

Aluminum electrolytic capacitors

Capacitors with screw terminals

Series/Type: B41456, B41458
Date: December 2016

© EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

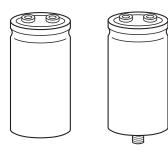
Capacitors with screw terminals

B41456, B41458

Compact - 85 °C

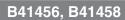
Long-life grade capacitors

Applications


- General industrial electronics
- For switch-mode power supplies in professional equipment

Features

- High ripple current capability
- Compact design
- High reliability
- Long useful life
- All-welded construction ensures reliable electrical contact
- Version with low-inductance design available
- RoHS-compatible


Construction

- Charge-discharge proof, polar
- Aluminum case, insulated with PVC sleeve
- Version with PET insulation available upon request
- Poles with screw terminal connections
- Mounting with ring clips, clamps or threaded stud
- Types with threaded stud are available with or without insulated base

B41456 B41458

Compact - 85 °C

Specifications and characteristics in brief

Rated voltage V _R	16 100 V DC				
Surge voltage V _S	$1.15 \cdot V_R$				
Rated capacitance C _R	10000 680000 µ	F			
Capacitance tolerance	±20% ≙ M				
Leakage current I _{leak} (20 °C, 5 min)	$I_{leak} \leq 0.020 \ \mu A$	$\left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$	0.85 + 4 μA		
Self-inductance ESL	Approx. 20 nH				
	Capacitors with lov	v-inductar	nce design:		
	d ≥ 64.3 mm: appro	ox. 13 nH			
Useful life ¹⁾	Requirements:				
85 °C; V _R ; I _{AC,R}	> 12000 h	∆C/C	≤ 45% of initial value		
40 °C; V_R ; 2.9 · $I_{AC,R}$	> 200000 h	ESR	≤ 3 times initial specified limit		
		I _{leak}	≤ initial specified limit		
Voltage endurance test		Post test	t requirements:		
85 °C; V _R	2000 h	∆C/C	≤ 15% of initial value		
		ESR	≤ 1.3 times initial specified limit		
		I _{leak}	≤ initial specified limit		
Vibration resistance test	To IEC 60068-2-6,	test Fc:			
	Frequency range 1	0 55 H	z, displacement amplitude 0.75 mm,		
	acceleration max.	10 <i>g</i> , dura	ation 3×2 h.		
		by its bo	dy which is rigidly clamped to the work		
	surface.				
IEC climatic category	To IEC 60068-1:				
	40/085/56 (-40 °C/+85 °C/56 days damp heat test)				
Detail specification	Similar to CECC 30	0301-810			
Sectional specification	IEC 60384-4				

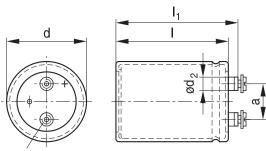
Ripple current capability

Due to the ripple current capability of the contact elements, the following current upper limits must not be exceeded:

Capacitor diameter	51.6 mm	64.3 mm	76.9 mm
I _{AC,max}	34 A	45 A	57 A

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

Compact - 85 °C


Dimensional drawings

B41456

Ring clip/clamp mounting

B41458

Threaded stud mounting

M5: Min. reach of screw = 9.5 mm

9 mm for low inductance design

M6: Min. reach of screw = 12 mm 9.5 mm for low inductance design KAL1548-A

Positive pole marking: +

For standard types with threaded stud the base is not insulated. Also refer to the mounting instructions in chapter "Capacitors with screw terminals - Accessories".

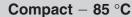
KAL1318-B-E

Screw terminals with UNF threads are available upon request.

