## Features

- 80C52 Compatible
- 8051 Instruction Compatible
- Six 8-bit I/O Ports ( 64 pins or 68 Pins Versions)
- Four 8-bit I/O Ports (44 Pins Version)
- Three 16-bit Timer/Counters
- 256 bytes Scratch Pad RAM
- 10 Interrupt Sources With 4 Priority Levels
- ISP (In-System Programming) Using Standard $\mathrm{V}_{\mathrm{cc}}$ Power Supply
- Integrated Power Monitor (POR/PFD) to Supervise Internal Power Supply
- Boot ROM Contains Low Level Flash Programming Routines and a Default Serial Loader
- High-speed Architecture
- In Standard Mode:

40 MHz (Vcc 2.7V to 5.5V, Both Internal and External Code Execution) 60 MHz (Vcc 4.5V to 5.5V and Internal Code Execution Only)

- In X2 Mode ( 6 Clocks/Machine Cycle)

20 MHz (Vcc 2.7V to 5.5V, Both Internal and External Code Execution) 30 MHz (Vcc 4.5V to 5.5V and Internal Code Execution Only)

- 64K bytes On-chip Flash Program/Data Memory
- Byte and Page (128 bytes) Erase and Write
- 100k Write Cycles
- On-chip 1792 bytes Expanded RAM (XRAM)
- Software Selectable Size (0, 256, 512, 768, 1024, 1792 bytes)
- 768 bytes Selected at Reset for T89C51RD2 Compatibility
- On-chip 2048 bytes EEPROM block for Data Storage
- 100k Write Cycles
- Dual Data Pointer
- 32 KHz Crystal Oscillator
- Variable Length MOVX for Slow RAM/Peripherals
- Improved X2 Mode with Independant Selection for CPU and Each Peripheral
- Keyboard Interrupt Interface on Port 1
- SPI Interface (Master/Slave Mode)
- 8-bit Clock Prescaler
- Two Wire Interface 400K bit/s
- Programmable Counter Array with:
- High Speed Output
- Compare/Capture
- Pulse Width Modulator
- Watchdog Timer Capabilities
- Asynchronous Port Reset
- Full Duplex Enhanced UART with Dedicated Internal Baud Rate Generator
- Low EMI (inhibit ALE)
- Hardware Watchdog Timer (One-time Enabled with Reset-Out), Power-Off Flag
- Power Control Modes: Idle Mode, Power-down Mode
- Power Supply: 2.7V to 5.5 V
- Temperature Ranges: Industrial ( -40 to $+85^{\circ} \mathrm{C}$ )
- Packages: PLCC44, VQFP44


## Description

AT89C51ID2 is a high performance CMOS Flash version of the 80C51 CMOS single chip 8-bit microcontroller. It contains a 64 Kbytes Flash memory block for program and for data.
The 64 Kbytes Flash memory can be programmed either in parallel mode or in serial mode with the ISP capability or with software. The programming voltage is internally generated from the standard $V_{c c}$ pin.

The AT89C51ID2 retains all features of the Atmel 80C52 with 256 bytes of internal RAM, a 10-source 4-level interrupt controller and three timer/counters.

In addition, the AT89C51ID2 has a Programmable Counter Array, an XRAM of 1792 bytes, a Hardware Watchdog Timer, SPI and Keyboard, a more versatile serial channel that facilitates multiprocessor communication (EUART) and a speed improvement mechanism (X2 mode).

The fully static design of the AT89C51ID2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The AT89C51ID2 has 2 software-selectable modes of reduced activity and 8-bit clock prescaler for further reduction in power consumption. In the Idle mode the CPU is frozen while the peripherals and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

The added features of the AT89C51ID2 make it more powerful for applications that need pulse width modulation, high speed I/O and counting capabilities such as alarms, motor control, corded phones, smart card readers.

Table 1. Memory Size and I/O pins

| AT89C51ID2 | Flash (bytes) | XRAM (bytes) | TOTAL RAM <br> (bytes) | I/O |
| :---: | :---: | :---: | :---: | :---: |
| PLCC44/VQFP44 | 64 K | 1792 | 2048 | 34 |

## Block Diagram

Figure 1. Block Diagram

(1): Alternate function of Port 1
(2): Alternate function of Port 3
(3): Alternate function of Port I2

The Special Function Registers (SFRs) of the AT89C51ID2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3, PI2
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4)
- Power and clock control registers: PCON
- Hardware Watchdog Timer registers: WDTRST, WDTPRG
- Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1
- Keyboard Interface registers: KBE, KBF, KBLS
- SPI registers: SPCON, SPSTR, SPDAT
- 2-wire Interface registers: SSCON, SSCS, SSDAT, SSADR
- BRG (Baud Rate Generator) registers: BRL, BDRCON
- Flash register: FCON
- Clock Prescaler register: CKRL
- 32 kHz Sub Clock Oscillator registers: CKSEL, OSSCON
- Others: AUXR, AUXR1, CKCON0, CKCON1

Table 2. C51 Core SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACC | EOh | Accumulator |  |  |  |  |  |  |  |  |
| B | FOh | B Register |  |  |  |  |  |  |  |  |
| PSW | DOh | Program Status Word | CY | AC | F0 | RS1 | RS0 | OV | F1 | P |
| SP | 81h | Stack Pointer |  |  |  |  |  |  |  |  |
| DPL | 82h | Data Pointer Low byte |  |  |  |  |  |  |  |  |
| DPH | 83h | Data Pointer High byte |  |  |  |  |  |  |  |  |

Table 3. System Management SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCON | 87h | Power Control | SMOD1 | SMODO | - | POF | GF1 | GF0 | PD | IDL |
| AUXR | 8Eh | Auxiliary Register 0 | - | - | M0 |  | XRS1 | XRS0 | EXTRA M | AO |
| AUXR1 | A2h | Auxiliary Register 1 | - | - | $\begin{gathered} \text { ENBOO } \\ T \end{gathered}$ | - | GF3 | 0 | - | DPS |
| CKRL | 97h | Clock Reload Register | - | - | - | - | - | - | - | - |
| CKSEL | 85h | Clock Selection Register | - | - | - | - | - | - | - | CKS |
| OSCON | 86h | Oscillator Control Register | - | - | - | - | - | SCLKTO | OscBEn | OscAEn |
| CKCKONO | 8Fh | Clock Control Register 0 | TWIX2 | WDTX2 | PCAX2 | SIX2 | T2X2 | T1X2 | T0X2 | X2 |
| CKCKON1 | AFh | Clock Control Register 1 | - | - | - | - | - | - | - | SPIX2 |

Table 4. Interrupt SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IENO | A8h | Interrupt Enable Control 0 | EA | EC | ET2 | ES | ET1 | EX1 | ETO | EXO |
| IEN1 | B1h | Interrupt Enable Control 1 | - | - | - | - | - | ESPI | ETWI | EKBD |
| IPH0 | B7h | Interrupt Priority Control High 0 | - | PPCH | PT2H | PSH | PT1H | PX1H | PTOH | PXOH |
| IPLO | B8h | Interrupt Priority Control Low 0 | - | PPCL | PT2L | PSL | PT1L | PX1L | PTOL | PXOL |
| IPH1 | B3h | Interrupt Priority Control High 1 | - | - | - | - | - | SPIH | IE 2 CH | KBDH |
| IPL1 | B2h | Interrupt Priority Control Low 1 | - | - | - | - | - | SPIL | IE2CL | KBDL |

Table 5. Port SFRs

| Mnemonic | Add | Name | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P0 | 80h | 8-bit Port 0 |  |  |  |  |  |  |  |  |
| P1 | 90h | 8-bit Port 1 |  |  |  |  |  |  |  |  |
| P2 | A0h | 8-bit Port 2 |  |  |  |  |  |  |  |  |
| P3 | B0h | 8-bit Port 3 |  |  |  |  |  |  |  |  |
| P4 | C0h | 8-bit Port 4 |  |  |  |  |  |  |  |  |
| P5 | E8h | 8-bit Port 5 | - | - | - | - |  |  |  |  |
| P5 | C7h | 8-bit Port 5 (byte addressable) |  |  |  |  |  |  |  |  |

Table 6. Flash and EEPROM Data Memory SFR

| Mnemonic | Add | Name | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FCON | D1h | Flash Control | FPL3 | FPL2 | FPL1 | FPLO | FPS | FMOD1 | FMODO | FBUSY |
| EECON |  | EEPROM data Control |  |  |  |  |  |  |  |  |

Table 7. Timer SFRs

| Mnemonic | Add | Name | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCON | 88h | Timer/Counter 0 and 1 Control | TF1 | TR1 | TF0 | TR0 | IE1 | IT1 | IE0 | IT0 |
| TMOD | 89h | Timer/Counter 0 and 1 Modes | GATE1 | C/T1\# | M11 | M01 | GATE0 | C/T0\# | M10 | M00 |
| TL0 | 8Ah | Timer/Counter 0 Low Byte |  |  |  |  |  |  |  |  |
| TH0 | 8Ch | Timer/Counter 0 High Byte |  |  |  |  |  |  |  |  |
| TL1 | 8Bh | Timer/Counter 1 Low Byte |  |  |  |  |  |  |  |  |
| TH1 | 8Dh | Timer/Counter 1 High Byte |  |  |  |  |  |  |  |  |
| WDTRST | A6h | WatchDog Timer Reset |  |  |  |  |  |  |  |  |
| WDTPRG | A7h | WatchDog Timer Program | - | - | - | - | - | WTO2 | WTO1 | WTOO |
| T2CON | C8h | Timer/Counter 2 control | TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2\# | CP/RL2\# |
| T2MOD | C9h | Timer/Counter 2 Mode | - | - | - | - | - | - | T2OE | DCEN |
| RCAP2H | CBh | Timer/Counter 2 Reload/Capture <br> High byte |  |  |  |  |  |  |  |  |
| RCAP2L | CAh | Timer/Counter 2 Reload/Capture <br> Low byte |  |  |  |  |  |  |  |  |
| TH2 | CDh | Timer/Counter 2 High Byte |  |  |  |  |  |  |  |  |
| TL2 | CCh | Timer/Counter 2 Low Byte |  |  |  |  |  |  |  |  |

Table 8. PCA SFRs

| Mnemo -nic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CCON | D8h | PCA Timer/Counter Control | CF | CR | - | CCF4 | CCF3 | CCF2 | CCF1 | CCFO |
| CMOD | D9h | PCA Timer/Counter Mode | CIDL | WDTE | - | - | - | CPS1 | CPSO | ECF |
| CL | E9h | PCA Timer/Counter Low byte |  |  |  |  |  |  |  |  |
| CH | F9h | PCA Timer/Counter High byte |  |  |  |  |  |  |  |  |
| CCAPMO CCAPM1 CCAPM2 CCAPM3 CCAPM4 | DAh <br> DBh <br> DCh <br> DDh <br> DEh | PCA Timer/Counter Mode 0 PCA Timer/Counter Mode 1 PCA Timer/Counter Mode 2 PCA Timer/Counter Mode 3 PCA Timer/Counter Mode 4 | - | ECOMO <br> ECOM1 <br> ECOM2 <br> ECOM3 <br> ECOM4 | CAPPO CAPP1 CAPP2 CAPP3 CAPP4 | CAPNO CAPN1 CAPN2 CAPN3 CAPN4 | MATO MAT1 MAT2 MAT3 MAT4 | $\begin{aligned} & \text { TOG0 } \\ & \text { TOG1 } \\ & \text { TOG2 } \\ & \text { TOG3 } \\ & \text { TOG4 } \end{aligned}$ | PWM0 <br> PWM1 <br> PWM2 <br> PWM3 <br> PWM4 | $\begin{aligned} & \text { ECCF0 } \\ & \text { ECCF1 } \\ & \text { ECCF2 } \\ & \text { ECCF3 } \\ & \text { ECCF4 } \end{aligned}$ |
| CCAPOH | FAh | PCA Compare Capture Module 0 H | CCAPOH7 | CCAPOH6 | CCAPOH5 | CCAPOH4 | CCAPOH3 | CCAPOH2 | CCAPOH1 | CCAPOHO |
| CCAP1H | FBh | PCA Compare Capture Module 1 H | CCAP1H7 | CCAP1H6 | CCAP1H5 | CCAP1H4 | CCAP1H3 | CCAP1H2 | CCAP1H1 | CCAP1H0 |
| CCAP2H | FCh | PCA Compare Capture Module 2 H | CCAP2H7 | CCAP2H6 | CCAP2H5 | CCAP2H4 | CCAP2H3 | CCAP2H2 | CCAP2H1 | CCAP2H0 |
| CCAP3H | FDh | PCA Compare Capture Module 3 H | CCAP3H7 | CCAP3H6 | CCAP3H5 | CCAP3H4 | CCAP3H3 | CCAP3H2 | CCAP3H1 | CCAP3H0 |
| CCAP4H | FEh | PCA Compare Capture Module 4 H | CCAP4H7 | CCAP4H6 | CCAP4H5 | CCAP4H4 | CCAP4H3 | CCAP4H2 | CCAP4H1 | CCAP4H0 |
| CCAPOL | EAh | PCA Compare Capture Module 0 L | CCAP0L7 | CCAP0L6 | CCAPOL5 | CCAPOL4 | CCAPOL3 | CCAPOL2 | CCAP0L1 | CCAPOLO |
| CCAP1L | EBh | PCA Compare Capture Module 1 L | CCAP1L7 | CCAP1L6 | CCAP1L5 | CCAP1L4 | CCAP1L3 | CCAP1L2 | CCAP1L1 | CCAP1L0 |
| CCAP2L | ECh | PCA Compare Capture Module 2 L | CCAP2L7 | CCAP2L6 | CCAP2L5 | CCAP2L4 | CCAP2L3 | CCAP2L2 | CCAP2L1 | CCAP2L0 |
| CCAP3L | EDh | PCA Compare Capture Module 3 L | CCAP3L7 | CCAP3L6 | CCAP3L5 | CCAP3L4 | CCAP3L3 | CCAP3L2 | CCAP3L1 | CCAP3L0 |
| CCAP4L | EEh | PCA Compare Capture Module 4 L | CCAP4L7 | CCAP4L6 | CCAP4L5 | CCAP4L4 | CCAP4L3 | CCAP4L2 | CCAP4L1 | CCAP4L0 |

Table 9. Serial I/O Port SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCON | 98h | Serial Control | FE/SM0 | SM1 | SM2 | REN | TB8 | RB8 | TI | RI |
| SBUF | 99h | Serial Data Buffer |  |  |  |  |  |  |  |  |
| SADEN | B9h | Slave Address Mask |  |  |  |  |  |  |  |  |
| SADDR | A9h | Slave Address |  |  |  |  |  |  |  |  |
| BDRCON | 9Bh | Baud Rate Control |  |  |  | BRR | TBCK | RBCK | SPD | SRC |
| BRL | 9Ah | Baud Rate Reload |  |  |  |  |  |  |  |  |

Table 10. SPI Controller SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPCON | C3h | SPI Control | SPR2 | SPEN | SSDIS | MSTR | CPOL | CPHA | SPR1 | SPR0 |
| SPSTA | C4h | SPI Status | SPIF | WCOL | SSERR | MODF | - | - | - | - |
| SPDAT | C5h | SPI Data | SPD7 | SPD6 | SPD5 | SPD4 | SPD3 | SPD2 | SPD1 | SPD0 |

Table 11. Two-Wire Interface Controller SFRs

| Mnemonic | Add | Name | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SSCON | 93 h | Synchronous Serial control | SSCR2 | SSPE | SSSTA | SSSTO | SSI | SSAA | SSCR1 | SSCR0 |
| SSCS | $94 h$ | Synchronous Serial Status | SSC4 | SSC3 | SSC2 | SSC1 | SSC0 | 0 | 0 | 0 |
| SSDAT | $95 h$ | Synchronous Serial Data | SSD7 | SSD6 | SSD5 | SSD4 | SSD3 | SSD2 | SSD1 | SSD0 |
| SSADR | $96 h$ | Synchronous Serial Address | SSA7 | SSA6 | SSA5 | SSA4 | SSA3 | SSA2 | SSA1 | SSGC |

Table 12. Keyboard Interface SFRs

| Mnemonic | Add | Name | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KBLS | 9Ch | Keyboard Level Selector | KBLS7 | KBLS6 | KBLS5 | KBLS4 | KBLS3 | KBLS2 | KBLS1 | KBLS0 |
| KBE | 9Dh | Keyboard Input Enable | KBE7 | KBE6 | KBE5 | KBE4 | KBE3 | KBE2 | KBE1 | KBEO |
| KBF | 9Eh | Keyboard Flag Register | KBF7 | KBF6 | KBF5 | KBF4 | KBF3 | KBF2 | KBF1 | KBFO |

Table 13. EEPROM data Memory SFR

| Mnemonic | Add | Name | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| EECON | D2h | EEPROM Data Control |  |  |  |  |  |  | EEE |

