D1		. 00 BS	
Lead Thickness	c	0.09	-	0.20
Lead Width	b	0.13	0.18	0.23
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-100B

PIC32MX330/350/370/430/450/470

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2100B

64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body with 5.40×5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-154A Sheet 1 of 2

PIC32MX330/350/370/430/450/470

64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body with 5.40×5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	64		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			5.50
Optional Center Pad Length	T2			5.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2154A

PIC32MX330/350/370/430/450/470

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-260A Sheet 1 of 2

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS				
Dimension Limits		MIN	NOM	MAX		
Number of Terminals	N	64				
Pitch	e	0.50 BSC				
Overall Height	A	0.80	0.85	0.90		
Standoff	A 1	0.00	0.02	0.05		
Standoff	A 3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E 2	4.60	4.70			4.00 BSC
Overall Length	D	4.80				
Exposed Pad Length	D 2	4.60	4.70	4.80		
Terminal Width	B	0.15	0.20	0.25		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	1.755 REF				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-260A Sheet 2 of 2

PIC32MX330/350/370/430/450/470

64-Lead Very Thin Plastic Quad Flat, No Lead Package (RG) - 9x9x1.0 mm Body [QFN] $4.7 \times 4.7 \mathrm{~mm}$ Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			4.80
Optional Center Pad Length	Y2			4.80
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.25
Contact Pad Length (X64)	Y1	1.625 REF		
Contact Pad to Center Pad (X64)	G1			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2260A

124-Terminal Very Thin Leadless Array Package (TL) - 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW
Microchip Technology Drawing C04-193A Sheet 1 of 2

PIC32MX330/350/370/430/450/470

124-Terminal Very Thin Leadless Array Package (TL) - 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	124		
Pitch	eT	0.50 BSC		
Pitch (Inner to outer terminal ring)	eR	0.50 BSC		
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	-	0.05
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	6.40	6.55	6.70
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	6.40	6.55	6.70
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2

124-Very Thin Leadless Array Package (TL) - 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimension Limits		MIN		
NOM		NOM	MAX	
Contact Pitch	E	0.50 BSC		
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2193A

PIC32MX330/350/370/430/450/470

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (July 2012)

This is the initial released version of the document.

Revision B (April 2013)

Note: The status of this data sheet was updated to Preliminary; however, any electrical specifications listed for PIC32MX370/470 devices is to be considered Advance Information and is marked accordingly.

This revision includes the following updates, as shown in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section	\quad Update Description		
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog"	SRAM was changed from 32 KB to 64 KB. Data Memory (KB) was changed from 32 to 64 for the following devices (see Table 1): - PIC32MX350F256H - PIC32MX350F256L		
- PIC32MX450F256H			
- PIC32MX450F256L			
The following devices were added:			
- PIC32MX370F512H			
- PIC32MX370F512L			
- PIC32MX470F512H		,	- PIC32MX470F512L
:---	,	The Memory Map for Devices with 256 KB of Program Memory was updated	
:---			
(see Figure 4-3).			
The Memory Map for Devices with 512 KB of Program Memory was added			
(see Figure 4-4).			

PIC32MX330/350/370/430/450/470

Revision C (October 2013)

This revision includes the following updates, as listed in
Table A-2.

TABLE A-2: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog"	The Operating Conditions and Core sections were updated in support of $100 \mathrm{MHz}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ devices. Added Notes 2 and 3 regarding the conductive thermal pad to the 124-pin VTLA pin diagrams.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Updated the recommended minimum connection (see Figure 2-1). Added 2.10 "Sosc Design Recommendation".
$\mathbf{2 0 . 0}$ "Parallel Master Port (PMP)"	Updated the Parallel Port Control register, PMCON (see Register 20-1). Updated the Parallel Port Mode register, PMMODE (see Register 20-2). Updated the Parallel Port Pin Enable register, PMAEN (see Register 20-4).
$\mathbf{3 0 . 0}$ "Electrical Characteristics"	Removed Note 4 from the Absolute Maximum Ratings. The maximum frequency for parameter DC5 In Operating MIPS vs. Voltage was changed to 100 MHz (see Table 30-1). Parameter DC25a was added to DC Characteristics: Operating Current (IDD) (see Table 30-5).
Parameter DC34c was added to DC Characteristics: Idle Current (IIDLE) (see	
Table 30-5).	