Dimensions and weights

Ter-	Dimensions (mm) with insulating sleeve						Approx.	
minal	d	l±1	I ₁ ±1	$I_2 + 0/-1$	d ₁	d ₂ max.	a +0.2/-0.4	weight (g)
M5	51.6 +0.5/-1	80.7	87.2	17	M12	10.2	22.2	220
M5	51.6 +0.5/-1	105.7	112.2	17	M12	10.2	22.2	280
M5	64.3 +0.5/-1	105.7	112.2	17	M12	13.2	28.5	440
M6	76.9 +0.5/-1	105.7	111.5	17	M12	17.7	31.7	620
M6	76.9 +0.5/-1	143.2	149.0	17	M12	17.7	31.7	840
M6	76.9 +0.5/-1	220.7	226.5	17	M12	17.7	31.7	1300

Tolerances of terminal thread respectively stud thread:

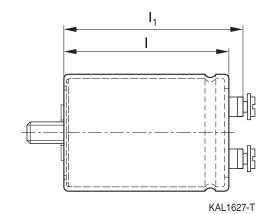

- Terminal thread M5 and M6: 6H
- Thread of stud M12: 6g

For low-inductance design the following deviation applies:

d = 64.3 mm: $I_1 - 0.7 \text{ mm}$

Packing

Capacitor diameter d	Length I	Packing units
(mm)	(mm)	(pcs.)
51.6	all	36
64.3	all	25
76.9	105.7 - 143.2	16
	220.7	12


For ecological reasons the packing is pure cardboard.

Special designs

- Low-inductance design
- Insulated base

Length I and I₁ increase by +0.5 mm for types with threaded stud and insulated base. All other dimensions of the capacitor are identical with those of standard capacitors of this series.

Please refer to the table "Dimensions and weights".

Compact - 85 °C

Design options

Design options	Identification in third block of ordering code	Remark
Standard	M000	Standard version without threaded stud: fully insulated with PVC Standard version with threaded stud: insulated with PVC sleeve, base not insulated
Low inductance (13 nH)	M003	For capacitors with diameter d ≥ 64.3 mm
Insulated base	M008	For capacitors with threaded stud, fully insulated with PVC sleeve and PP disc

Version with low inductance (13 nH) in combination with insulated base (threaded stud) available upon request.

Accessories

The following items are included in the delivery package, but are not fastened to the capacitors:

	Thread	Toothed washers	Screws/nuts	Maximum torque
For terminals	M5	A 5.1 DIN 6797	DIN 7985 / ISO 7045-M5 × 10-5.6-Z	2.5 Nm thread depth t ≥ 8 mm
	M6	A 6.4 DIN 6797	DIN 7985 / ISO 7045-M6 × 12-5.6-Z	4.0 Nm thread depth $t \ge 9.5$ mm
For mounting	M12	J 12.5 DIN 6797	Hex nut BM 12 DIN 439	10 Nm

The following items must be ordered separately. For details, refer to chapter "Capacitors with screw terminals - Accessories".

Item	Туре
Ring clips	B44030
Clamps for capacitors with d ≥ 64.3 mm	B44030
Insulating parts	B44020

Overview of available types

The capacitance and voltage ratings listed below are available in different case sizes upon request. Other voltage and capacitance ratings are also available upon request.

V _R (V DC)	16	25	40	63	100				
	Case dimensio	Case dimensions d × I (mm)							
C _R (μF)									
10000					51.6 × 80.7				
15000					51.6 × 105.7				
22000				51.6 × 80.7	64.3 × 105.7				
33000				51.6 × 105.7	76.9 × 105.7				
47000			51.6× 80.7	64.3 × 105.7	76.9 × 143.2				
68000		51.6 × 80.7	51.6 × 105.7	76.9 × 105.7					
100000	51.6 × 80.7	51.6 × 105.7	64.3 × 105.7	76.9 × 143.2					
150000	51.6 × 80.7	64.3 × 105.7	76.9 × 105.7	76.9 × 220.7					
220000	64.3 × 105.7	64.3 × 105.7	76.9 × 143.2						
330000	64.3 × 105.7	76.9 × 143.2							
470000	76.9 × 143.2	76.9 × 220.7							
680000	76.9 × 143.2								