Table below shows all SFRs with their address and their reset value.
Table 14. SFR Mapping

|  | Bit addressable | Non Bit addressable |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0/8 | 1/9 | 2/A | 3/B | 4/C | 5/D | 6/E | 7/F |  |
| F8h | $\begin{gathered} \mathrm{PI} 2 \\ \mathrm{XXXX} \times \mathrm{X} 11 \end{gathered}$ | $\begin{gathered} \mathrm{CH} \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { ССАРОН } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { ССАР1H } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { CCAP2H } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { ССАРЗН } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { CCAP4H } \\ \text { XXXX XXXX } \end{gathered}$ |  | FFh |
| F0h | $\begin{gathered} \text { B } \\ 00000000 \end{gathered}$ |  |  |  |  |  |  |  | F7h |
| E8h | P5 bit addressable 11111111 | $\begin{gathered} C L \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { CCAPOL } \\ X X X X X X X \end{gathered}$ | $\begin{gathered} \text { CCAP1L } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { CCAP2L } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { CCAP3L } \\ \text { XXXX XXXX } \end{gathered}$ | $\begin{gathered} \text { CCAP4L } \\ X X X X X X X X \end{gathered}$ |  | EFh |
| EOh | $\begin{gathered} \text { ACC } \\ 00000000 \end{gathered}$ |  |  |  |  |  |  |  | E7h |
| D8h | $\begin{gathered} \text { CCON } \\ 00 \times 00000 \end{gathered}$ | $\begin{gathered} \text { CMOD } \\ 00 \mathrm{XX} \times 000 \end{gathered}$ | $\begin{aligned} & \text { CCAPMO } \\ & \text { X000 } 0000 \end{aligned}$ | $\begin{gathered} \text { CCAPM1 } \\ \times 0000000 \end{gathered}$ | $\begin{gathered} \text { CCAPM2 } \\ \times 0000000 \end{gathered}$ | $\begin{aligned} & \text { CCAPM3 } \\ & \text { X000 } 0000 \end{aligned}$ | $\begin{gathered} \text { CCAPM4 } \\ \text { X000 } 0000 \end{gathered}$ |  | DFh |
| DOh | $\begin{gathered} \text { PSW } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { FCON (1) } \\ \text { XXXX } 0000 \end{gathered}$ | $\begin{aligned} & \text { EECON } \\ & \text { xxxx xx00 } \end{aligned}$ |  |  |  |  |  | D7h |
| C8h | $\begin{gathered} \text { T2CON } \\ 00000000 \end{gathered}$ | T2MOD XXXX XX00 | $\begin{aligned} & \text { RCAP2L } \\ & 00000000 \end{aligned}$ | $\begin{aligned} & \text { RCAP2H } \\ & 00000000 \end{aligned}$ | $\begin{gathered} \text { TL2 } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { TH2 } \\ 00000000 \end{gathered}$ |  |  | CFh |
| COh | $\begin{gathered} \text { P4 } \\ 11111111 \end{gathered}$ |  |  | $\begin{gathered} \text { SPCON } \\ 00010100 \end{gathered}$ | $\begin{gathered} \text { SPSTA } \\ 00000000 \end{gathered}$ | SPDAT XXXX XXXX |  | P5 byte Addressable 11111111 | C7h |
| B8h | $\begin{gathered} \text { IPLO } \\ \times 000000 \end{gathered}$ | $\begin{aligned} & \text { SADEN } \\ & 00000000 \end{aligned}$ |  |  |  |  |  |  | BFh |
| B0h | $\begin{gathered} \text { P3 } \\ 11111111 \end{gathered}$ | $\begin{gathered} \text { IEN1 } \\ \text { XXXX X000 } \end{gathered}$ | $\begin{gathered} \text { IPL1 } \\ \text { XXXX X000 } \end{gathered}$ | $\begin{gathered} \text { IPH1 } \\ \text { XXXX X111 } \end{gathered}$ |  |  |  | $\begin{gathered} \text { IPHO } \\ \times 0000000 \end{gathered}$ | B7h |
| A8h | $\begin{gathered} \text { IENO } \\ 00000000 \end{gathered}$ | $\begin{aligned} & \text { SADDR } \\ & 00000000 \end{aligned}$ |  |  |  |  |  | $\begin{gathered} \text { CKCON1 } \\ \text { XXXX XXX0 } \end{gathered}$ | AFh |
| A0h | $\begin{gathered} \text { P2 } \\ 11111111 \end{gathered}$ |  | AUXR1 XXXX X0X0 |  |  |  | WDTRST XXXX XXXX | WDTPRG XXXX X000 | A7h |
| 98h | $\begin{gathered} \text { SCON } \\ 00000000 \end{gathered}$ | SBUF XXXX XXXX | $\begin{gathered} \mathrm{BRL} \\ 00000000 \end{gathered}$ | $\begin{aligned} & \text { BDRCON } \\ & \text { XXX0 } 0000 \end{aligned}$ | $\begin{gathered} \text { KBLS } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { KBE } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { KBF } \\ 00000000 \end{gathered}$ |  | 9Fh |
| 90h | $\begin{gathered} \text { P1 } \\ 11111111 \end{gathered}$ |  |  | $\begin{gathered} \text { SSCON } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { SSCS } \\ 11111000 \end{gathered}$ | $\begin{gathered} \text { SSDAT } \\ 11111111 \end{gathered}$ | $\begin{gathered} \text { SSADR } \\ 11111110 \end{gathered}$ | $\begin{gathered} \text { CKRL } \\ 11111111 \end{gathered}$ | 97h |
| 88h | $\begin{gathered} \text { TCON } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { TMOD } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { TLO } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { TL1 } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { THO } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { TH1 } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { AUXR } \\ \text { XX00 } 1000 \end{gathered}$ | $\begin{gathered} \text { CKCONO } \\ 00000000 \end{gathered}$ | 8Fh |
| 80h | $\begin{gathered} \text { P0 } \\ 11111111 \end{gathered}$ | $\begin{gathered} \text { SP } \\ 00000111 \end{gathered}$ | $\begin{gathered} \text { DPL } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { DPH } \\ 00000000 \end{gathered}$ |  | CKSEL XXXX XXXO | $\begin{gathered} \text { OSSCON } \\ \text { XXXX X001 } \end{gathered}$ | $\begin{gathered} \text { PCON } \\ 00 \times 10000 \end{gathered}$ | 87h |
|  | 0/8 | 1/9 | 2/A | 3/B | 4/C | 5/D | 6/E | 7/F |  |

## Pin Configurations



Table 15. Pin Description


Table 15. Pin Description (Continued)

| Mnemonic | Pin Number |  | TypeI/O | Name and Function <br> MOSI: SPI Master Output Slave Input line <br> When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller. |
| :---: | :---: | :---: | :---: | :---: |
|  | PLCC44 | VQFP44 |  |  |
| XTALA1 | 21 | 15 | 1 | Crystal A 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. |
| XTALA2 | 20 | 14 | 0 | Crystal A 2: Output from the inverting oscillator amplifier |
| XTALB1 | 2 | 40 | 1 | Crystal B 1: (Sub Clock) Input to the inverting oscillator amplifier and input to the internal clock generator circuits. |
| XTALB2 | 1 | 39 | 0 | Crystal B 2: (Sub Clock) Output from the inverting oscillator amplifier |
| P2.0-P2.7 | 24-31 | 18-25 | I/O | Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. |
| P3.0-P3.7 | $\begin{gathered} 11, \\ 13-19 \\ \\ 11 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{gathered}$ | $\begin{gathered} 5, \\ 7-13 \\ \\ 5 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$ | $\begin{aligned} & \text { I/O } \\ & \text { I } \\ & \text { O } \\ & \text { I } \\ & 0 \\ & 0 \end{aligned}$ | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below. <br> RXD (P3.0): Serial input port <br> TXD (P3.1): Serial output port <br> $\overline{\text { INTO }}$ (P3.2): External interrupt 0 <br> $\overline{\text { INT1 }}$ (P3.3): External interrupt 1 <br> T0 (P3.4): Timer 0 external input <br> T1 (P3.5): Timer 1 external input <br> $\overline{\text { WR (P3.6): External data memory write strobe }}$ <br> $\overline{\mathrm{RD}}$ (P3.7): External data memory read strobe |
| P4.0-P4.7 | - | - | I/O | Port 4: Port 4 is an 8-bit bidirectional I/O port with internal pull-ups. Port 5 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 4 pins that are externally pulled low will source current because of the internal pull-ups. |
| P5.0-P5.7 | - | - | I/O | Port 5: Port 5 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 5 pins that are externally pulled low will source current because of the internal pull-ups. |
| PI2.0-PI2.1 | $\begin{gathered} 34,12 \\ 34 \end{gathered}$ | $\begin{gathered} 28,6 \\ 28 \end{gathered}$ | I/O | Port I2: Port I2 is an open drain. It can be used as inputs (must be polarized to Vcc with external resistor to prevent any parasitic current consumption). <br> SCL (PI2.0): 2-wire Serial Clock <br> SCL output the serial clock to slave peripherals <br> SCL input the serial clock from master |

Table 15. Pin Description (Continued)

| Mnemonic | Pin Number |  | Type | Name and Function |
| :---: | :---: | :---: | :---: | :---: |
|  | PLCC44 | VQFP44 |  |  |
|  | 12 | 6 | I/O | SDA (PI2.1): 2-wire Serial Data |
|  |  |  |  | SDA is the bidirectional 2-wire data line |
| RST | 10 | 4 | I | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to $\mathrm{V}_{\mathrm{SS}}$ permits a power-on reset using only an external capacitor to $\mathrm{V}_{\mathrm{Cc}}$. This pin is an output when the hardware watchdog forces a system reset. |
| ALE/PROG | 33 | 27 | O (1) | Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of $1 / 6$ ( $1 / 3$ in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input ( $\overline{\mathrm{PROG}}$ ) during Flash programming. ALE can be disabled by setting SFR's AUXR. 0 bit. With this bit set, ALE will be inactive during internal fetches. |
| PSEN | 32 | 26 | 0 | Program Strobe ENable: The read strobe to external program memory. When executing code from the external program memory, $\overline{\text { PSEN }}$ is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. $\overline{\text { PSEN }}$ is not activated during fetches from internal program memory. |
| EA | 35 | 29 | I | External Access Enable: $\overline{\mathrm{EA}}$ must be externally held low to enable the device to fetch code from external program memory locations 0000 H to $F F F F H$. If security level 1 is programmed, $\overline{E A}$ will be internally latched on Reset. |

## Oscillators

## Overview

## Registers

Two oscillators are available (for AT8xC51IxD2 devices only, the others part number provide only the main high frequency oscillator):

- OSCA used for high frequency: Up to 40 MHz
- OSCB used for low frequency: 32.768 kHz

Several operating modes are available and programmable by software:

- to switch OSCA to OSCB and vice-versa
- to stop OSCA or OSCB to reduce consumption

In order to optimize the power consumption and the execution time needed for a specific task, an internal prescaler feature has been implemented between the selected oscillator and the CPU.

Table 16. CKSEL Register (for AT8xC51Ix2 only) CKSEL - Clock Selection Register (85h)


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 7 | - | Reserved |
| 6 | - | Reserved |
| 5 | - | Reserved |
| 4 | - | Reserved |
| 3 | - | Reserved |
| 2 | - | Reserved |
| 1 | - | Reserved |
| 0 | CKS | CPU Oscillator Select Bit: (CKS) <br> Cleared, CPU and peripherals connected to OSCB <br> Set, CPU and peripherals connected to OSCA <br> Programmed by hardware after a Power-up regarding Hardware Security Byte <br> (HSB).HSB.OSC (Default setting, OSCA selected) |

Reset Value $=0000000$ 'HSB.OSC'b (see Hardware Security Byte (HSB)) Not bit addressable

Table 17. OSCCON Register (for AT8xC51Ix2 only)
OSCCON- Oscillator Control Register (86h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | SCLKTO | OscBEn | OscAEn |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved |  |  |  |  |  |
| 6 | - | Reserved |  |  |  |  |  |
| 5 | - | Reserved |  |  |  |  |  |
| 4 | - | Reserved |  |  |  |  |  |
| 3 | - | Reserved |  |  |  |  |  |
| 2 | SCLKT0 | Sub Clock Timer0 <br> Cleared by software to select T0 pin Set by software to select T0 Sub Clock Cleared by hardware after a Power Up |  |  |  |  |  |
| 1 | OscBEn | OscB enable bit <br> Set by software to run OscB <br> Cleared by software to stop OscB <br> Programmed by hardware after a Power-up regarding HSB.OSC (Default cleared, OSCB stopped) |  |  |  |  |  |
| 0 | OscAEn | OscA enable bit <br> Set by software to run OscA <br> Cleared by software to stop OscA <br> Programmed by hardware after a Power-up regarding HSB.OSC(Default Set, OSCA runs) |  |  |  |  |  |

Reset Value = XXXX X0'HSB.OSC'"HSB.OSC'b (see Hardware Security Byte (HSB)) Not bit addressable

Table 18. CKRL Register
CKRL - Clock Reload Register

| 7 | 6 | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| Bit <br> Number | Mnemonic | Description |  |  |  |  |  |
| $7: 0$ | CKRL | Clock Reload Register: <br> Prescaler value |  |  |  |  |  |

Reset Value = 1111 1111b
Not bit addressable

Table 19. PCON Register
PCON - Power Control Register (87h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMOD1 | SMOD0 | - | POF | GF1 | GF0 | PD | IDL |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :---: |
| 7 | SMOD1 | Serial port Mode bit 1 <br> Set to select double baud rate in mode 1, 2 or 3. |
| 6 | SMOD0 | Serial port Mode bit 0 <br> Cleared to select SMO bit in SCON register. Set to select FE bit in SCON register. |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 4 | POF | Power-Off Flag <br> Cleared to recognize next reset type. <br> Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. |
| 3 | GF1 | General purpose Flag <br> Cleared by software for general purpose usage. Set by software for general purpose usage. |
| 2 | GF0 | General purpose Flag <br> Cleared by software for general purpose usage. Set by software for general purpose usage. |
| 1 | PD | Power-Down mode bit <br> Cleared by hardware when reset occurs. Set to enter power-down mode. |
| 0 | IDL | Idle mode bit <br> Cleared by hardware when interrupt or reset occurs. Set to enter idle mode. |

Reset Value = 00X1 0000b
Not bit addressable

## Functional Block

## Diagram

Figure 2. Functional Oscillator Block Diagram


## Operating Modes

## Reset

A hardware RESET puts the Clock generator in the following state:

The selected oscillator depends on OSC bit in Hardware Security Byte (HSB).

HSB.OSC = 1 (Oscillator A selected)

- OscAEn $=1$ \& OscBEn $=0$ : OscA is running, OscB is stopped.
- $\quad C K S=1$ : OscA is selected for CPU.

HSB.OSC $=0$ (Oscillator B selected)

- OscAEn = 0 \& OscBEn = 1: OscB is running, OscA is stopped.
- $\quad C K S=0:$ OscB is selected for CPU.


## Functional Modes

Normal Modes

- CPU and Peripherals clock depend on the software selection using CKCONO, CKCON1 and CKRL registers
- CKS bit in CKSEL register selects either OscA or OscB
- CKRL register determines the frequency of the OscA clock.
- It is always possible to switch dynamically by software from OscA to OscB, and vice versa by changing CKS bit.