Revision D (March 2015)

This revision includes the following updates, as listed in
Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section	
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/ Touch (HMI), USB, and Advanced Analog"	100 MHz and 120 MHz operation information was added. Pins 59 through 63 of the 64-pin QFN and TQFP pin diagrams were updated.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Added 2.8.1 "Crystal Oscillator Design Consideration".
$\mathbf{1 2 . 0}$ "I/O Ports"	The Block Diagram of a Typical Multiplexed Port Structure was updated (see Figure 12-1).
21.0 "Parallel Master Port (PMP)"	The PMADDR: Parallel Port Address Register was updated (see Register 21-3). $\mathbf{3 1 . 0}$ "Electrical Characteristics"
Specifications for 120 MHz operation were added to the following tables: - Table 31-1: "Operating MIPS vs. Voltage" - Table 31-5: "DC Characteristics: Operating Current (IDD)" - Table 31-6: "DC Characteristics: Idle Current (IIDLE)" - Table 31-7: "DC Characteristics: Idle Current (IPD)" - Table 31-13: "DC Characteristics: Program Flash Memory Wait State"	
- Table 31-18: "External Clock Timing Requirements"	
The unit of measure for lIDLE Current parameters DC37a, DC37b, and DC37c	
were updated (see Table 31-6).	
Parameter D312 (TsET) was removed from the Comparator Specifications (see	
Table 31-14).	
Comparator Voltage Reference Specifications were added (see Table 31-15).	

PIC32MX330/350/370/430/450/470

Revision E (October 2015)

This revision includes the following updates, as listed in
Table A-4.

TABLE A-4: MAJOR SECTION UPDATES

Section	Update Description
2.0 "Guidelines for Getting	
Started with 32-bit MCUs"	Section 2.10 "Sosc Design Recommendations" was removed.
31.0 "Electrical Characteristics"	The Power-Down Current (IPD) DC Characteristics were updated (see Table 31-7).

Revision F (September 2016)

This revision includes the following updates, as listed in
Table A-5.

TABLE A-5: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/ Graphics/Touch (HMI), USB, and Advanced Analog"	The PIC32MX450F128HB and PIC32MX470F512LB devices and Note 4 were added to the family features table (see Table 1). Note 2 in the 64-pin device pin table was updated (see Table 2). Note 2 in the 64-pin device pin table was updated and Note 4 was removed (see Table 3). Note 2 and Note 3 in the 100-pin device pin table was updated (see Table 4). Note 3 in the 124-pin device pin table was updated (see Table 6). Note 2 in the 124-pin device pin table was updated (see Table 7). RPF3 was removed from USB devices (see Table 3, Table 5, and Table 7).
1.0 "Device Overview"	The Pinout I/O Descriptions for pins $\overline{\text { U5CTS }}, \overline{\text { U5RTS }}$, U5RX, and U5TX in 64-pin QFN/TQFP packages were updated (see Table 1-1).
2.0 "Guidelines for Getting Started with 32-bit MCUs"	2.10 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
8.0 "Oscillator Configuration"	The Clock Diagram was updated (see Figure 8-1). The Center Frequency values in the TUN $<5: 0>$ bits (OSCTUN<5:0>) were updated (see Register 8-2).
12.0 "//O Ports"	Note references in the Input Pin Selection table were updated (see Table 12-1). Note references in the Output Pin Selection table were updated (see Table 12-2). PORTF Register Maps were updated (see Table 12-11 and Table 12-3). Note 1 was added to the Peripheral Pin Select Input Register Map (see Table 12-17).
31.0 "Electrical Characteristics"	The conditions for parameter DI60b (IICH) were updated (see Table 31-8). Parameter DO50a (Csosc) was removed. The maximum value for parameter OS10 (FOSC) was updated (see Table 31-18). Parameter PM7 (Tdhold) was updated (see Table 31-39). Note 1 was added to the DC Characteristics: Program Memory (see Table 31-12).
33.0 "Packaging Information"	The Land Pattern for 64-pin QFN packages was updated.
"Product Identification System"	The Software Targeting category was added.