Compact - 85 °C

Technical data and ordering codes

$\overline{C_{R}}$	Case	ESR _{typ}	ESR _{max}	Z _{max}	I _{AC,max}	I _{AC,R}	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	(composition see
20 °C	d×I	20 °C	20 °C	20 °C	40 °C	85 °C	below)
μF	mm	mΩ	mΩ	mΩ	Α	Α	
$V_R = 16 \text{ V}$	DC						
100000	51.6 × 80.7	5.0	10	8.2	34	14	B4145*B4100M00#
150000	51.6 × 80.7	4.2	8.4	6.8	34	15	B4145*B4150M00#
220000	64.3 × 105.7	3.7	7.3	5.9	45	20	B4145*B4220M00#
330000	64.3 × 105.7	3.3	6.6	5.3	45	21	B4145*B4330M00#
470000	76.9×143.2	3.0	6.1	4.9	57	25	B4145*B4470M00#
680000	76.9×143.2	3.0	5.8	4.6	57	26	B4145*B4680M00#
$V_R = 25 V$	DC						
68000	51.6 × 80.7	6.0	12	9.3	34	13	B4145*B5689M00#
100000	51.6 × 105.7	5.0	9.5	7.6	34	16	B4145*B5100M00#
150000	64.3×105.7	4.0	8.0	6.4	45	20	B4145*B5150M00#
220000	64.3×105.7	3.5	7.0	5.6	45	21	B4145*B5220M00#
330000	76.9×143.2	3.2	6.4	5.1	57	25	B4145*B5330M00#
470000	76.9×220.7	3.0	4.0	4.8	57	31	B4145*B5470M00#
$V_R = 40 \text{ V}$	DC						
47000	51.6 × 80.7	6.0	12	10	34	13	B4145*B7479M00#
68000	51.6×105.7	5.0	10	8.4	34	16	B4145*B7689M00#
100000	64.3×105.7	4.1	8.2	7.0	45	19	B4145*B7100M00#
150000	76.9×105.7	3.0	5.5	6.0	57	21	B4145*B7150M00#
220000	76.9×143.2	3.0	5.0	5.4	57	25	B4145*B7220M00#
$V_R = 63 \text{ V}$	DC						
22000	51.6 × 80.7	8.0	16	16	33	11	B4145*B8229M00#
33000	51.6×105.7	6.0	12	12	34	14	B4145*B8339M00#
47000	64.3×105.7	5.0	10	9.4	45	18	B4145*B8479M00#
68000	76.9×105.7	3.0	5.0	6.5	57	20	B4145*B8689M00#
100000	76.9×143.2	3.0	4.0	6.0	57	25	B4145*B8100M00#
150000	76.9×220.7	3.0	4.0	5.0	57	31	B4145*B8150M00#
$V_{R} = 100$	V _R = 100 V DC						
10000	51.6 × 80.7	9.0	18	14	30	10	B4145*B9109M00#
15000	51.6 × 105.7	8.0	15	12	34	13	B4145*B9159M00#
22000	64.3×105.7	5.0	10	10	45	17	B4145*B9229M00#
33000	76.9×105.7	3.0	6.0	7.0	56	19	B4145*B9339M00#
47000	76.9×143.2	3.0	5.0	6.0	57	24	B4145*B9479M00#

Composition of ordering code

Mounting style

6 = for capacitors with ring clip/clamp mounting

8 = for capacitors with threaded stud

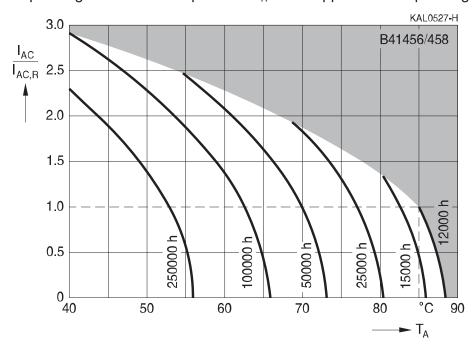
= Design

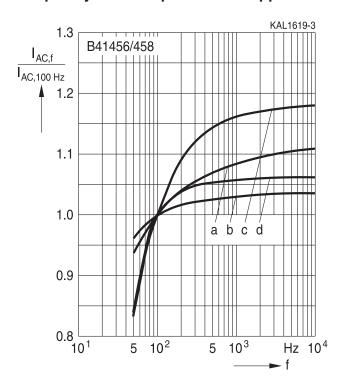
0 = standard

3 = low inductance (13 nH)

8 = insulated base

For details refer to "Design options" on page 6.