Idle Modes

Power Down Modes

- IDLE modes are achieved by using any instruction that writes into PCON. 0 bit (IDL)
- IDLE modes $A$ and $B$ depend on previous software sequence, prior to writing into PCON. 0 bit:
- IDLE MODE A: OscA is running (OscAEn = 1) and selected (CKS = 1)
- IDLE MODE B: OscB is running (OscBEn = 1) and selected (CKS = 0)
- The unused oscillator OscA or OscB can be stopped by software by clearing OscAEn or OscBEn respectively.
- IDLE mode can be canceled either by Reset, or by activation of any enabled interruption
- In both cases, PCON. 0 bit (IDL) is cleared by hardware
- Exit from IDLE modes will leave Oscillators control bits (OscEnA, OscEnB, CKS) unchanged.
- POWER DOWN modes are achieved by using any instruction that writes into PCON. 1 bit (PD)
- POWER DOWN modes $A$ and $B$ depend on previous software sequence, prior to writing into PCON. 1 bit:
- Both OscA and OscB will be stopped.
- POWER DOWN mode can be cancelled either by a hardware Reset, an external interruption, or the keyboard interrupt.
- By Reset signal: The CPU will restart according to OSC bit in Hardware Security Bit (HSB) register.
- By INT0 or INT1 interruption, if enabled: (standard behavioral), request on Pads must be driven low enough to ensure correct restart of the oscillator which was selected when entering in Power down.
- By keyboard Interrupt if enabled: a hardware clear of the PCON. 1 flag ensure the restart of the oscillator which was selected when entering in Power down.
Table 20. Overview

| PCON.1 | PCON.0 | OscBEn | OscAEn | CKS | Selected Mode | Comment |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 | NORMAL MODE <br> A, OscB stopped | Default mode after power-up or <br> Warm Reset |
| 0 | 0 | 1 | 1 | 1 | NORMAL MODE <br> A, OscB running | Default mode after power-up or <br> Warm Reset + OscB running |
| 0 | 0 | 1 | 0 | 0 | NORMAL MODE <br> B, OscA stopped | OscB running and selected |
| 0 | 0 | 1 | 1 | 0 | NORMAL MODE <br> B, OscA running | OscB running and selected + <br> OscA running |
| X | X | 0 | 0 | X | INVALID | OscA \& OscB cannot be stopped <br> at the same time |
| X | X | X | 0 | 1 | INVALID | OscA must not be stopped, as <br> used for CPU and peripherals |
| X | X | 0 | X | 0 | INVALID | OscB must not be stopped as <br> used for CPU and peripherals |
| 0 | 1 | X | 1 | 1 | IDLE MODE A | The CPU is off, OscA supplies the <br> peripherals, OscB can be disabled <br> (OscBEn $=0)$ |

Table 20. Overview (Continued)

| PCON.1 | PCON.0 | OscBEn | OscAEn | CKS | Selected Mode | Comment |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 0 | 1 | 1 | $\times$ | 0 | IDLE MODE B | The CPU is off, OscB supplies the <br> peripherals, OscA can be disabled <br> $($ OscAEn $=0)$ |
| 1 | X | X | 1 | X | POWER DOWN <br> MODE | The CPU and peripherals are off, <br> OscA and OscB are stopped |

## Design Considerations

## Oscillators Control

- PwdOscA and PwdOscB signals are generated in the Clock generator and used to control the hard blocks of oscillators $A$ and $B$.
- PwdOscA ='1' stops OscA
- PwdOscB ='1' stops OscB
- The following tables summarize the Operating modes:

| PCON.1 | OscAEn | PwdOscA | Comments |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | OscA running |
| 1 | $x$ | 1 | OscA stopped by <br> Power-down mode |
| 0 | 0 | 1 | OscA stopped by <br> clearing OscAEn |


| PCON.1 | OscBEn | PwdOscB | Comments |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | OscB running |
| 1 | $x$ | 1 | OscB stopped by <br> Power-down mode |
| 0 | 0 | 1 | OscB stopped by <br> clearing OscBEn |

- A hardware RESET puts the prescaler divider in the following state:
$-\quad$ CKRL $=F F h: F_{\text {CLK CPU }}=F_{\text {CLK PERIPH }}=F_{\text {OSCA }} / 2$ (Standard C51 feature)
- CKS signal selects OSCA or OSCB: $F_{\text {CLK OUT }}=F_{\text {OSCA }}$ or $F_{\text {OSCB }}$
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
- CKRL = 00h: minimum frequency
$\mathrm{F}_{\text {CLK CPU }}=\mathrm{F}_{\text {CLK PERIPH }}=\mathrm{F}_{\text {OSCA }} / 1020$ (Standard Mode)
$F_{\text {CLK CPU }}=F_{\text {CLK PERIPH }}=F_{\text {OSCA }} / 510$ (X2 Mode)
- CKRL = FFh: maximum frequency
$F_{\text {CLK CPU }}=F_{\text {CLK PERIPH }}=F_{\text {OSCA }} / 2$ (Standard Mode)
$F_{\text {CLK CPU }}=F_{\text {CLK PERIPH }}=F_{\text {OSCA }}$ (X2 Mode)


## AT89C51ID2

- $F_{\text {CLK CPU }}$ and $F_{\text {CLK PERIPH }}$, for CKRL $\neq 0 x F F$ In X2 Mode:

$$
F_{C P U}=F_{C L K P E R I P H}=\frac{F_{\text {OSCA }}}{2 \times(255-C K R L)}
$$

In X1 Mode:

$$
F_{C P U}=F_{\text {CLKPERIPH }}=\frac{F_{O S C A}}{4 \times(255-C K R L)}
$$

Timer 0: Clock Inputs
Figure 1. Timer 0: Clock Inputs


Note: The SCLKTO bit in OSCCON register allows to select Timer 0 Subsidiary clock.
SCLKTO $=0$ : Timer 0 uses the standard T0 pin as clock input (Standard mode)
SCLKTO = 1: Timer 0 uses the special Sub Clock as clock input, this feature can be use as periodic interrupt for time clock.

## Enhanced Features

## X2 Feature

## Description

In comparison to the original 80C52, the AT89C51ID2 implements some new features, which are:

- X2 option
- Dual Data Pointer
- Extended RAM
- Programmable Counter Array (PCA)
- Hardware Watchdog
- SPI interface
- 4-level interrupt priority system
- power-off flag
- ONCE mode
- ALE disabling
- Enhanced features on the UART and the timer 2

The AT89C51ID2 core needs only 6 clock periods per machine cycle. This feature called 'X2' provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

The clock for the whole circuit and peripherals is first divided by two before being used by the CPU core and the peripherals.

This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60\%.

Figure 3 shows the clock generation block diagram. X 2 bit is validated on the rising edge of the XTAL1 $\div 2$ to avoid glitches when switching from X2 to STD mode. Figure 4 shows the switching mode waveforms.

Figure 3. Clock Generation Diagram


Figure 4. Mode Switching Waveforms


The X 2 bit in the CKCON0 register (see Table 21) allows a switch from 12 clock periods per instruction to 6 clock periods and vice versa. At reset, the speed is set according to X2 bit of Hardware Security Byte (HSB). By default, Standard mode is active. Setting the $X 2$ bit activates the X 2 feature ( X 2 mode).

The T0X2, T1X2, T2X2, UartX2, PcaX2, and WdX2 bits in the CKCON0 register (See Table 21.) and SPIX2 bit in the CKCON1 register (see Table 22) allows a switch from standard peripheral speed ( 12 clock periods per peripheral clock cycle) to fast peripheral speed ( 6 clock periods per peripheral clock cycle). These bits are active only in X2 mode.

Table 21. CKCONO Register
CKCONO - Clock Control Register (8Fh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TWIX2 | WDX2 | PCAX2 | SIX2 | T2X2 | T1X2 | T0X2 | X2 |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | TWIX2 | 2-wire clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) <br> Cleared to select 6 clock periods per peripheral clock cycle. <br> Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 6 | WDX2 | Watchdog Clock <br> (This control bit is validated when the CPU clock $X 2$ is set; when $X 2$ is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. <br> Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 5 | PCAX2 | Programmable Counter Array Clock <br> (This control bit is validated when the CPU clock $X 2$ is set; when $X 2$ is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 4 | SIX2 | Enhanced UART Clock (Mode 0 and 2) <br> (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 3 | T2X2 | Timer2 Clock <br> (This control bit is validated when the CPU clock $X 2$ is set; when $X 2$ is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. <br> Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 2 | T1X2 | Timer1 Clock <br> (This control bit is validated when the CPU clock X 2 is set; when X 2 is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 1 | T0X2 | TimerO Clock <br> (This control bit is validated when the CPU clock $X 2$ is set; when $X 2$ is low, this bit has no effect). <br> Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |
| 0 | X2 | CPU Clock <br> Cleared to select 12 clock periods per machine cycle (STD mode) for CPU and all the peripherals. Set to select 6clock periods per machine cycle (X2 mode) and to enable the individual peripherals'X2' bits. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), Default setting, X2 is cleared. |  |  |  |  |  |

Reset Value = 0000 000'HSB. X2'b (See "Hardware Security Byte")
Not bit addressable

Table 22. CKCON1 Register
CKCON1 - Clock Control Register (AFh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | SPIX2 |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved |  |  |  |  |  |
| 6 | - | Reserved |  |  |  |  |  |
| 5 | - | Reserved |  |  |  |  |  |
| 4 | - | Reserved |  |  |  |  |  |
| 3 | - | Reserved |  |  |  |  |  |
| 2 | - | Reserved |  |  |  |  |  |
| 1 | - | Reserved |  |  |  |  |  |
| 0 | SPIX2 | SPI (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect). <br> Clear to select 6 clock periods per peripheral clock cycle. <br> Set to select 12 clock periods per peripheral clock cycle. |  |  |  |  |  |

Reset Value $=$ XXXX XXXOb
Not bit addressable

## AT89C51ID2

## Dual Data Pointer

 Register DPTRThe additional data pointer can be used to speed up code execution and reduce code size.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1.0 (see Table 23) that allows the program code to switch between them (Refer to Figure 5).

Figure 5. Use of Dual Pointer


Table 23. AUXR1 register
AUXR1- Auxiliary Register 1(0A2h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | ENBOOT | - | GF3 | 0 | - | DPS |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 5 | ENBOOT | Enable Boot Flash <br> Cleared to disable boot ROM. <br> Set to map the boot ROM between F800h - 0FFFFh. |  |  |  |  |  |
| 4 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 3 | GF3 | This bit is a general purpose user flag. * |  |  |  |  |  |
| 2 | 0 | Always cleared. |  |  |  |  |  |
| 1 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 0 | DPS | Data Pointer Selection Cleared to select DPTR0. Set to select DPTR1. |  |  |  |  |  |

## Reset Value: XXXX XX0X0b

## Not bit addressable

Note: $\quad$ *Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

## ASSEMBLY LANGUAGE

; Block move using dual data pointers
; Modifies DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
;
00A2 AUXR1 EQU 0A2H

0000 909000MOV DPTR,\#SOURCE ; address of SOURCE
0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,\#DEST ; address of DEST 0008 LOOP:
0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A,@DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX @DPTR,A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short ( 2 bytes) and fast ( 12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or ' 1 ' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

## Expanded RAM (XRAM)

The AT89C51ID2 provides additional Bytes of random access memory (RAM) space for increased data parameter handling and high level language usage.
AT89C51ID2 devices have expanded RAM in external data space configurable up to 1792bytes (see Table 24.).

The AT89C51ID2 has internal data memory that is mapped into four separate segments.
The four segments are:

1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable.
2. The Upper 128 bytes of RAM (addresses 80 h to FFh) are indirectly addressable only.
3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly addressable only.
4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register (see Table 24).
The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

Figure 6. Internal and External Data Memory Address


When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV OAOH, \# data, accesses the SFR at location 0AOh (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0, \# data where R0 contains OAOh, accesses the data byte at address 0AOh, rather than P2 (whose address is OAOh).
- The XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a part of the available XRAM as explained in Table 24. This can be
useful if external peripherals are mapped at addresses already used by the internal XRAM.
- With EXTRAM $=0$, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, \# data where RO contains OAOH, accesses the XRAM at address 0AOH rather than external memory. An access to external data memory locations higher than the accessible size of the XRAM will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Accesses to XRAM above OFFH can only be done by the use of DPTR.
- With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51.MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 ( $\overline{\mathrm{RD}}$ ).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

The MO bit allows to stretch the XRAM timings; if MO is set, the read and write pulses are extended from 6 to 30 clock periods. This is useful to access external slow peripherals.

## Registers

Table 24. AUXR Register
AUXR - Auxiliary Register (8Eh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | M0 | XRS2 | XRS1 | XRS0 | EXTRAM | AO |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :---: |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 5 | M0 | Pulse length <br> Cleared to stretch MOVX control: the RD/ and the WR/ pulse length is 6 clock periods (default). <br> Set to stretch MOVX control: the RD/ and the WR/ pulse length is 30 clock periods. |
| 4 | XRS2 | XRAM Size |
| 3 | XRS1 | XRS2XRS1XRS0XRAM size 00000256 bytes |
| 2 | XRS0 | 0 0 1512 bytes <br> 0 1 0768 bytes(default) <br> 0 1 11024 bytes <br> 1 0 01792 bytes |
| 1 | EXTRAM | EXTRAM bit <br> Cleared to access internal XRAM using movx @ Ri/ @ DPTR. <br> Set to access external memory. <br> Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected. |
| 0 | AO | ALE Output bit <br> Cleared, ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency (or $1 / 3$ if X2 mode is used). (default) Set, ALE is active only during a MOVX or MOVC instruction is used. |

Reset Value = XX00 10'HSB. XRAM'Ob
Not bit addressable

## AT89C51ID2

## Reset

## Introduction

## Reset Input

The Reset input can be used to force a reset pulse longer than the internal reset controlled by the Power Monitor. RST input has a pull-down resistor allowing power-on reset by simply connecting an external capacitor to $\mathrm{V}_{\mathrm{Cc}}$ as shown in Figure 8. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C51ID2 datasheet.

Figure 8. Reset Circuitry and Power-On Reset

a. RST input circuitry

b. Power-on Reset

## Reset Output

As detailed in Section "Hardware Watchdog Timer", page 107, the WDT generates a 96clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a $1 \mathrm{k} \Omega$ resistor must be added as shown Figure 9.

Figure 9. Recommended Reset Output Schematic


## Power Monitor

## Description

The POR/PFD function monitors the internal power-supply of the CPU core memories and the peripherals, and if needed, suspends their activity when the internal power supply falls below a safety threshold. This is achieved by applying an internal reset to them.

By generating the Reset the Power Monitor insures a correct start up when AT89C51ID2 is powered up.

In order to startup and maintain the microcontroller in correct operating mode, $\mathrm{V}_{\mathrm{CC}}$ has to be stabilized in the $\mathrm{V}_{\mathrm{Cc}}$ operating range and the oscillator has to be stabilized with a nominal amplitude compatible with logic level VIH/VIL.

These parameters are controlled during the three phases: power-up, normal operation and power going down. See Figure 10.

Figure 10. Power Monitor Block Diagram


Note: 1. Once XTAL1 High and low levels reach above and below VIH/VIL. a 1024 clock period delay will extend the reset coming from the Power Fail Detect. If the power falls below the Power Fail Detect threshold level, the Reset will be applied immediately.

The Voltage regulator generates a regulated internal supply for the CPU core the memories and the peripherals. Spikes on the external Vcc are smoothed by the voltage regulator.

The Power fail detect monitor the supply generated by the voltage regulator and generate a reset if this supply falls below a safety threshold as illustrated in the Figure 11 below.

Figure 11. Power Fail Detect


When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

## AT89C51ID2

## Timer 2

## Auto-Reload Mode

The Timer 2 in the AT89C51ID2 is the standard C52 Timer 2.
It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 are cascaded. It is controlled by T2CON (Table 25) and T2MOD (Table 26) registers. Timer 2 operation is similar to Timer 0 and Timer 1.C/T2 selects $\mathrm{F}_{\text {Osc }} / 12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to increment by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).

Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

Timer 2 includes the following enhancements:

- Auto-reload mode with up or down counter
- Programmable clock-output

The auto-reload mode configures Timer 2 as a 16 -bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel C51 Microcontroller Hardware description). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 12. In this mode the T2EX pin controls the direction of count.