Revision G (October 2017)

This revision includes the following updates, as listed in
Table A-6.

TABLE A-6: MAJOR SECTION UPDATES

Section	Update Description		
"32-bit Microcontrollers (up	The PIC32MX450F128HB and PIC32MX470F512LB devices and Note 4 were		
to 512 KB Flash and 128 KB			
SRAM) with Audio/	removed (see Table 1).		
Graphics/Touch (HMI), USB,			
and Advanced Analog"		\quad	"Product Identification
:---			
System"	The Software Targeting category was removed. \quad.		

Revision H (September 2019)

This revision includes the following updates, as listed in
Table A-7.

TABLE A-7: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/ Graphics/Touch (HMI), USB, and Advanced Analog"	Updated the following Pinout tables with a new note for the designation of 5V tolerant pins:
	- TABLE 2: "Pin Names for 64-pin Devices" - TABLE 4: "Pin Names for 64-pin Devices" - TABLE 5: "Pin Names for 100-pin Devices"
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Added section 2.12 "Considerations when Interfacing to Remotely Powered Circuits"
20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated FIGURE 20-3: "Transmission (8-bit or 9-bit Data)"
31.0 "Electrical Characteristics"	Updated the DI31 row in Table 31-8: "DC Characteristics: I/O Pin Input Specifications"

PIC32MX330/350/370/430/450/470

NOTES:

INDEX

A
AC Characteristics 297
10-Bit Conversion Rate Parameters 320
ADC Specifications 318
Analog-to-Digital Conversion Requirements 321
EJTAG Timing Requirements 329
Internal FRC Accuracy 299
internal RC Accuracy 300
OTG Electrical Specifications 327
Parallel Master Port Read Requirements 325
Parallel Master Port Write 326
Parallel Master Port Write Requirements 326
Parallel Slave Port Requirements 324
PLL Clock Timing 299
Analog-to-Digital Converter (ADC). 235
Assembler
MPASM Assembler 278
BBlock Diagrams
ADC Module 235
Comparator I/O Operating Modes 245
Comparator Voltage Reference 249
Connections for On-Chip Voltage Regulator 274
CPU 37
CTMU Configurations
Time Measurement 253
DMA 95
2C Circuit. 200
Input Capture 183
Interrupt Controller 65
JTAG Programming, Debugging and Trace Ports 274
Output Compare Module 187
PMP Pinout and Connections to External Devices 215
Prefetch Module 85
Reset System 61
RTCC 225
SPI Module 191
Timer1 169
Timer2/3/4/5 (16-Bit) 173
Typical Multiplexed Port Structure 139, 355
UART 207
WDT and Power-up Timer 179
Brown-out Reset (BOR)
and On-Chip Voltage Regulator 274
C
C Compilers
MPLAB C18 278
Charge Time Measurement Unit. See CTMU
Clock Diagram 76
Comparator
Specifications 295, 296
Comparator Module 245
Comparator Voltage Reference (CVref 249
Configuration Bit 263
Configuring Analog Port Pins 140
CPU
Architecture Overview 38
Coprocessor 0 Registers 39
Core Exception Types 40
EJTAG Debug Support 40
Power Management 40
CPU Module 27, 37
CTMU
Registers 255
Customer Change Notification Service 363
Customer Notification Service 363
Customer Support. 363
D
DC and AC Characteristics
Graphs and Tables 331
DC Characteristics. 282
I/O Pin Input Specifications 289
I/O Pin Output Specifications. 292
Idle Current (IIDLE) 285
Power-Down Current (IPD). 286
Program Memory 294
Temperature and Voltage Specifications 283
Development Support 277
Direct Memory Access (DMA) Controller 95
E
Electrical Characteristics 281
AC. 297
Errata 14
External Clock
Timer1 Timing Requirements 303
Timer2, 3, 4, 5 Timing Requirements 304
Timing Requirements 298
F
Flash Program Memory 55
RTSP Operation 55
H
High Voltage Detect (HVD). 63, 274, 293
I
I/O Ports 139
Parallel I/O (PIO) 140
Write/Read Timing 140
Input Change Notification 140
Instruction Set 275
Inter-Integrated Circuit (I2C 199
Internal Voltage Reference Specifications 296
Internet Address 363
Interrupt Controller 65
IRG, Vector and Bit Location 66
M
Memory Maps
Devices with 128 KB of Program Memory 43
Devices with 256 KB of Program Memory 44
Devices with 512 KB of Program Memory 45
Devices with 64 KB of Program Memory 42
Memory Organization 41
Layout 41
Microchip Internet Web Site 363
MPLAB ASM30 Assembler, Linker, Librarian 278
MPLAB Integrated Development Environment Software 277
MPLAB PM3 Device Programmer. 279
MPLAB REAL ICE In-Circuit Emulator System 279
MPLINK Object Linker/MPLIB Object Librarian 278