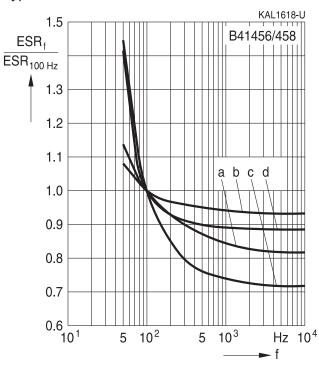
Compact - 85 °C

Useful life1) depending on ambient temperature T_A under ripple current operating conditions

Frequency factor of permissible ripple current I_{AC} versus frequency f

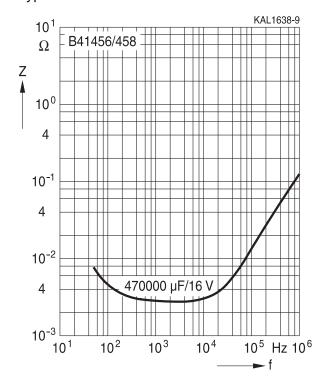
V _R (V DC)	≤ 63	100
d = 51.6 mm	а	С
d = 64.3 mm	a	С
d = 76.9 mm	b	d

¹⁾ Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



Compact - 85 °C

Frequency characteristics of ESR


Typical behavior

V _R (V DC)	≤ 63	100
d = 51.6 mm	а	С
d = 64.3 mm	а	С
d = 76.9 mm	b	d

Impedance Z versus frequency f

Typical behavior at 20 °C

Compact - 85 °C

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

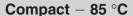
Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes, although in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. We do, however, restrict the amount of dangerous materials used in our products to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.


Compact - 85 °C

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Topic	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw-terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents Upper category temperature	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors. Do not exceed the upper category temperature.	11.6 "Cleaning agents" 7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"

Topic	Safety information	Reference chapter "General technical information"
Active flammability	Avoid overload of the capacitors.	8.2 "Active flammability"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the capacitors. Do not apply excessive mechanical stress to the capacitor terminals when mounting.	10 "Maintenance"
Storage	Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at +5 to +35 °C and a relative humidity of ≤ 75%.	7.3 "Shelf life and storage conditions"
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals — accessories"

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

Compact - 85 $^{\circ}$ C

Symbols and terms

Symbol	English	German
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
C_s	Series capacitance	Serienkapazität
$C_{S,T}$	Series capacitance at temperature T	Serienkapazität bei Temperatur T
C_{f}	Capacitance at frequency f	Kapazität bei Frequenz f
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß
d_{max}	Maximum case diameter	Maximaler Gehäusedurchmesser
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatzserienwiderstand
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f
ESR _⊤	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T
f	Frequency	Frequenz
1	Current	Strom
I_{AC}	Alternating current (ripple current)	Wechselstrom
I _{AC,RMS}	Root-mean-square value of alternating current	Wechselstrom, Effektivwert
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f
$I_{AC,max}$	Maximum permissible ripple current	Maximal zulässiger Wechselstrom
$I_{AC,R}$	Rated ripple current	Nennwechselstrom
I leak	Leakage current	Reststrom
I _{leak,op}	Operating leakage current	Betriebsreststrom
1	Case length, nominal dimension	Gehäuselänge, Nennmaß
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)
R	Resistance	Widerstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_{symm}	Balancing resistance	Symmetrierwiderstand
Т	Temperature	Temperatur
ΔT	Temperature difference	Temperaturdifferenz
T_A	Ambient temperature	Umgebungstemperatur
T_C	Case temperature	Gehäusetemperatur
T_B	Capacitor base temperature	Temperatur des Gehäusebodens
t	Time	Zeit
Δt	Period	Zeitraum
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)

Compact - 85 °C

Symbol	English	German
V	Voltage	Spannung
V_{F}	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V_R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
V_S	Surge voltage	Spitzenspannung
X_{C}	Capacitive reactance	Kapazitiver Blindwiderstand
X_L	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Z_T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
$tan \ \delta$	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ϵ_{0}	Absolute permittivity	Elektrische Feldkonstante
ϵ_{r}	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10