When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

Figure 12. Auto-Reload Mode Up/Down Counter (DCEN = 1)


## Programmable ClockOutput

In the clock-out mode, Timer 2 operates as a 50\%-duty-cycle, programmable clock generator (See Figure 13). The input clock increments TL2 at frequency $\mathrm{F}_{\text {CLK PERIPH }} / 2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:
Clock-OutFrequency $=\frac{F_{\text {CLKPERIPH }}}{4 \times(65536-\text { RCAP } 2 H / R C A P 2 L)}$
For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz ( $\mathrm{F}_{\text {CLK PERIPH }} / 2^{16}$ ) to $4 \mathrm{MHz}\left(\mathrm{F}_{\text {CLK PERIPH }} / 4\right)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16 -bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2.It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 13. Clock-Out Mode $\mathrm{C} / \overline{\mathrm{T} 2}=0$


## Registers

Table 25. T2CON Register
T2CON - Timer 2 Control Register (C8h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2\# | CPIRL2\# |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | TF2 | Timer 2 overflow Flag <br> Must be cleared by software. <br> Set by hardware on Timer 2 overflow, if RCLK $=0$ and TCLK $=0$. |  |  |  |  |  |
| 6 | EXF2 | Timer 2 External Flag <br> Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. <br> When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. <br> Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1). |  |  |  |  |  |
| 5 | RCLK | Receive Clock bit <br> Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3 . |  |  |  |  |  |
| 4 | TCLK | Transmit Clock bit <br> Cleared to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3. |  |  |  |  |  |
| 3 | EXEN2 | Timer 2 External Enable bit <br> Cleared to ignore events on T2EX pin for Timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if Timer 2 is not used to clock the serial port. |  |  |  |  |  |
| 2 | TR2 | Timer 2 Run control bit Cleared to turn off Timer 2. Set to turn on Timer 2. |  |  |  |  |  |
| 1 | C/T2\# | Timer/Counter 2 select bit <br> Cleared for timer operation (input from internal clock system: $\mathrm{F}_{\text {CLK PERIPH }}$ ). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode. |  |  |  |  |  |
| 0 | CP/RL2\# | Timer 2 Capture/Reload bit <br> If RCLK=1 or TCLK=1, CP/RL2\# is ignored and timer is forced to auto-reload on Timer 2 overflow. <br> Cleared to auto-reload on Timer 2 overflows or negative transitions on T2EX pin if $E X E N 2=1$. <br> Set to capture on negative transitions on T2EX pin if EXEN2=1. |  |  |  |  |  |

[^0]Table 26. T2MOD Register
T2MOD - Timer 2 Mode Control Register (C9h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | T2OE | DCEN |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 3 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 2 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 1 | T2OE | Timer 2 Output Enable bit <br> Cleared to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output. |  |  |  |  |  |
| 0 | DCEN | Down Counter Enable bit Cleared to disable Timer 2 as up/down counter. Set to enable Timer 2 as up/down counter. |  |  |  |  |  |

Reset Value $=$ XXXX XX00b
Not bit addressable

## Programmable Counter Array PCA

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals:

- Peripheral clock frequency $\left(F_{\text {CLK PERIPH }}\right) \div 6$
- Peripheral clock frequency $\left(\mathrm{F}_{\text {CLK PERIPH }}\right) \div 2$
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- Rising and/or falling edge capture
- Software timer
- High-speed output
- Pulse width modulator

Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog Timer", page 51).
When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If the port is not used for the PCA, it can still be used for standard I/O.

| PCA component | External I/O Pin |
| :---: | :---: |
| 16-bit Counter | $\mathrm{P} 1.2 / \mathrm{ECl}$ |
| 16-bit Module 0 | $\mathrm{P} 1.3 / \mathrm{CEX0}$ |
| 16-bit Module 1 | $\mathrm{P} 1.4 / \mathrm{CEX} 1$ |
| 16-bit Module 2 | $\mathrm{P} 1.5 / \mathrm{CEX} 2$ |
| 16-bit Module 3 | $\mathrm{P} 1.6 / \mathrm{CEX} 3$ |

The PCA timer is a common time base for all five modules (See Figure 14). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 27) and can be programmed to run at:

- $1 / 6$ the peripheral clock frequency ( $F_{\text {CLK PERIPH }}$ )
- $1 / 2$ the peripheral clock frequency ( $F_{\text {CLK PERIPH }}$ )
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

Figure 14. PCA Timer/Counter


Table 27. CMOD Register
CMOD - PCA Counter Mode Register (D9h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CIDL | WDTE | - | - | - | CPS1 | CPSO | ECF |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | CIDL | Counter Idle Control <br> Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle. |  |  |  |  |  |
| 6 | WDTE | Watchdog Timer Enable <br> Cleared to disable Watchdog Timer function on PCA Module 4. Set to enable Watchdog Timer function on PCA Module 4. |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 3 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 2 | CPS1 | PCA Count Pulse Select |  |  |  |  |  |
| 1 | CPS0 |  |  |  |  |  |  |
| 0 | ECF | PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt. |  |  |  |  |  |

Reset Value $=00 \times X$ X000b
Not bit addressable
The CMOD register includes three additional bits associated with the PCA (See Figure 14 and Table 27).

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 28).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0 , bit 1 for module 1 , etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.
Table 28. CCON Register
CCON - PCA Counter Control Register (D8h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CF | CR | - | CCF4 | CCF3 | CCF2 | CCF1 | CCFO |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | CF | PCA Counter Overflow flag <br> Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF <br> may be set by either hardware or software but can only be cleared by software. |  |  |  |  |  |
| 6 | CR | PCA Counter Run control bit <br> Must be cleared by software to turn the PCA counter off. Set by software to turn the PCA counter on. |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | CCF4 | PCA Module 4 interrupt flag <br> Must be cleared by software. <br> Set by hardware when a match or capture occurs. |  |  |  |  |  |
| 3 | CCF3 | PCA Module 3 interrupt flag <br> Must be cleared by software. <br> Set by hardware when a match or capture occurs. |  |  |  |  |  |
| 2 | CCF2 | PCA Module 2 interrupt flag <br> Must be cleared by software. <br> Set by hardware when a match or capture occurs. |  |  |  |  |  |
| 1 | CCF1 | PCA Module 1 interrupt flag <br> Must be cleared by software. <br> Set by hardware when a match or capture occurs. |  |  |  |  |  |
| 0 | CCFO | PCA Module 0 interrupt flag <br> Must be cleared by software. <br> Set by hardware when a match or capture occurs. |  |  |  |  |  |

Reset Value = 00X0 0000b
Not bit addressable
The watchdog timer function is implemented in module 4 (See Figure 17).
The PCA interrupt system is shown in Figure 15.

Figure 15. PCA Interrupt System


PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered
- 16-bit Capture, negative-edge triggered
- 16-bit Capture, both positive and negative-edge triggered
- 16-bit Software Timer
- 16-bit High Speed Output
- 8-bit Pulse Width Modulator

In addition, module 4 can be used as a Watchdog Timer.
Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 29). The registers contain the bits that control the mode that each module will operate in.

- The ECCF bit (CCAPMn. 0 where $n=0,1,2,3$, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.
- The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.

Table 29 shows the CCAPMn settings for the various PCA functions.

Table 29. CCAPMn Registers ( $\mathrm{n}=0-4$ )
CCAPMO - PCA Module 0 Compare/Capture Control Register (ODAh)
CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh)
CCAPM2 - PCA Module 2 Compare/Capture Control Register (0DCh)
CCAPM3 - PCA Module 3 Compare/Capture Control Register (ODDh)
CCAPM4 - PCA Module 4 Compare/Capture Control Register (ODEh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMn | ECCFn |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | ECOMn | Enable Comparator <br> Cleared to disable the comparator function. <br> Set to enable the comparator function. |  |  |  |  |  |
| 5 | CAPPn | Capture Positive <br> Cleared to disable positive edge capture. Set to enable positive edge capture. |  |  |  |  |  |
| 4 | CAPNn | Capture Negative <br> Cleared to disable negative edge capture. Set to enable negative edge capture. |  |  |  |  |  |
| 3 | MATn | Match <br> When MATn = 1 , a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt. |  |  |  |  |  |
| 2 | TOGn | Toggle <br> When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle. |  |  |  |  |  |
| 1 | PWMn | Pulse Width Modulation Mode <br> Cleared to disable the CEXn pin to be used as a pulse width modulated output. Set to enable the CEXn pin to be used as a pulse width modulated output. |  |  |  |  |  |
| 0 | CCFO | Enable CCF interrupt <br> Cleared to disable compare/capture flag CCFn in the CCON register to generate an interrupt. <br> Set to enable compare/capture flag CCFn in the CCON register to generate an interrupt. |  |  |  |  |  |

Reset Value = X000 0000b
Not bit addressable

Table 30. PCA Module Modes (CCAPMn Registers)

| ECOMn | CAPPn | CAPNn | MATn | TOGn | PWMm | ECCFn | Module Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | No Operation |
| $X$ | 1 | 0 | 0 | 0 | 0 | $X$ | 16 -bit capture by a positive-edge <br> trigger on CEXn |
| $X$ | 0 | 1 | 0 | 0 | 0 | $X$ | 16 -bit capture by a negative trigger <br> on CEXn |
| $X$ | 1 | 1 | 0 | 0 | 0 | $X$ | 16 -bit capture by a transition on <br> CEXn |
| 1 | 0 | 0 | 1 | 0 | 0 | $X$ | 16 -bit Software Timer / Compare <br> mode. |
| 1 | 0 | 0 | 1 | 1 | 0 | $X$ | 16 -bit High Speed Output |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 8-bit PWM |
| 1 | 0 | 0 | 1 | $X$ | 0 | $X$ | Watchdog Timer (module 4 only) |

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 31 \& Table 32).

Table 31. CCAPnH Registers ( $\mathrm{n}=0-4$ )
CCAPOH - PCA Module 0 Compare/Capture Control Register High (0FAh)
CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)
CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)
CCAP3H - PCA Module 3 Compare/Capture Control Register High (OFDh)
CCAP4H - PCA Module 4 Compare/Capture Control Register High (OFEh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7-0 | - | PCA Module n Compare/Capture Control CCAPnH Value |  |  |  |  |  |

Reset Value $=0000$ 0000b
Not bit addressable

Table 32. CCAPnL Registers ( $\mathrm{n}=0-4$ )
CCAPOL - PCA Module 0 Compare/Capture Control Register Low (0EAh)
CCAP1L - PCA Module 1 Compare/Capture Control Register Low (0EBh)
CCAP2L - PCA Module 2 Compare/Capture Control Register Low (0ECh)
CCAP3L - PCA Module 3 Compare/Capture Control Register Low (0EDh)
CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh)

| 7 | 6 | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{1}$ | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| $7-0$ | - | PCA Module n Compare/Capture Control <br> CCAPnL Value |  |  |  |  |  |

Reset Value = 0000 0000b
Not bit addressable

Table 33. CH Register
CH - PCA Counter Register High (0F9h)

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| $7-0$ | - | PCA counter <br> CH Value |  |  |  |  |  |

Reset Value $=0000$ 0000b
Not bit addressable

Table 34. CL Register
CL - PCA Counter Register Low (0E9h)

| 7 | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| $7-0$ | - | PCA Counter <br> CL Value |  |  |  |  |  |

Reset Value = 0000 0000b
Not bit addressable

## PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 16).

Figure 16. PCA Capture Mode


## 16-bit Software TimerI Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 17).

Figure 17. PCA Compare Mode and PCA Watchdog Timer


Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 18).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Figure 18. PCA High Speed Output Mode


Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

## Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 19 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 19. PCA PWM Mode


## PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 17 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16 -bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

1. periodically change the compare value so it will never match the PCA timer,
2. periodically change the PCA timer value so it will never match the compare values, or
3. disable the watchdog by clearing the WDTE bit before a match occurs and then reenable it.

The first two options are more reliable because the watchdog timer is never disabled as in option \#3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.
This watchdog timer won't generate a reset out on the reset pin.

## Serial I/O Port

The serial I/O port in the AT89C51ID2 is compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition


## Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMODO bit in PCON register (See Figure 20).

Figure 20. Framing Error Block Diagram


When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 38.) bit is set.
Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 21. and Figure 22.).

Figure 21. UART Timings in Mode 1


RI

## SMODO

FE
SMODO=1

Figure 22. UART Timings in Modes 2 and 3


## Automatic Address Recognition

## Given Address

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).
Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.
If desired, the user may enable the automatic address recognition feature in mode 1.In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.
To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i. e. setting SM2 bit in SCON register in mode 0 has no effect).

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed. To address a device by its individual address, the SADEN mask byte must be 1111 1111b.
For example:
SADDR0101 0110b
SADEN1111 1100b
Given0101 01XXb
The following is an example of how to use given addresses to address different slaves: Slave A:SADDR1111 0001b

SADEN1111 1010b
Given1111 0X0Xb

Slave B:SADDR1111 0011b
SADEN1111 1001b
Given1111 0XX1b

Slave C:SADDR1111 0010b
SADEN1111 1101b
Given1111 00X1b

## Broadcast Address

## Reset Addresses

The SADEN byte is selected so that each slave may be addressed separately. For slave $A$, bit 0 (the LSB) is a don't-care bit; for slaves $B$ and $C$, bit 0 is a 1.To communicate with slave A only, the master must send an address where bit 0 is clear (e. g. 1111 0000b).
For slave $A$, bit 1 is a 1 ; for slaves $B$ and $C$, bit 1 is a don't care bit. To communicate with slaves $B$ and $C$, but not slave $A$, the master must send an address with bits 0 and 1 both set (e. g. 1111 0011b).
To communicate with slaves $A, B$ and $C$, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e. g. 1111 0001b).

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e. g. :

SADDR0101 0110b
SADEN1111 1100b
Broadcast =SADDR OR SADEN1111 111Xb
The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b
SADEN1111 1010b
Broadcast1111 1X11b,

Slave B:SADDR1111 0011b
SADEN1111 1001b
Broadcast1111 1X11B,

Slave C:SADDR=1111 0011b
SADEN1111 1101b
Broadcast1111 1111b

For slaves $A$ and $B$, bit 2 is a don't care bit; for slave $C$, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves $A$ and $B$, but not slave $C$, the master can send and address FBh.

On reset, the SADDR and SADEN registers are initialized to 00h, i. e. the given and broadcast addresses are XXXX XXXXb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

## Registers

Table 35. SADEN Register
SADEN - Slave Address Mask Register (B9h)


Reset Value $=0000$ 0000b
Not bit addressable

Table 36. SADDR Register
SADDR - Slave Address Register (A9h)


Reset Value $=0000$ 0000b
Not bit addressable

Baud Rate Selection for UART for Mode 1 and 3

The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON registers.

Figure 23. Baud Rate Selection


Table 37. Baud Rate Selection Table UART

| $\begin{gathered} \text { TCLK } \\ \text { (T2CON) } \end{gathered}$ | RCLK <br> (T2CON) | TBCK (BDRCON) | RBCK (BDRCON) | Clock Source UART Tx | Clock Source UART Rx |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | Timer 1 | Timer 1 |
| 1 | 0 | 0 | 0 | Timer 2 | Timer 1 |
| 0 | 1 | 0 | 0 | Timer 1 | Timer 2 |
| 1 | 1 | 0 | 0 | Timer 2 | Timer 2 |
| X | 0 | 1 | 0 | INT_BRG | Timer 1 |
| X | 1 | 1 | 0 | INT_BRG | Timer 2 |
| 0 | X | 0 | 1 | Timer 1 | INT_BRG |
| 1 | X | 0 | 1 | Timer 2 | INT_BRG |
| X | X | 1 | 1 | INT_BRG | INT_BRG |

## Internal Baud Rate Generator (BRG)

When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG overflow depending on the BRL reload value, the value of SPD bit (Speed Mode) in BDRCON register and the value of the SMOD1 bit in PCON register.

Figure 24. Internal Baud Rate


- The baud rate for UART is token by formula:

$$
\begin{aligned}
& \text { Baud_Rate }=\frac{2^{\mathrm{SMOD} 1} \cdot \mathrm{~F}_{\text {PER }}}{6^{(1-\mathrm{SPD})} \cdot 32 \cdot(256-\mathrm{BRL})} \\
& \mathrm{BRL}=256-\frac{2^{\mathrm{SMOD} 1} \cdot \mathrm{~F}_{\text {PER }}}{6^{(1-\mathrm{SPD})} \cdot 32 \cdot \text { Baud_Rate }}
\end{aligned}
$$

Table 38. SCON Register
SCON - Serial Control Register (98h)

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FE/SM0 | SM1 | SM2 | REN | TB8 | RB8 | TI | RI |


| Bit Number | Bit Mnemonic | Description |
| :---: | :---: | :---: |
| 7 | FE | Framing Error bit (SMODO=1) <br> Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. <br> SMODO must be set to enable access to the FE bit. |
|  | SMO | Serial port Mode bit 0 <br> Refer to SM1 for serial port mode selection. <br> SMODO must be cleared to enable access to the SMO bit. |
| 6 | SM1 | Serial port Mode bit 1 |
| 5 | SM2 | Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. <br> Set to enable multiprocessor communication feature in mode 2 and 3 , and eventually mode 1 . This bit should be cleared in mode 0 . |
| 4 | REN | Reception Enable bit Clear to disable serial reception. Set to enable serial reception. |
| 3 | TB8 | Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit. |
| 2 | RB8 | Receiver Bit 8 / Ninth bit received in modes 2 and 3 <br> Cleared by hardware if 9th bit received is a logic 0 . <br> Set by hardware if 9th bit received is a logic 1. <br> In mode 1, if SM2 $=0$, RB8 is the received stop bit. In mode 0 RB8 is not used. |
| 1 | TI | Transmit Interrupt flag <br> Clear to acknowledge interrupt. <br> Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes. |
| 0 | RI | Receive Interrupt flag <br> Clear to acknowledge interrupt. <br> Set by hardware at the end of the 8th bit time in mode 0, see Figure 21. and Figure 22. in the other modes. |

Reset Value $=0000$ 0000b
Bit addressable

Table 39. Example of Computed Value When $\times 2=1, S M O D 1=1, S P D=1$

| Baud Rates | $F_{\text {Osc }}=16 . \mathbf{3 8 4} \mathbf{~ M H z}$ |  | $F_{\text {osc }}=\mathbf{2 4 M H z}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | BRL | Error (\%) | BRL | Error (\%) |
| 115200 | 247 | 1.23 | 243 | 0.16 |
| 57600 | 238 | 1.23 | 230 | 0.16 |
| 38400 | 229 | 1.23 | 217 | 0.16 |
| 28800 | 220 | 1.23 | 204 | 0.16 |
| 19200 | 203 | 0.63 | 178 | 0.16 |
| 9600 | 149 | 0.31 | 100 | 0.16 |
| 4800 | 43 | 1.23 | - | - |

Table 40. Example of Computed Value When $\mathrm{X} 2=0$, SMOD1 $=0$, SPD $=0$

| Baud Rates | $F_{\text {osc }}=16.384 \mathrm{MHz}$ |  | $F_{\text {osc }}=\mathbf{2 4 M H z}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | BRL | Error (\%) | BRL | Error (\%) |
| 4800 | 247 | 1.23 | 243 | 0.16 |
| 2400 | 238 | 1.23 | 230 | 0.16 |
| 1200 | 220 | 1.23 | 202 | 3.55 |
| 600 | 185 | 0.16 | 152 | 0.16 |

The baud rate generator can be used for mode 1 or 3 (refer to Figure 23.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 47.)