PIC32MX330/350/370/430/450/470

0
Oscillator Configuration 75
Output Compare 187
P
Packaging 335
Details 337
Marking 335
Parallel Master Port (PMP) 215
PIC32 Family USB Interface Diagram. 116
Pinout I/O Descriptions (table) 18
Power-on Reset (POR) and On-Chip Voltage Regulator 274
Power-Saving Features 259
CPU Halted Methods 259
Operation 259
with CPU Running 259
Prefetch Cache 85
R
Real-Time Clock and Calendar (RTCC). 225
Register Map
ADC 237
Bus Matrix 47
Comparator 246
Comparator Voltage Reference 250
CTMU. 254
Device and Revision ID Summary 264
Device Configuration Word Summary 264
DMA Channel 0-3 97
DMA CRC 96
DMA Global 96
Flash Controller 56
I2C1 and I2C2 201
Interrupt. 68
Output Compare1-5 188
Parallel Master Port 216
Peripheral Pin Select Input 161
Peripheral Pin Select Output. 163
PORTA 147
PORTB 148
PORTC 149, 150
PORTD 151, 152
PORTE 153, 154
PORTF $155,156,157,158$
PORTG 159, 160
Prefetch. 86
RTCC 226
SPI1 and SPI2 192
System Control 62, 77
Timer1-5 170, 175
UART1-5 208
USB 117
Registers
[pin name]R (Peripheral Pin Select Input) 167
AD1CHS (ADC Input Select) 243
AD1CON1 (A/D Control 1) 234
AD1CON1 (ADC Control 1) 234, 239
AD1CON2 (ADC Control 2) 241
AD1CON3 (ADC Control 3) 242
AD1CSSL (ADC Input Scan Select) 244
ALRMDATE (Alarm Date Value) 234
ALRMDATECLR (ALRMDATE Clear) 234
ALRMDATESET (ALRMDATE Set) 234
ALRMTIME (Alarm Time Value) 233
ALRMTIMECLR (ALRMTIME Clear) 234
ALRMTIMEINV (ALRMTIME Invert) 234
ALRMTIMESET (ALRMTIME Set). 234
BMXBOOTSZ (Boot Flash (IFM) Size 53
BMXCON (Bus Matrix Configuration) 48
BMXDKPBA (Data RAM Kernel Program Base Address) 49
BMXDRMSZ (Data RAM Size Register) 52
BMXDUDBA (Data RAM User Data Base Address) 50
BMXDUPBA (Data RAM User Program Base Address) 51
BMXPFMSZ (Program Flash (PFM) Size). 53
BMXPUPBA (Program Flash (PFM) User Program Base Address) 52
CHEACC (Cache Access) 88
CHECON (Cache Control) 87
CHEHIT (Cache Hit Statistics) 93
CHELRU (Cache LRU) 92
CHEMIS (Cache Miss Statistics) 93
CHEMSK (Cache TAG Mask) 90
CHETAG (Cache TAG) 89
CHEWO (Cache Word 0) 90
CHEW1 (Cache Word 1) 91
CHEW2 (Cache Word 2) 91
CHEW3 (Cache Word 3) 92
CM1CON (Comparator 1 Control) 247
CMSTAT (Comparator Control Register). 248
CNCONx (Change Notice Control for PORTx). 168
CTMUCON (CTMU Control). 255
CVRCON (Comparator Voltage Reference Control) 251
DCHxCON (DMA Channel x Control) 105
DCHxCPTR (DMA Channel x Cell Pointer) 112
DCHxCSIZ (DMA Channel x Cell-Size) 112
DCHxDAT (DMA Channel x Pattern Data) 113
DCHxDPTR (Channel x Destination Pointer) 111
DCHxDSA (DMA Channel x Destination Start Address) 109
DCHxDSIZ (DMA Channel x Destination Size) 110