Table 41. SADEN Register
SADEN - Slave Address Mask Register for UART (B9h)

| 7 | 6 | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

Reset Value $=0000$ 0000b

Table 42. SADDR Register
SADDR - Slave Address Register for UART (A9h)

| 7 | 6 | 5 | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

Reset Value $=0000$ 0000b

Table 43. SBUF Register
SBUF - Serial Buffer Register for UART (99h)


Reset Value $=$ XXXX XXXXb

Table 44. BRL Register
BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)


Reset Value $=0000$ 0000b

Table 45. T2CON Register
T2CON - Timer 2 Control Register (C8h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TF2 | EXF2 | RCLK | TCLK | EXEN2 | TR2 | C/T2\# | CP/RL2\# |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | TF2 | Timer 2 overflow Flag <br> Must be cleared by software. <br> Set by hardware on timer 2 overflow, if RCLK $=0$ and TCLK $=0$. |  |  |  |  |  |
| 6 | EXF2 | Timer 2 External Flag <br> Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. <br> When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. <br> Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1) |  |  |  |  |  |
| 5 | RCLK | Receive Clock bit for UART <br> Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3. |  |  |  |  |  |
| 4 | TCLK | Transmit Clock bit for UART <br> Cleared to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3. |  |  |  |  |  |
| 3 | EXEN2 | Timer 2 External Enable bit <br> Cleared to ignore events on T2EX pin for timer 2 operation. <br> Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port. |  |  |  |  |  |
| 2 | TR2 | Timer 2 Run control bit Cleared to turn off timer 2. Set to turn on timer 2. |  |  |  |  |  |
| 1 | C/T2\# | Timer/Counter 2 select bit <br> Cleared for timer operation (input from internal clock system: $\mathrm{F}_{\text {CLK PERIPH }}$ ). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode. |  |  |  |  |  |
| 0 | CP/RL2\# | Timer 2 Capture/Reload bit <br> If RCLK=1 or TCLK=1, CP/RL2\# is ignored and timer is forced to auto-reload on timer 2 overflow. <br> Cleared to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. <br> Set to capture on negative transitions on T2EX pin if EXEN2=1. |  |  |  |  |  |

Reset Value = 0000 0000b
Bit addressable

Table 46. PCON Register
PCON - Power Control Register (87h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMOD1 | SMODO | - | POF | GF1 | GFO | PD | IDL |
| $\begin{gathered} \text { Bit } \\ \text { Number } \end{gathered}$ | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | SMOD1 | Serial port Mode bit 1 for UART <br> Set to select double baud rate in mode 1, 2 or 3. |  |  |  |  |  |
| 6 | SMODO | Serial port Mode bit 0 for UART <br> Cleared to select SMO bit in SCON register. <br> Set to select FE bit in SCON register. |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | POF | Power-Off Flag <br> Cleared to recognize next reset type. <br> Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. |  |  |  |  |  |
| 3 | GF1 | General purpose Flag <br> Cleared by user for general purpose usage. <br> Set by user for general purpose usage. |  |  |  |  |  |
| 2 | GFO | General purpose Flag <br> Cleared by user for general purpose usage. <br> Set by user for general purpose usage. |  |  |  |  |  |
| 1 | PD | Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode. |  |  |  |  |  |
| 0 | IDL | Idle mode bit <br> Cleared by hardware when interrupt or reset occurs. Set to enter idle mode. |  |  |  |  |  |

Reset Value $=00 \times 1$ 0000b
Not bit addressable
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 47. BDRCON Register
BDRCON - Baud Rate Control Register (9Bh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | BRR | TBCK | RBCK | SPD | SRC |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit |  |  |  |  |  |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | BRR | Baud Rate Run Control bit <br> Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator. |  |  |  |  |  |
| 3 | TBCK | Transmission Baud rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator. |  |  |  |  |  |
| 2 | RBCK | Reception Baud Rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator. |  |  |  |  |  |
| 1 | SPD | Baud Rate Speed Control bit for UART <br> Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator. |  |  |  |  |  |
| 0 | SRC | Baud Rate Source select bit in Mode 0 for UART <br> Cleared to select $F_{\text {OSC }} / 12$ as the Baud Rate Generator ( $\mathrm{F}_{\mathrm{CLK} \text { PERIPH }} / 6$ in X2 mode). <br> Set to select the internal Baud Rate Generator for UARTs in mode 0. |  |  |  |  |  |

Reset Value $=$ XXX0 0000b
Not bit addressablef

## Interrupt System

The AT89C51ID2 has a total of 10 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 25.

Figure 25. Interrupt Control System


Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 52 and Table 50). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 53) and in the Interrupt Priority High register (Table 51 and Table 52) shows the bit values and priority levels associated with each combination.

## Registers

The PCA interrupt vector is located at address 0033 H , the SPI interrupt vector is located at address 0043H and Keyboard interrupt vector is located at address 004BH. All other vectors addresses are the same as standard C52 devices.

Table 48. Priority Level Bit Values

| IPH. $x$ | IPL. $x$ | Interrupt Level Priority |
| :---: | :---: | :---: |
| 0 | 0 | 0 (Lowest) |
| 0 | 1 | 1 |
| 1 | 0 | 2 |
| 1 | 1 | 3 (Highest) |

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 49. IENO Register
IENO - Interrupt Enable Register (A8h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EA | EC | ET2 | ES | ET1 | EX1 | ETO | EXO |
| Bit <br> Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | EA | Enable All interrupt bit Cleared to disable all interrupts. Set to enable all interrupts. |  |  |  |  |  |
| 6 | EC | PCA interrupt enable bit Cleared to disable. Set to enable. |  |  |  |  |  |
| 5 | ET2 | Timer 2 overflow interrupt Enable bit Cleared to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt. |  |  |  |  |  |
| 4 | ES | Serial port Enable bit <br> Cleared to disable serial port interrupt. Set to enable serial port interrupt. |  |  |  |  |  |
| 3 | ET1 | Timer 1 overflow interrupt Enable bit Cleared to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt. |  |  |  |  |  |
| 2 | EX1 | External interrupt 1 Enable bit Cleared to disable external interrupt 1. Set to enable external interrupt 1. |  |  |  |  |  |
| 1 | ETO | Timer 0 overflow interrupt Enable bit Cleared to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt. |  |  |  |  |  |
| 0 | EXO | External interrupt 0 Enable bit Cleared to disable external interrupt 0. Set to enable external interrupt 0. |  |  |  |  |  |

Reset Value $=0000$ 0000b
Bit addressable

Table 50. IPLO Register
IPLO - Interrupt Priority Register (B8h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | PPCL | PT2L | PSL | PT1L | PX1L | PTOL | PXOL |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | PPCL | PCA interrupt Priority bit Refer to PPCH for priority level. |  |  |  |  |  |
| 5 | PT2L | Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level. |  |  |  |  |  |
| 4 | PSL | Serial port Priority bit <br> Refer to PSH for priority level. |  |  |  |  |  |
| 3 | PT1L | Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level. |  |  |  |  |  |
| 2 | PX1L | External interrupt 1 Priority bit Refer to PX1H for priority level. |  |  |  |  |  |
| 1 | PTOL | Timer 0 overflow interrupt Priority bit Refer to PTOH for priority level. |  |  |  |  |  |
| 0 | PXOL | External interrupt 0 Priority bit Refer to PXOH for priority level. |  |  |  |  |  |

Reset Value = X000 0000b
Bit addressable

Table 51. IPHO Register
IPHO - Interrupt Priority High Register (B7h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | PPCH | PT2H | PSH | PT1H | PX1H | PTOH | PXOH |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | PPCH | PCA interrupt Priority high bit. PPCHPPCLPriority Level <br> 0 OLowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 5 | PT2H | Timer 2 overflow interrupt Priority High bit PT2HPT2LPriority Level <br> 0 OLowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 4 | PSH | Serial port Priority High bit PSH PSLPriority Level <br> 0 OLowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 3 | PT1H | Timer 1 overflow interrupt Priority High bit PT1HPT1L Priority Level <br> 0 0 Lowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 2 | PX1H | External interrupt 1 Priority High bit PX1HPX1LPriority Level <br> 0 OLowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 1 | PTOH | Timer 0 overflow interrupt Priority High bit PTOHPTOLPriority Level <br> 0 OLowest <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |
| 0 | PXOH | External interrupt 0 Priority High bit PXOH PXOLPriority Level <br> 01 <br> 10 <br> 1 1Highest |  |  |  |  |  |

Reset Value $=$ X000 0000b
Not bit addressable

Table 52. IEN1 Register
IEN1 - Interrupt Enable Register (B1h)


Reset Value $=$ XXXX X000b
Bit addressable

Table 53. IPL1 Register
IPL1 - Interrupt Priority Register (B2h)
Table 54.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | SPIL | TWIL | KBDL |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |$|$| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| :--- | :---: | :--- |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 4 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 3 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 2 | SPIL | SPI interrupt Priority bit <br> Refer to SPIH for priority level. |
| 1 | TWIL | TWI interrupt Priority bit <br> Refer to TWIH for priority level. |
| 0 | KBDL | Keyboard interrupt Priority bit <br> Refer to KBDH for priority level. |

Reset Value $=$ XXXX X000b
Bit addressable

Table 55. IPH1 Register
IPH1 - Interrupt Priority High Register (B3h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - |  |  | SPIH | TWIH | KBDH |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 4 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 3 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 2 | SPIH | SPI interrupt Priority High bit  <br> $\frac{\text { SPIH }}{}$ SPILPriority Level <br> 0 0 OLowest <br> 0 1 <br> 1 0 <br> 1 1Highest |  |  |  |  |  |
| 1 | TWIH | TWI interrupt Priority High bit  <br> TWIH TWILPriority Level <br> 0 OLowest <br> 0 1 <br> 1 0 <br> 1 1Highest |  |  |  |  |  |
| 0 | KBDH | Keyboard interrupt Priority High bit <br> KB DH $\frac{\text { KBDLPriority Level }}{0}$ <br> 0 0 Lowest <br> 0 1 <br> 1 0 <br> 1 1 Highest |  |  |  |  |  |

Reset Value = XXXX X000b
Not bit addressable

Interrupt Sources and Vector Addresses

Table 56. Interrupt Sources and Vector Addresses

| Number | Polling Priority | Interrupt Source | Interrupt Request | Vector <br> Address |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Reset |  | 0000h |
| 1 | 1 | INTO | IEO | 0003h |
| 2 | 2 | Timer 0 | TFO | 000Bh |
| 3 | 3 | INT1 | IE1 | 0013h |
| 4 | 4 | Timer 1 | IF1 | 001Bh |
| 5 | 6 | UART | $\mathrm{RI}+\mathrm{TI}$ | 0023h |
| 6 | 7 | Timer 2 | TF2+EXF2 | 002Bh |
| 7 | 5 | PCA | CF + CCFn ( $\mathrm{n}=0-4$ ) | 0033h |
| 8 | 8 | Keyboard | KBDIT | 003Bh |
| 9 | 9 | TWI | TWIIT | 0043h |
| 9 | 9 | SPI | SPIIT | 004Bh |

## Power Management

Introduction

## Idle Mode

## Entering Idle Mode

## Exiting Idle Mode

Two power reduction modes are implemented in the AT89C51ID2. The Idle mode and the Power-Down mode. These modes are detailed in the following sections. In addition to these power reduction modes, the clocks of the core and peripherals can be dynamically divided by 2 using the X2 mode detailed in Section "Enhanced Features", page 21.

Idle mode is a power reduction mode that reduces the power consumption. In this mode, program execution halts. Idle mode freezes the clock to the CPU at known states while the peripherals continue to be clocked. The CPU status before entering Idle mode is preserved, i.e., the program counter and program status word register retain their data for the duration of Idle mode. The contents of the SFRs and RAM are also retained. The status of the Port pins during Idle mode is detailed in Table 57.

To enter Idle mode, set the IDL bit in PCON register (see Table 58). The AT89C51ID2 enters Idle mode upon execution of the instruction that sets IDL bit. The instruction that sets IDL bit is the last instruction executed.

Note: If IDL bit and PD bit are set simultaneously, the AT89C51ID2 enters Power-Down mode. Then it does not go in Idle mode when exiting Power-Down mode.

There are two ways to exit Idle mode:

1. Generate an enabled interrupt.

- Hardware clears IDL bit in PCON register which restores the clock to the CPU. Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Idle mode. The general purpose flags (GF1 and GF0 in PCON register) may be used to indicate whether an interrupt occurred during normal operation or during Idle mode. When Idle mode is exited by an interrupt, the interrupt service routine may examine GF1 and GF0.

2. Generate a reset.

- A logic high on the RST pin clears IDL bit in PCON register directly and asynchronously. This restores the clock to the CPU. Program execution momentarily resumes with the instruction immediately following the instruction that activated the Idle mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT89C51ID2 and vectors the CPU to address C:0000h.

Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated Idle mode should not write to a Port pin or to the external RAM.

The Power-Down mode places the AT89C51ID2 in a very low power state. Power-Down mode stops the oscillator, freezes all clock at known states. The CPU status prior to entering Power-Down mode is preserved, i.e., the program counter, program status word register retain their data for the duration of Power-Down mode. In addition, the SFR

## Power-Down Mode

and RAM contents are preserved. The status of the Port pins during Power-Down mode is detailed in Table 57.
Note: VCC may be reduced to as low as $\mathrm{V}_{\text {RET }}$ during Power-Down mode to further reduce power dissipation. Take care, however, that VDD is not reduced until Power-Down mode is invoked.

## Entering Power-Down Mode

To enter Power-Down mode, set PD bit in PCON register. The AT89C51ID2 enters the Power-Down mode upon execution of the instruction that sets PD bit. The instruction that sets PD bit is the last instruction executed.

## Exiting Power-Down Mode

Note: If VCC was reduced during the Power-Down mode, do not exit Power-Down mode until VCC is restored to the normal operating level.

There are two ways to exit the Power-Down mode:

1. Generate an enabled external interrupt.

- The AT89C51ID2 provides capability to exit from Power-Down using INTO\#, INT1\#.
Hardware clears PD bit in PCON register which starts the oscillator and restores the clocks to the CPU and peripherals. Using INTx\# input, execution resumes when the input is released (see Figure 26). Execution resumes with the interrupt service routine. Upon completion of the interrupt service routine, program execution resumes with the instruction immediately following the instruction that activated Power-Down mode.

Note: The external interrupt used to exit Power-Down mode must be configured as level sensitive (INTO\# and INT1\#) and must be assigned the highest priority. In addition, the duration of the interrupt must be long enough to allow the oscillator to stabilize. The execution will only resume when the interrupt is deasserted.
Note: Exit from power-down by external interrupt does not affect the SFRs nor the internal RAM content.

Figure 26. Power-Down Exit Waveform Using INT1:0\#

2. Generate a reset.

- A logic high on the RST pin clears PD bit in PCON register directly and asynchronously. This starts the oscillator and restores the clock to the CPU and peripherals. Program execution momentarily resumes with the instruction immediately following the instruction that activated Power-Down mode and may continue for a number of clock cycles before the internal reset algorithm takes control. Reset initializes the AT89C51ID2 and vectors the CPU to address 0000h.

Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port

## AT89C51ID2

pins, the instruction immediately following the instruction that activated the Power-Down mode should not write to a Port pin or to the external RAM.
Note: Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Table 57. Pin Conditions in Special Operating Modes

| Mode | Port 0 | Port 1 | Port 2 | Port 3 | Port 4 | ALE | PSEN\# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reset | Floating | High | High | High | High | High | High |
| Idle <br> (internal <br> code) | Data | Data | Data | Data | Data | High | High |
| Idle <br> (external <br> code) | Floating | Data | Data | Data | Data | High | High |
| Power- <br> Down(inter <br> nal code) | Data | Data | Data | Data | Data | Low | Low |
| Power- <br> Down <br> (external <br> code) | Floating | Data | Data | Data | Data | Low | Low |

## Registers

Table 58. PCON Register
PCON (S87:h) Power configuration Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | POF | GF1 | GF0 | PD | IDL |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7-5 | - | Reserved <br> The value read from these bits is indeterminate. Do not set these bits. |  |  |  |  |  |
| 4 | POF | Power-Off Flag <br> Cleared to recognize next reset type. <br> Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. |  |  |  |  |  |
| 3 | GF1 | General Purpose flag 1 <br> One use is to indicate whether an interrupt occurred during normal operation or during Idle mode. |  |  |  |  |  |
| 2 | GF0 | General Purpose flag 0 <br> One use is to indicate whether an interrupt occurred during normal operation or during Idle mode. |  |  |  |  |  |
| 1 | PD | Power-Down Mode bit <br> Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence. |  |  |  |  |  |
| 0 | IDL | Idle Mode bit <br> Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. If IDL and PD are both set, PD takes precedence. |  |  |  |  |  |

Reset Value $=$ XXXX 0000b

## Keyboard Interface

## Interrupt

The AT89C51ID2 implements a keyboard interface allowing the connection of a $8 \times n$ matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1 and allow to exit from idle and power down modes.

The keyboard interface interfaces with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 61), KBE, The Keyboard interrupt Enable register (Table 60), and KBF, the Keyboard Flag register (Table 59).

The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard interrupt (see Figure 27). As detailed in Figure 28 each keyboard input has the capability to detect a programmable level according to KBLS. x bit value. Level detection is then reported in interrupt flags KBF. $x$ that can be masked by software using KBE. $x$ bits.
This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allow usage of P1 inputs for other purpose.

Figure 27. Keyboard Interface Block Diagram


Figure 28. Keyboard Input Circuitry


P1 inputs allow exit from idle and power down modes as detailed in Section "Power Management", page 72.

## Power Reduction Mode

## Registers

Table 59. KBF Register
KBF-Keyboard Flag Register (9Eh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KBF7 | KBF6 | KBF5 | KBF4 | KBF3 | KBF2 | KBF1 | KBFO |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | KBF7 | Keyboard line 7 flag <br> Set by hardware when the Port line 7 detects a programmed level. It generates a Keyboard interrupt request if the KBKBIE. 7 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 6 | KBF6 | Keyboard line 6 flag <br> Set by hardware when the Port line 6 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 6 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 5 | KBF5 | Keyboard line 5 flag <br> Set by hardware when the Port line 5 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 5 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 4 | KBF4 | Keyboard line 4 flag <br> Set by hardware when the Port line 4 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 4 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 3 | KBF3 | Keyboard line 3 flag <br> Set by hardware when the Port line 3 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 3 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 2 | KBF2 | Keyboard line 2 flag <br> Set by hardware when the Port line 2 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 2 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 1 | KBF1 | Keyboard line 1 flag <br> Set by hardware when the Port line 1 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 1 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |
| 0 | KBFO | Keyboard line 0 flag <br> Set by hardware when the Port line 0 detects a programmed level. It generates a Keyboard interrupt request if the KBIE. 0 bit in KBIE register is set. Must be cleared by software. |  |  |  |  |  |

## Reset Value= 0000 0000b

This register is read only access, all flags are automatically cleared by reading the register.

Table 60. KBE Register
KBE-Keyboard Input Enable Register (9Dh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KBE7 | KBE6 | KBE5 | KBE4 | KBE3 | KBE2 | KBE1 | KBEO |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | KBE7 | Keyboard line 7 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 7 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 6 | KBE6 | Keyboard line 6 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 6 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 5 | KBE5 | Keyboard line 5 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 5 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 4 | KBE4 | Keyboard line 4 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 4 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 3 | KBE3 | Keyboard line 3 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 3 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 2 | KBE2 | Keyboard line 2 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 2 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 1 | KBE1 | Keyboard line 1 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 1 bit in KBF register to generate an interrupt request. |  |  |  |  |  |
| 0 | KBEO | Keyboard line 0 Enable bit <br> Cleared to enable standard I/O pin. <br> Set to enable KBF. 0 bit in KBF register to generate an interrupt request. |  |  |  |  |  |

Reset Value $=0000$ 0000b

Table 61. KBLS Register
KBLS-Keyboard Level Selector Register (9Ch)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KBLS7 | KBLS6 | KBLS5 | KBLS4 | KBLS3 | KBLS2 | KBLS1 | KBLSO |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | KBLS7 | Keyboard line 7 Level Selection bit Cleared to enable a low level detection on Port line 7. Set to enable a high level detection on Port line 7. |  |  |  |  |  |
| 6 | KBLS6 | Keyboard line 6 Level Selection bit <br> Cleared to enable a low level detection on Port line 6. Set to enable a high level detection on Port line 6. |  |  |  |  |  |
| 5 | KBLS5 | Keyboard line 5 Level Selection bit <br> Cleared to enable a low level detection on Port line 5. Set to enable a high level detection on Port line 5. |  |  |  |  |  |
| 4 | KBLS4 | Keyboard line 4 Level Selection bit <br> Cleared to enable a low level detection on Port line 4. Set to enable a high level detection on Port line 4. |  |  |  |  |  |
| 3 | KBLS3 | Keyboard line 3 Level Selection bit <br> Cleared to enable a low level detection on Port line 3. Set to enable a high level detection on Port line 3. |  |  |  |  |  |
| 2 | KBLS2 | Keyboard line 2 Level Selection bit <br> Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2. |  |  |  |  |  |
| 1 | KBLS1 | Keyboard line 1 Level Selection bit <br> Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1. |  |  |  |  |  |
| 0 | KBLS0 | Keyboard line 0 Level Selection bit <br> Cleared to enable a low level detection on Port line 0. Set to enable a high level detection on Port line 0. |  |  |  |  |  |

Reset Value $=0000$ 0000b

2-wire Interface (TWI) This section describes the 2-wire interface. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to $400 \mathrm{Kbit} / \mathrm{s}$ in standard mode. Various communication configuration can be designed using this bus. Figure 29 shows a typical 2 -wire bus configuration. All the devices connected to the bus can be master and slave.

Figure 29. 2-wire Bus Configuration


Figure 30. Block Diagram


## Description

The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the Synchronous Serial Control register (SSCON; Table 71), the Synchronous Serial Data register (SSDAT; Table 72), the Synchronous Serial Control and Status register (SSCS; Table 73) and the Synchronous Serial Address register (SSADR Table 76).

SSCON is used to enable the TWI interface, to program the bit rate (see Table 64), to enable slave modes, to acknowledge or not a received data, to send a START or a STOP condition on the 2 -wire bus, and to acknowledge a serial interrupt. A hardware reset disables the TWI module.

SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. to Table 70. give the status for the master modes and miscellaneous states.

SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when 2 -wire logic is in a defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as $S I$ is set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always contains the last byte present on the bus.

SSADR may be loaded with the 7 -bit slave address (7 most significant bits) to which the TWI module will respond when programmed as a slave transmitter or receiver. The LSB is used to enable general call address (00h) recognition.

Figure 31 shows how a data transfer is accomplished on the 2-wire bus.
Figure 31. Complete Data Transfer on 2-wire Bus


The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave transmitter
- Slave receiver

Data transfer in each mode of operation is shown in Table to Table 70 and Figure 32. to Figure 35.. These figures contain the following abbreviations:

S: START condition
R : Read bit (high level at SDA)


W: Write bit (low level at SDA)
A: Acknowledge bit (low level at SDA)
$\overline{\mathrm{A}}$ : Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

## P : STOP condition

In Figure 32 to Figure 35, circles are used to indicate when the serial interrupt flag is set. The numbers in the circles show the status code held in SSCS. At these points, a service routine must be executed to continue or complete the serial transfer. These service routines are not critical since the serial transfer is suspended until the serial interrupt flag is cleared by software.

When the serial interrupt routine is entered, the status code in SSCS is used to branch to the appropriate service routine. For each status code, the required software action and details of the following serial transfer are given in Table to Table 70.

In the master transmitter mode, a number of data bytes are transmitted to a slave receiver (Figure 32). Before the master transmitter mode can be entered, SSCON must be initialised as follows:

Table 62. SSCON Initialization

| CR2 | SSIE | STA | STO | SI | AA | CR1 | CR0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bit rate | 1 | 0 | 0 | 0 | $X$ | bit rate | bit rate |

CR0, CR1 and CR2 define the internal serial bit rate if external bit rate generator is not used. SSIE must be set to enable TWI. STA, STO and SI must be cleared.

The master transmitter mode may now be entered by setting the STA bit. The 2-wire logic will now test the 2-wire bus and generate a START condition as soon as the bus becomes free. When a START condition is transmitted, the serial interrupt flag (SI bit in SSCON) is set, and the status code in SSCS will be 08h. This status must be used to vector to an interrupt routine that loads SSDAT with the slave address and the data direction bit (SLA+W).

When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, SI is set again and a number of status code in SSCS are possible. There are $18 \mathrm{~h}, 20 \mathrm{~h}$ or 38 h for the master mode and also $68 \mathrm{~h}, 78 \mathrm{~h}$ or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table. This scheme is repeated until a STOP condition is transmitted.

SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master receiver mode by loading SSDAT with SLA+R.

In the master receiver mode, a number of data bytes are received from a slave transmitter (Figure 33). The transfer is initialized as in the master transmitter mode. When the START condition has been transmitted, the interrupt routine must load SSDAT with the 7-bit slave address and the data direction bit (SLA+R). The serial interrupt flag SI must then be cleared before the serial transfer can continue.

## Slave Receiver Mode

When the slave address and the direction bit have been transmitted and an acknowledgement bit has been received, the serial interrupt flag is set again and a number of status code in SSCS are possible. There are $40 \mathrm{~h}, 48 \mathrm{~h}$ or 38 h for the master mode and also $68 \mathrm{~h}, 78 \mathrm{~h}$ or B0h if the slave mode was enabled (AA=logic 1). The appropriate action to be taken for each of these status code is detailed in Table. This scheme is repeated until a STOP condition is transmitted.

SSIE, CR2, CR1 and CR0 are not affected by the serial transfer and are referred to Table 7 to Table 11. After a repeated START condition (state 10h) the TWI module may switch to the master transmitter mode by loading SSDAT with SLA+W.

In the slave receiver mode, a number of data bytes are received from a master transmitter (Figure 34). To initiate the slave receiver mode, SSADR and SSCON must be loaded as follows:

Table 63. SSADR: Slave Receiver Mode Initialization

| A6 | A5 | A4 | A3 | A2 | A1 | A0 | GC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| own slave address |  |  |  |  |  |  |  |

The upper 7 bits are the address to which the TWI module will respond when addressed by a master. If the LSB (GC) is set the TWI module will respond to the general call address (00h); otherwise it ignores the general call address.

Table 64. SSCON: Slave Receiver Mode Initialization

| CR2 | SSIE | STA | STO | SI | AA | CR1 | CR0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bit rate | 1 | 0 | 0 | 0 | 1 | bit rate | bit rate |

CR0, CR1 and CR2 have no effect in the slave mode. SSIE must be set to enable the TWI. The AA bit must be set to enable the own slave address or the general call address acknowledgement. STA, STO and SI must be cleared.

When SSADR and SSCON have been initialised, the TWI module waits until it is addressed by its own slave address followed by the data direction bit which must be at logic $0(\mathrm{~W})$ for the TWI to operate in the slave receiver mode. After its own slave address and the W bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine. The appropriate action to be taken for each of these status code is detailed in Table. The slave receiver mode may also be entered if arbitration is lost while TWI is in the master mode (states 68h and 78h).

If the AA bit is reset during a transfer, TWI module will return a not acknowledge (logic 1) to SDA after the next received data byte. While AA is reset, the TWI module does not respond to its own slave address. However, the 2 -wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate the module from the 2-wire bus.

In the slave transmitter mode, a number of data bytes are transmitted to a master receiver (Figure 35). Data transfer is initialized as in the slave receiver mode. When SSADR and SSCON have been initialized, the TWI module waits until it is addressed by

its own slave address followed by the data direction bit which must be at logic $1(\mathrm{R})$ for TWI to operate in the slave transmitter mode. After its own slave address and the R bit have been received, the serial interrupt flag is set and a valid status code can be read from SSCS. This status code is used to vector to an interrupt service routine. The appropriate action to be taken for each of these status code is detailed in Table. The slave transmitter mode may also be entered if arbitration is lost while the TWI module is in the master mode.

If the AA bit is reset during a transfer, the TWI module will transmit the last byte of the transfer and enter state COh or C8h. the TWI module is switched to the not addressed slave mode and will ignore the master receiver if it continues the transfer. Thus the master receiver receives all 1's as serial data. While AA is reset, the TWI module does not respond to its own slave address. However, the 2 -wire bus is still monitored and address recognition may be resume at any time by setting AA. This means that the AA bit may be used to temporarily isolate the TWI module from the 2-wire bus.

There are two SSCS codes that do not correspond to a define TWI hardware state (Table 70 ). These codes are discuss hereafter.

Status F8h indicates that no relevant information is available because the serial interrupt flag is not set yet. This occurs between other states and when the TWI module is not involved in a serial transfer.
Status 00h indicates that a bus error has occurred during a TWI serial transfer. A bus error is caused when a START or a STOP condition occurs at an illegal position in the format frame. Examples of such illegal positions happen during the serial transfer of an address byte, a data byte, or an acknowledge bit. When a bus error occurs, SI is set. To recover from a bus error, the STO flag must be set and SI must be cleared. This causes the TWI module to enter the not addressed slave mode and to clear the STO flag (no other bits in SSCON are affected). The SDA and SCL lines are released and no STOP condition is transmitted.

Notes
the TWI module interfaces to the external 2-wire bus via two port pins: SCL (serial clock line) and SDA (serial data line). To avoid low level asserting on these lines when the TWI module is enabled, the output latches of SDA and SLC must be set to logic 1.

Table 65. Bit Frequency Configuration

|  |  |  | Bit Frequency ( kHz ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CR2 | CR1 | CR0 | $\mathrm{F}_{\text {OSCA }}=12 \mathrm{MHz}$ | $\mathrm{F}_{\text {OSCA }}=16 \mathrm{MHz}$ | $F_{\text {OscA }}$ divided by |
| 0 | 0 | 0 | 47 | 62.5 | 256 |
| 0 | 0 | 1 | 53.5 | 71.5 | 224 |
| 0 | 1 | 0 | 62.5 | 83 | 192 |
| 0 | 1 | 1 | 75 | 100 | 160 |
| 1 | 0 | 0 | - | - | Unused |
| 1 | 0 | 1 | 100 | 133.3 | 120 |
| 1 | 1 | 0 | 200 | 266.6 | 60 |
| 1 | 1 | 1 | $0.5<62.5$ | 0.67 <. < 83 | $96 \cdot$ (256 - reload valueTimer 1) (reload value range: 0-254 in mode 2) |

Figure 32. Format and State in the Master Transmitter Mode

$\square$ From master to slave

From slave to master

## Data <br> 

n

Any number of data bytes and their associated acknowledge bits
This number (contained in SSCS) corresponds to a defined state of the 2-wire bus

Table 66. Status in Master Transmitter Mode

| Status <br> Code <br> SSSTA | Status of the Twowire Bus and Twowire Hardware | Application software response |  |  |  |  | Next Action Taken by Two-wire Hardware |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | To SSCON |  |  |  |  |
|  |  | To/From SSDAT | SSSTA | SSSTO | SSI | SSAA |  |
| 08h | A START condition has been transmitted | Write SLA+W | X | 0 | 0 | X | SLA+W will be transmitted. |
| 10h | A repeated START condition has been transmitted | Write SLA+W <br> Write SLA+R | X $x$ | 0 <br> 0 | 0 0 | $\begin{aligned} & x \\ & x \end{aligned}$ | SLA+W will be transmitted. <br> SLA+R will be transmitted. <br> Logic will switch to master receiver mode |
| 18h | SLA+W has been transmitted; ACK has been received | Write data byte No SSDAT action No SSDAT action No SSDAT action | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & X \\ & X \\ & X \\ & X \\ & X \end{aligned}$ | Data byte will be transmitted. <br> Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |
| 20h | SLA+W has been transmitted; NOT ACK has been received | Write data byte No SSDAT action No SSDAT action No SSDAT action | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & X \\ & X \\ & X \\ & X \\ & X \end{aligned}$ | Data byte will be transmitted. <br> Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |
| 28h | Data byte has been transmitted; ACK has been received | Write data byte No SSDAT action No SSDAT action No SSDAT action | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$ | Data byte will be transmitted. <br> Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |
| 30h | Data byte has been transmitted; NOT ACK has been received | Write data byte No SSDAT action No SSDAT action No SSDAT action | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$ | Data byte will be transmitted. <br> Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |
| 38h | Arbitration lost in SLA+W or data bytes | No SSDAT action <br> No SSDAT action | 0 1 | 0 0 | 0 0 | $X$ $X$ | Two-wire bus will be released and not addressed slave mode will be entered. <br> A START condition will be transmitted when the bus becomes free. |