DCHxECON (DMA Channel x Event Control) 106
DCHxINT (DMA Channel x Interrupt Control) 107
DCHxSPTR (DMA Channel x Source Pointer) 111
DCHxSSA (DMA Channel x Source Start Address) 109
DCHxSSIZ (DMA Channel x Source Size) 110
DCRCCON (DMA CRC Control) 102
DCRCDATA (DMA CRC Data). 104
DCRCXOR (DMA CRCXOR Enable) 104
DEVCFG0 (Device Configuration Word 0. 265
DEVCFG1 (Device Configuration Word 1 267
DEVCFG2 (Device Configuration Word 2. 269
DEVCFG3 (Device Configuration Word 3 271
DEVID (Device and Revision ID) 273
DMAADDR (DMA Address) 101
DMAADDR (DMR Address). 101
DMACON (DMA Controller Control) 100
DMASTAT (DMA Status) 101
I2CxCON (I2C Control) 202
I2CxSTAT (I2C Status) 204
ICxCON (Input Capture x Control) 184
IFSx (Interrupt Flag Status) 72
INTCON (Interrupt Control) 70
INTSTAT (Interrupt Status) 71
IPCx (Interrupt Priority Control) 73
IPTMR Interrupt Proximity Timer) 71
NVMADDR (Flash Address). 58
NVMCON (Programming Control) 57
NVMDATA (Flash Program Data) 59
NVMKEY (Programming Unlock) 58
NVMSRCADDR (Source Data Address). 59
OCxCON (Output Compare x Control) 189
OSCCON (Oscillator Control) 78
PFABT (Prefetch Cache Abort Statistics) 94
PMADDR (Parallel Port Address) 221
PMAEN (Parallel Port Pin Enable) 222
PMCON (Parallel Port Control) 217
PMMODE (Parallel Port Mode). 219
PMSTAT (Parallel Port Status (Slave Modes Only) 223
REFOCON (Reference Oscillator Control) 82
REFOTRIM (Reference Oscillator Trim). 84
RPnR (Peripheral Pin Select Output) 167
RSWRST (Software Reset) 64
RTCCON (RTC Control) 227
RTCDATE (RTC Date Value) 232
RTCTIME (RTC Time Value) 231
SPIxCON (SPI Control) 193
SPIxCON2 (SPI Control 2) 196
SPIxSTAT (SPI Status) 197
T1CON (Type A Timer Control) 171
TxCON (Type B Timer Control) 176
U1ADDR (USB Address) 133
U1BDTP1 (USB BDT Page 1) 135
U1BDTP2 (USB BDT Page 2) 136
U1BDTP3 (USB BDT Page 3) 136
U1CNFG1 (USB Configuration 1) 137
U1CON (USB Control) 131
U1EIE (USB Error Interrupt Enable) 129
U1EIR (USB Error Interrupt Status) 127
U1EP0-U1EP15 (USB Endpoint Control) 138
U1FRMH (USB Frame Number High) 134
U1FRML (USB Frame Number Low) 133
U1IE (USB Interrupt Enable) 126
U1IR (USB Interrupt) 125
U1OTGCON (USB OTG Control) 123
U1OTGIE (USB OTG Interrupt Enable) 121
U1OTGIR (USB OTG Interrupt Status) 120
U1OTGSTAT (USB OTG Status) 122
U1PWRC (USB Power Control) 124
U1SOF (USB SOF Threshold) 135
U1STAT (USB Status) 130
U1TOK (USB Token) 134
WDTCON (Watchdog Timer Control) 181
Resets 61
Revision History 353
RTCALRM (RTC ALARM Control) 229
S
Serial Peripheral Interface (SPI) 191
Software Simulator (MPLAB SIM) 279
Special Features 263