Figure 33. Format and State in the Master Receiver Mode



From master to slave
$\square$ From slave to master


Any number of data bytes and their associated acknowledge bits
This number (contained in SSCS) corresponds to a defined state of the 2-wire bus

Table 67. Status in Master Receiver Mode

| Status <br> Code SSSTA | Status of the Twowire Bus and Twowire Hardware | Application software response |  |  |  |  | Next Action Taken by Two-wire Hardware |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | To/From SSDAT | To SSCON |  |  |  |  |
|  |  |  | SSSTA | SSSTO | SSI | SSAA |  |
| 08h | A START condition has been transmitted | Write SLA+R | X | 0 | 0 | X | SLA+R will be transmitted. |
| 10h | A repeated START condition has been transmitted | Write SLA+R <br> Write SLA+W | X $x$ | 0 <br> 0 | 0 0 | X $x$ | SLA+R will be transmitted. <br> SLA+W will be transmitted. <br> Logic will switch to master transmitter mode. |
| 38h | Arbitration lost in SLA+R or NOT ACK bit | No SSDAT action <br> No SSDAT action | 0 <br> 1 | 0 <br> 0 | 0 0 | $X$ $X$ | Two-wire bus will be released and not addressed slave mode will be entered. <br> A START condition will be transmitted when the bus becomes free. |
| 40h | SLA+R has been transmitted; ACK has been received | No SSDAT action <br> No SSDAT action | $0$ <br> 0 | $0$ $0$ | $0$ <br> 0 | $0$ $1$ | Data byte will be received and NOT ACK will be returned. <br> Data byte will be received and ACK will be returned. |
| 48h | SLA+R has been transmitted; NOT ACK has been received | No SSDAT action No SSDAT action <br> No SSDAT action | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & X \\ & X \\ & X \end{aligned}$ | Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |
| 50h | Data byte has been received; ACK has been returned | Read data byte <br> Read data byte | $0$ <br> 0 | $0$ <br> 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned. <br> Data byte will be received and ACK will be returned. |
| 58h | Data byte has been received; NOT ACK has been returned | Read data byte <br> Read data byte <br> Read data byte | $\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | Repeated START will be transmitted. <br> STOP condition will be transmitted and SSSTO flag will be reset. <br> STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset. |

Figure 34. Format and State in the Slave Receiver Mode

$\square$ From master to slave
$\square$ From slave to master


Any number of data bytes and their associated acknowledge bits
This number (contained in SSCS) corresponds to a defined state of the 2-wire bus

Table 68. Status in Slave Receiver Mode

| Status <br> Code <br> (SSCS) | Status of the 2-wire bus and 2-wire hardware | Application Software Response |  |  |  |  | Next Action Taken By 2-wire Software |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tolfrom SSDAT | To SSCON |  |  |  |  |
|  |  |  | STA | STO | SI | AA |  |
| 60h | Own SLA+W has been received; ACK has been returned | No SSDAT action or No SSDAT action | x X | 0 <br> 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |
| 68h | Arbitration lost in SLA+R/W as master; own SLA+W has been received; ACK has been returned | No SSDAT action or <br> No SSDAT action | X X | 0 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |
| 70h | General call address has been received; ACK has been returned | No SSDAT action or <br> No SSDAT action | X $x$ | 0 <br> 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |
| 78h | Arbitration lost in SLA+R/W as master; general call address has been received; ACK has been returned | No SSDAT action or <br> No SSDAT action | X $\times$ | 0 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |
| 80h | Previously addressed with own SLA+W; data has been received; ACK has been returned | No SSDAT action or <br> No SSDAT action | X X | 0 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |
| 88h | Previously addressed with own SLA+W; data has been received; NOT ACK has been returned | Read data byte or <br> Read data byte or <br> Read data byte or <br> Read data byte | 0 <br> 0 <br> 1 <br> 1 | 0 <br> 0 <br> 0 <br> 0 | 0 0 0 0 | 0 1 0 | Switched to the not addressed slave mode; no recognition of own SLA or GCA <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1 <br> Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free |
| 90h | Previously addressed with general call; data has been received; ACK has been returned | Read data byte or <br> Read data byte | X $\times$ | 0 0 | 0 0 | 0 1 | Data byte will be received and NOT ACK will be returned <br> Data byte will be received and ACK will be returned |

Table 68. Status in Slave Receiver Mode (Continued)

| Status Code (SSCS) | Status of the 2-wire bus and 2-wire hardware | Application Software Response |  |  |  |  | Next Action Taken By 2-wire Software |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tolfrom SSDAT | To SSCON |  |  |  |  |
|  |  |  | STA | STO | SI | AA |  |
| 98h | Previously addressed with general call; data has been received; NOT ACK has been returned | Read data byte or <br> Read data byte or <br> Read data byte or <br> Read data byte | 1 <br> 1 | 0 <br> 0 <br> 0 <br> 0 | 0 0 0 0 | 0 1 0 | Switched to the not addressed slave mode; no recognition of own SLA or GCA <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1 <br> Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free |
| AOh | A STOP condition or repeated START condition has been received while still addressed as slave | No SSDAT action or <br> No SSDAT action or <br> No SSDAT action or <br> No SSDAT action | 0 <br> 0 <br> 1 <br> 1 | 0 0 0 0 | 0 0 0 0 | 0 1 0 | Switched to the not addressed slave mode; no recognition of own SLA or GCA <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1 <br> Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free <br> Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free |

Figure 35. Format and State in the Slave Transmitter Mode


$\square$ From slave to master


Any number of data bytes and their associated acknowledge bits
This number (contained in SSCS) corresponds to a defined state of the 2-wire bus

Table 69. Status in Slave Transmitter Mode

| $\begin{aligned} & \text { Status } \\ & \text { Code } \\ & \text { (SSCS) } \end{aligned}$ | Status of the 2-wire bus and 2-wire hardware | Application Software Response |  |  |  |  | Next Action Taken By 2-wire Software |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tolfrom SSDAT | To SSCON |  |  |  |  |
|  |  |  | STA | STO | SI | AA |  |
| A8h | Own SLA+R has been received; ACK has been returned | Load data byte or <br> Load data byte | X X | 0 <br> 0 | 0 0 | 0 1 | Last data byte will be transmitted and NOT ACK will be received <br> Data byte will be transmitted and ACK will be received |
| B0h | Arbitration lost in SLA+R/W as master; own SLA+R has been received; ACK has been returned | Load data byte or <br> Load data byte | $X$ $X$ | 0 0 | 0 0 | 0 1 | Last data byte will be transmitted and NOT ACK will be received <br> Data byte will be transmitted and ACK will be received |
| B8h | Data byte in SSDAT has been transmitted; NOT ACK has been received | Load data byte or Load data byte | $X$ $X$ | 0 0 | 0 0 | 0 1 | Last data byte will be transmitted and NOT ACK will be received <br> Data byte will be transmitted and ACK will be received |

Table 69. Status in Slave Transmitter Mode (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
\& \text { Status } \\
\& \text { Code } \\
\& \text { (SSCS) }
\end{aligned}
\]} \& \multirow[b]{3}{*}{Status of the 2-wire bus and 2-wire hardware} \& \multicolumn{5}{|l|}{Application Software Response} \& \multirow[b]{3}{*}{Next Action Taken By 2-wire Software} \\
\hline \& \& \multirow[t]{2}{*}{Tolfrom SSDAT} \& \multicolumn{4}{|c|}{To SSCON} \& \\
\hline \& \& \& STA \& STO \& SI \& AA \& \\
\hline COh \& Data byte in SSDAT has been transmitted; NOT ACK has been received \& No SSDAT action or No SSDAT action or No SSDAT action or No SSDAT action \& \begin{tabular}{l}
0
0 \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
0 \\
0
\end{tabular} \& 0
0
0 \& 0
1
0

1 \& | Switched to the not addressed slave mode; no recognition of own SLA or GCA |
| :--- |
| Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1 |
| Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free |
| Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free | <br>

\hline C8h \& Last data byte in SSDAT has been transmitted (AA=0); ACK has been received \& No SSDAT action or No SSDAT action or No SSDAT action or No SSDAT action \& | 1 |
| :--- |
| 1 | \& 0

0
0 \& 0
0
0 \& 0

1 \& | Switched to the not addressed slave mode; no recognition of own SLA or GCA |
| :--- |
| Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1 |
| Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free |
| Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free | <br>

\hline
\end{tabular}

Table 70. Miscellaneous Status

| Status Code (SSCS) | Status of the 2-wire bus and 2-wire hardware | Application Software Response |  |  |  |  | Next Action Taken By 2-wire Software |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | To/from SSDAT | To SSCON |  |  |  |  |
|  |  |  | STA | STO | SI | AA |  |
| F8h | No relevant state information available; $\mathrm{SI}=0$ | No SSDAT action |  | SSCO | Nact |  | Wait or proceed current transfer |
| 00h | Bus error due to an illegal START or STOP condition | No SSDAT action | 0 | 1 | 0 | X | Only the internal hardware is affected, no STOP condition is sent on the bus. In all cases, the bus is released and STO is reset. |

## Registers

Table 71. SSCON Register
SSCON - Synchronous Serial Control register (93h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CR2 | SSIE | STA | STO | SI | AA | CR1 | CRO |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7 | CR2 | Control Rate bit 2 See Table 65. |  |  |  |  |  |
| 6 | SSIE | Synchronous Serial Interface Enable bit Clear to disable the TWI module. <br> Set to enable the TWI module. |  |  |  |  |  |
| 5 | STA | Start flag <br> Set to send a START condition on the bus. |  |  |  |  |  |
| 4 | STO | Stop flag <br> Set to send a STOP condition on the bus. |  |  |  |  |  |
| 3 | SI | Synchronous Serial Interrupt flag <br> Set by hardware when a serial interrupt is requested. Must be cleared by software to acknowledge interrupt. |  |  |  |  |  |
| 2 | AA | Assert Acknowledge flag <br> Clear in master and slave receiver modes, to force a not acknowledge (high level on SDA). <br> Clear to disable SLA or GCA recognition. <br> Set to recognise SLA or GCA (if GC set) for entering slave receiver or transmitter modes. <br> Set in master and slave receiver modes, to force an acknowledge (low level on SDA). <br> This bit has no effect when in master transmitter mode. |  |  |  |  |  |
| 1 | CR1 | Control Rate bit 1 See Table 65. |  |  |  |  |  |
| 0 | CR0 | Control Rate bit 0 See Table 65. |  |  |  |  |  |

Table 72. SSDAT (095h) - Syncrhonous Serial Data register (read/write)

| SD7 | SD6 | SD5 | SD4 | SD3 | SD2 | SD1 | SD0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 7 | SD7 | Address bit 7 or Data bit 7. |
| 6 | SD6 | Address bit 6 or Data bit 6. |
| 5 | SD5 | Address bit 5 or Data bit 5. |
| 4 | SD4 | Address bit 4 or Data bit 4. |
| 3 | SD3 | Address bit 3 or Data bit 3. |
| 2 | SD2 | Address bit 2 or Data bit 2. |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 1 | SD1 | Address bit 1 or Data bit 1. |
| 0 | SD0 | Address bit $0(\mathrm{R} / \mathrm{W})$ or Data bit 0. |

Table 73. SSCS (094h) read - Synchronous Serial Control and Status Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SC4 | SC3 | SC2 | SC1 | SC0 | 0 | 0 | 0 |

Table 74. SSCS Register: Read Mode - Reset Value = F8h

| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 0 | 0 | Always zero |
| 1 | 0 | Always zero |
| 2 | 0 | Always zero |
| 3 | SC0 | Status Code bit 0 <br> See to Table 70. |
| 4 | SC2 | Status Code bit 1 <br> See to Table 70. |
| 5 | Status Code bit 2 |  |
| See to Table 70. |  |  |

Table 75. SSADR (096h) - Synchronus Serial Address Register (read/write)

| 7 | 6 | 5 | 4 |  | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |  |

Table 76. SSADR Register - Reset value = FEh

| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 7 | A7 | Slave Address bit 7 |
| 6 | A6 | Slave Address bit 6 |
| 5 | A5 | Slave Address bit 5 |
| 4 | A4 | Slave Address bit 4 |
| 3 | A3 | Slave Address bit 3 |
| 2 | A2 | Slave Address bit 2 |
| 1 | A1 | Slave Address bit 1 |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |
| 0 | GC | General Call bit <br> Clear to disable the general call address recognition. <br> Set to enable the general call address recognition. |

## Serial Port Interface (SPI)

## Features

## Signal Description

Master Input Slave Output (MISO)

## SPI Serial Clock (SCK)

## Slave Select ( $\overline{\mathbf{S S}})$

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

Features of the SPI Module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Eight programmable Master clock rates
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection

Figure 36 shows a typical SPI bus configuration using one Master controller and many Slave peripherals. The bus is made of three wires connecting all the devices.

Figure 36. SPI Master/Slaves Interconnection


The Master device selects the individual Slave devices by using four pins of a parallel port to control the four $\overline{\mathrm{SS}}$ pins of the Slave devices.

This 1-bit signal is directly connected between the Master Device and a Slave Device. The MOSI line is used to transfer data in series from the Master to the Slave. Therefore, it is an output signal from the Master, and an input signal to a Slave. A Byte (8-bit word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

This 1-bit signal is directly connected between the Slave Device and a Master Device. The MISO line is used to transfer data in series from the Slave to the Master. Therefore, it is an output signal from the Slave, and an input signal to the Master. A Byte (8-bit word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one Byte on the serial lines.

Each Slave peripheral is selected by one Slave Select pin ( $\overline{\mathrm{SS}}$ ). This signal must stay low for any message for a Slave. It is obvious that only one Master ( $\overline{\mathrm{SS}}$ high level) can
drive the network. The Master may select each Slave device by software through port pins (Figure 37). To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the Master for a transmission.

In a Master configuration, the $\overline{S S}$ line can be used in conjunction with the MODF flag in the SPI Status register (SPSTA) to prevent multiple masters from driving MOSI and SCK (see Error conditions).

A high level on the $\overline{\mathrm{SS}}$ pin puts the MISO line of a Slave SPI in a high-impedance state.
The $\overline{\mathrm{SS}}$ pin could be used as a general-purpose if the following conditions are met:

- The device is configured as a Master and the SSDIS control bit in SPCON is set. This kind of configuration can be found when only one Master is driving the network and there is no way that the $\overline{S S}$ pin could be pulled low. Therefore, the MODF flag in the SPSTA will never be set ${ }^{(1)}$.
- The Device is configured as a Slave with CPHA and SSDIS control bits set ${ }^{(2)}$. This kind of configuration can happen when the system comprises one Master and one Slave only. Therefore, the device should always be selected and there is no reason that the Master uses the $\overline{\mathrm{SS}}$ pin to select the communicating Slave device.

Note: 1. Clearing SSDIS control bit does not clear MODF.
2. Special care should be taken not to set SSDIS control bit when CPHA = '0' because in this mode, the $\overline{\mathrm{SS}}$ is used to start the transmission.

## Baud Rate

In Master mode, the baud rate can be selected from a baud rate generator which is controlled by three bits in the SPCON register: SPR2, SPR1 and SPR0.The Master clock is selected from one of seven clock rates resulting from the division of the internal clock by $2,4,8,16,32,64$ or 128.

Table 77 gives the different clock rates selected by SPR2:SPR1:SPR0.

Table 77. SPI Master Baud Rate Selection

| SPR2 | SPR1 | SPR0 | Clock Rate | Baud Rate Divisor (BD) |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $F_{\text {CLK PERIPH }} / 2$ | 2 |
| 0 | 0 | 1 | $F_{\text {CLK PERIPH }} / 4$ | 4 |
| 0 | 1 | 0 | $F_{\text {CLK PERIPH }} / 8$ | 8 |
| 0 | 1 | 1 | $F_{\text {CLK PERIPH }} / 16$ | 16 |
| 1 | 0 | 0 | $F_{\text {CLK PERIPH }} / 32$ | 32 |
| 1 | 0 | 1 | $F_{\text {CLK PERIPH }} / 64$ | 64 |
| 1 | 1 | 0 | $F_{\text {CLK PERIPH }} / 128$ | 128 |
| 1 | 1 | 1 | Don't Use | No BRG |

## Functional Description

Figure 37 shows a detailed structure of the SPI Module.
Figure 37. SPI Module Block Diagram


The Serial Peripheral Interface can be configured in one of the two modes: Master mode or Slave mode. The configuration and initialization of the SPI Module is made through one register:

- The Serial Peripheral Control register (SPCON)

Once the SPI is configured, the data exchange is made using:

- SPCON
- The Serial Peripheral STAtus register (SPSTA)
- The Serial Peripheral DATa register (SPDAT)

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A Slave Select line ( $\overline{\mathrm{SS}}$ ) allows individual selection of a Slave SPI device; Slave devices that are not selected do not interfere with SPI bus activities.
When the Master device transmits data to the Slave device via the MOSI line, the Slave device responds by sending data to the Master device via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock (Figure 38).