T

Timer1 Module. 169
Timer2/3, Timer4/5 Modules. 173
Timing Diagrams
10-Bit Analog-to-Digital Conversion(ASAM $=0, S S R C<2: 0>=000)$322
10-Bit Analog-to-Digital Conversion (ASAM $=1$, SSRC<2:0> = 111, SAMC<4:0> = 00001) 323
EJTAG 329
External Clock 297
I/O Characteristics 300
I2Cx Bus Data (Master Mode) 312
I2Cx Bus Data (Slave Mode) 315
I2Cx Bus Start/Stop Bits (Master Mode) 312
I2Cx Bus Start/Stop Bits (Slave Mode) 315
Input Capture (CAPx) 304
OCx/PWM 305
Output Compare (OCx) 305
Parallel Master Port Read 325
Parallel Master Port Write 326
Parallel Slave Port 324
SPIx Master Mode (CKE = 0) 306
SPIx Master Mode (CKE = 1) 307
SPIx Slave Mode (CKE = 0) 308
SPIx Slave Mode (CKE = 1) 310
Timer1, 2, 3, 4, 5 External Clock 303
UART Reception. 214
UART Transmission (8-bit or 9-bit Data) 214
Timing Requirements
CLKO and I/O 300
Timing Specifications
I2Cx Bus Data Requirements (Master Mode) 313
I2Cx Bus Data Requirements (Slave Mode). 316
Input Capture Requirements 304
Output Compare Requirements 305
Simple OCx/PWM Mode Requirements 305
SPIx Master Mode (CKE = 0) Requirements 306
SPIx Master Mode (CKE = 1) Requirements 307
SPIx Slave Mode (CKE = 1) Requirements 310
SPIx Slave Mode Requirements (CKE = 0). 308
U
UART 207
USB On-The-Go (OTG) 115
V
Vcap pin. 274
Voltage Regulator (On-Chip) 274
w
WWW Address 363
WWW, On-Line Support. 14

PIC32MX330/350/370/430/450/470

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-4824-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

[^0]: Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer
 Note 1: This pin is only available on devices without a USB module.
 2: This pin is only available on devices with a USB module.
 3: This pin is not available on 64-pin devices.

[^1]: Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.
 2: The value in this register must be less than or equal to BMXPFMSZ.

[^2]: This bit is only available on 100 -pin devices
 $\begin{array}{lll}\text { Note } & \text { 1: } & \text { This bit is only available on 100-pin devices. } \\ & \text { 2: } & \text { This bit is only implemented on devices with a USB module }\end{array}$

[^3]: Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

[^4]: Note: When in Pattern Detect mode, this register is reset on a pattern detect.

[^5]: Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

[^6]: Legend: 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

[^7]: Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for

[^8]: Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 Note 1: This register is not available on 64 -pin devices.

[^9]: Legend: $\quad \mathrm{x}=$ unknown value on Reset; - = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of $0 \times 4,0 \times 8$ and $0 \times C$, respectively. See Section 12.2 "CLR, SET, and INV Registers" for
 more information.

[^10]: Note: \quad Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information.

[^11]: Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal

[^12]: Note: \quad This register is reset only on a Power-on Reset (POR).

[^13]: Note: \quad This register is reset only on a Power-on Reset (POR).

[^14]: Note: Refer to "MIPS32 ${ }^{\circledR}$ Architecture for Programmers Volume II: The MIPS32 ${ }^{\circledR}$ Instruction Set" at www.imgtec.com for more information.