Figure 38. Full-Duplex Master-Slave Interconnection


The SPI operates in Master mode when the Master bit, MSTR ${ }^{(1)}$, in the SPCON register is set. Only one Master SPI device can initiate transmissions. Software begins the transmission from a Master SPI Module by writing to the Serial Peripheral Data Register (SPDAT). If the shift register is empty, the Byte is immediately transferred to the shift register. The Byte begins shifting out on MOSI pin under the control of the serial clock, SCK. Simultaneously, another Byte shifts in from the Slave on the Master's MISO pin. The transmission ends when the Serial Peripheral transfer data flag, SPIF, in SPSTA becomes set. At the same time that SPIF becomes set, the received Byte from the Slave is transferred to the receive data register in SPDAT. Software clears SPIF by reading the Serial Peripheral Status register (SPSTA) with the SPIF bit set, and then reading the SPDAT.

The SPI operates in Slave mode when the Master bit, MSTR ${ }^{(2)}$, in the SPCON register is cleared. Before a data transmission occurs, the Slave Select pin, $\overline{\mathrm{SS}}$, of the Slave device must be set to ' 0 '. $\overline{\mathrm{SS}}$ must remain low until the transmission is complete.

In a Slave SPI Module, data enters the shift register under the control of the SCK from the Master SPI Module. After a Byte enters the shift register, it is immediately transferred to the receive data register in SPDAT, and the SPIF bit is set. To prevent an overflow condition, Slave software must then read the SPDAT before another Byte enters the shift register ${ }^{(3)}$. A Slave SPI must complete the write to the SPDAT (shift register) at least one bus cycle before the Master SPI starts a transmission. If the write to the data register is late, the SPI transmits the data already in the shift register from the previous transmission. The maximum SCK frequency allowed in slave mode is $\mathrm{F}_{\text {CLK PERIPH }}$ 14.

Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in the SPCON: the Clock Polarity (CPOL ${ }^{(4)}$ ) and the Clock Phase $\left(C^{2} A^{4}\right)$. CPOL defines the default SCK line level in idle state. It has no significant effect on the transmission format. CPHA defines the edges on which the input data are sampled and the edges on which the output data are shifted (Figure 39 and Figure 40). The clock phase and polarity should be identical for the Master SPI device and the communicating Slave device.

1. The SPI Module should be configured as a Master before it is enabled (SPEN set). Also, the Master SPI should be configured before the Slave SPI.
2. The SPI Module should be configured as a Slave before it is enabled (SPEN set).
3. The maximum frequency of the SCK for an SPI configured as a Slave is the bus clock speed.
4. Before writing to the CPOL and CPHA bits, the SPI should be disabled (SPEN = ' 0 ').

Figure 39. Data Transmission Format $(\mathrm{CPHA}=0)$


Figure 40. Data Transmission Format ( $\mathrm{CPHA}=1$ )


Figure 41. CPHA/ $\overline{S S}$ Timing


As shown in Figure 39, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the $\overline{\mathrm{SS}}$ pin is used to start the transmission. The $\overline{\mathrm{SS}}$ pin must be toggled high and then low between each Byte transmitted (Figure 41).
Figure 40 shows an SPI transmission in which CPHA is ' 1 '. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The $\overline{\text { SS }}$ pin can remain low between transmissions (Figure 41). This format may be preffered in systems having only one Master and only one Slave driving the MISO data line.


## Error Conditions <br> Mode Fault (MODF) <br> Write Collision (WCOL) <br> Overrun Condition <br> SS Error Flag (SSERR) <br> Interrupts <br> The following flags in the SPSTA signal SPI error conditions: <br> Mode Fault error in Master mode SPI indicates that the level on the Slave Select ( $\overline{\mathrm{SS}}$ ) pin is inconsistent with the actual mode of the device. MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI system is affected in the following ways: <br> - An SPI receiver/error CPU interrupt request is generated <br> - The SPEN bit in SPCON is cleared. This disables the SPI <br> - The MSTR bit in SPCON is cleared <br> When $\overline{\text { SS }}$ Disable (SSDIS) bit in the SPCON register is cleared, the MODF flag is set when the $\overline{\mathrm{SS}}$ signal becomes ' 0 '. <br> However, as stated before, for a system with one Master, if the $\overline{\mathrm{SS}}$ pin of the Master device is pulled low, there is no way that another Master attempts to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the $\overline{\mathrm{SS}}$ pin as a general-purpose I/O pin. <br> Clearing the MODF bit is accomplished by a read of SPSTA register with MODF bit set, followed by a write to the SPCON register. SPEN Control bit may be restored to its original set state after the MODF bit has been cleared. <br> A Write Collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence. <br> WCOL does not cause an interruption, and the transfer continues uninterrupted. <br> Clearing the WCOL bit is done through a software sequence of an access to SPSTA and an access to SPDAT. <br> An overrun condition occurs when the Master device tries to send several data Bytes and the Slave devise has not cleared the SPIF bit issuing from the previous data Byte transmitted. In this case, the receiver buffer contains the Byte sent after the SPIF bit was last cleared. A read of the SPDAT returns this Byte. All others Bytes are lost. <br> This condition is not detected by the SPI peripheral. <br> A Synchronous Serial Slave Error occurs when $\overline{S S}$ goes high before the end of a received data in slave mode. SSERR does not cause in interruption, this bit is cleared by writing 0 to SPEN bit (reset of the SPI state machine). <br> Two SPI status flags can generate a CPU interrupt requests:

Table 78. SPI Interrupts

| Flag | Request |
| :--- | :--- |
| SPIF (SP data transfer) | SPI Transmitter Interrupt request |
| MODF (Mode Fault) | SPI Receiver/Error Interrupt Request (if SSDIS = '0') |

Serial Peripheral data transfer flag, SPIF: This bit is set by hardware when a transfer has been completed. SPIF bit generates transmitter CPU interrupt requests.

Mode Fault flag, MODF: This bit becomes set to indicate that the level on the SS is inconsistent with the mode of the SPI. MODF with SSDIS reset, generates receiver/error CPU interrupt requests. When SSDIS is set, no MODF interrupt request is generated.

Figure 42 gives a logical view of the above statements.

Figure 42. SPI Interrupt Requests Generation


There are three registers in the Module that provide control, status and data storage functions. These registers are describes in the following paragraphs.

- The Serial Peripheral Control Register does the following:
- Selects one of the Master clock rates
- Configure the SPI Module as Master or Slave
- Selects serial clock polarity and phase
- Enables the SPI Module
- Frees the SS pin for a general-purpose

Table 79 describes this register and explains the use of each bit

Table 79. SPCON Register
SPCON - Serial Peripheral Control Register (0C3H)
Table 1.

| 7 | 6 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPR2 | SPEN SSDIS | MSTR | CPOL | CPHA | SPR1 | SPR0 |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |
| 7 | SPR2 | Serial Peripheral Rate 2 <br> Bit with SPR1 and SPR0 define the clock rate. |  |  |  |  |
| 6 | SPEN | Serial Peripheral Enable <br> Cleared to disable the SPI interface. Set to enable the SPI interface. |  |  |  |  |
| 5 | SSDIS | $\overline{\mathrm{SS}}$ Disable <br> Cleared to enable $\overline{\mathrm{SS}}$ in both Master and Slave modes. <br> Set to disable $\overline{\mathrm{SS}}$ in both Master and Slave modes. In Slave mode, this bit has no effect if CPHA ='0'. When SSDIS is set, no MODF interrupt request is generated. |  |  |  |  |
| 4 | MSTR | Serial Peripheral Master <br> Cleared to configure the SPI as a Slave. <br> Set to configure the SPI as a Master. |  |  |  |  |
| 3 | CPOL | Clock Polarity <br> Cleared to have the SCK set to '0' in idle state. Set to have the SCK set to '1' in idle low. |  |  |  |  |
| 2 | CPHA | Clock Phase <br> Cleared to have the data sampled when the SCK leaves the idle state (see CPOL). <br> Set to have the data sampled when the SCK returns to idle state (see CPOL). |  |  |  |  |


| Bit Number | Bit Mnemonic | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SPR1 | SPR2 | SPR1 | SPRO | Serial Peripheral Rate |
|  |  | 0 | 0 | 0 | $\mathrm{F}_{\text {CLK PERIPH }} / 2$ |
|  |  | 0 | 0 | 1 | $\mathrm{F}_{\text {CLK PERIPH }} / 4$ |
|  |  |  | 1 | 0 | $\mathrm{F}_{\text {CLK PERIPH }} / 8$ |
| 0 | SPR0 | 0 | 1 | 1 | $\mathrm{F}_{\text {CLK PERIPH }} / 16$ |
|  |  | 1 | 0 | 0 | $\mathrm{F}_{\text {CLK PERIPH }} / 32$ |
|  |  | 1 | 0 | 1 | $\mathrm{F}_{\text {CLK PERIPH }} / 64$ |
|  |  | 1 | 1 | 0 | $\mathrm{F}_{\text {CLK PERIPH }} / 128$ |
|  |  | 1 | 1 | 1 | Invalid |

Reset Value $=0001$ 0100b
Not bit addressable

Serial Peripheral Status Register (SPSTA)

The Serial Peripheral Status Register contains flags to signal the following conditions:

- Data transfer complete
- Write collision
- Inconsistent logic level on $\overline{\mathrm{SS}}$ pin (mode fault error)

Table 80 describes the SPSTA register and explains the use of every bit in the register.

Table 80. SPSTA Register
SPSTA - Serial Peripheral Status and Control register (0C4H)
Table 2.


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |\(\left|\begin{array}{ccl}Reserved <br>


The value read from this bit is indeterminate. Do not set this bit.\end{array}\right|\)| Reserved |
| :---: | :---: |
| The value read from this bit is indeterminate. Do not set this bit. |

Reset Value $=00 \mathrm{XO}$ XXXXb
Not Bit addressable

Serial Peripheral DATa Register (SPDAT)

The Serial Peripheral Data Register (Table 81) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 81. SPDAT Register
SPDAT - Serial Peripheral Data Register (0C5H)

## Table 3.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 |

Reset Value = Indeterminate
R7:R0: Receive data bits
SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.


## Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0 A 6 H . When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0 A 6 H . When WDT is enabled, the user needs to service it by writing to 01 EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is $96 \times \mathrm{T}_{\text {CLK PERIPH }}$, where $T_{\text {CLK PERIPH }}=1 / F_{\text {CLK }}$ PERIPH. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a $2^{7}$ counter has been added to extend the Time-out capability, ranking from 16 ms to $2 \mathrm{~s} @ \mathrm{~F}_{\mathrm{OSCA}}=12 \mathrm{MHz}$. To manage this feature, refer to WDTPRG register description, Table 82.

Table 82. WDTRST Register
WDTRST - Watchdog Reset Register (0A6h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |

Reset Value $=\mathrm{XXXX} \mathrm{XXXXb}$
Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

Table 83. WDTPRG Register
WDTPRG - Watchdog Timer Out Register (0A7h)


Reset value $=$ XXXX X000

WDT During Power Down and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT89C51ID2 is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.
To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is better to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT89C51ID2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

## AT89C51ID2

ONCE ${ }^{(T M)}$ Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using AT89C51ID2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the AT89C51ID2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and $\overline{\text { PSEN }}$ is high.
- Hold ALE low as RST is deactivated.

While the AT89C51ID2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 84 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 84. External Pin Status during ONCE Mode

| ALE | PSEN | Port 0 | Port 1 | Port 2 | Port 3 | Port I2 | XTALA1/2 | XTALB1/2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Weak <br> pull-up | Weak <br> pull-up | Float | Weak <br> pull-up | Weak <br> pull-up | Weak <br> pull-up | Float | Active | Active |

(a) "Once" is a registered trademark of Intel Corporation.

## Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by $\mathrm{V}_{\mathrm{Cc}}$ switch-on. A warm start reset occurs while $\mathrm{V}_{\mathrm{Cc}}$ is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (Table 85). POF is set by hardware when $V_{C c}$ rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 85. PCON Register
PCON - Power Control Register (87h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SMOD1 | SMOD0 | - | POF | GF1 | GF0 | PD | IDL |


| Bit Number | Bit Mnemonic | Description |
| :---: | :---: | :---: |
| 7 | SMOD1 | Serial port Mode bit 1 <br> Set to select double baud rate in mode 1,2 or 3 . |
| 6 | SMODO | Serial port Mode bit 0 Cleared to select SMO bit in SCON register. Set to select FE bit in SCON register. |
| 5 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 4 | POF | Power-Off Flag <br> Cleared to recognize next reset type. <br> Set by hardware when $\mathrm{V}_{\mathrm{CC}}$ rises from 0 to its nominal voltage. Can also be set by software. |
| 3 | GF1 | General purpose Flag <br> Cleared by user for general purpose usage. <br> Set by user for general purpose usage. |
| 2 | GFO | General purpose Flag <br> Cleared by user for general purpose usage. <br> Set by user for general purpose usage. |
| 1 | PD | Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode. |
| 0 | IDL | Idle mode bit <br> Cleared by hardware when interrupt or reset occurs. Set to enter idle mode. |

Reset Value = 00X1 0000b
Not bit addressable


## EEPROM Data Memory

The 2 K bytes on-chip EEPROM memory block is located at addresses 0000h to 07FFh of the XRAM/ERAM memory space and is selected by setting control bits in the EECON register.
A read or write access to the EEPROM memory is done with a MOVX instruction.

Data is written by byte to the EEPROM memory block as for an external RAM memory.
The following procedure is used to write to the EEPROM memory:

- Check EEBUSY flag
- If the user application interrupts routines use XRAM memory space: Save and disable interrupts.
- Load DPTR with the address to write
- Store A register with the data to be written
- Set bit EEE of EECON register
- Execute a MOVX @DPTR, A
- Clear bit EEE of EECON register
- Restore interrupts.
- EEBUSY flag in EECON is then set by hardware to indicate that programming is in progress and that the EEPROM segment is not available for reading or writing.
- The end of programming is indicated by a hardware clear of the EEBUSY flag.

Figure 43 represents the optimal write sequence to the on-chip EEPROM data memory.

Figure 43. Recommended EEPROM Data Write Sequence


## Read Data

The following procedure is used to read the data stored in the EEPROM memory:

- Check EEBUSY flag
- If the user application interrupts routines use XRAM memory space: Save and disable interrupts.
- Load DPTR with the address to read
- Set bit EEE of EECON register
- Execute a MOVX A, @DPTR
- Clear bit EEE of EECON register
- Restore interrupts.

Figure 44. Recommended EEPROM Data Read Sequence


## Registers

Table 86. EECON Register
EECON (0D2h)
EEPROM Control Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | EEE | EEBUSY |
| Bit Number | Bit Mnemonic | Description |  |  |  |  |  |
| 7-2 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |  |  |  |  |  |
| 1 | EEE | Enable EEPROM Space bit <br> Set to map the EEPROM space during MOVX instructions (Write or Read to the EEPROM . <br> Clear to map the XRAM space during MOVX. |  |  |  |  |  |
| 0 | EEBUSY | Programming Busy flag <br> Set by hardware when programming is in progress. Cleared by hardware when programming is done. Can not be set or cleared by software. |  |  |  |  |  |

Reset Value $=\mathrm{XXXX}$ XX00b
Not bit addressable

## AT89C51ID2

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0 . As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 87. AUXR Register
AUXR - Auxiliary Register (8Eh)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | M0 | XRS2 | XRS1 | XRS0 | EXTRAM | AO |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :---: |
| 7 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 6 | - | Reserved <br> The value read from this bit is indeterminate. Do not set this bit. |
| 5 | M0 | Pulse length <br> Cleared to stretch MOVX control: the RD/ and the WR/ pulse length is 6 clock periods (default). <br> Set to stretch MOVX control: the RD/ and the WR/ pulse length is 30 clock periods. |
| 4 | XRS2 | XRAM Size |
| 3 | XRS1 | $\frac{\text { XRS2 XRS1XRS0XRAM size }}{000256 \text { bytes }}$ |
| 2 | XRS0 | 001512 bytes <br> 010768 bytes(default) <br> 0111024 bytes <br> 1001792 bytes |
| 1 | EXTRAM | EXTRAM bit <br> Cleared to access internal XRAM using movx @ Ri/ @ DPTR. <br> Set to access external memory. <br> Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected. |
| 0 | AO | ALE Output bit <br> Cleared, ALE is emitted at a constant rate of $1 / 6$ the oscillator frequency (or $1 / 3$ if X2 mode is used). (default) Set, ALE is active only during a MOVX or MOVC instruction is used. |

Reset Value = XX00 10'HSB. XRAM'Ob
Not bit addressable

## Flash Memory

## Features

The Flash memory increases EPROM and ROM functionality with in-circuit electrical erasure and programming. It contains 64 K bytes of program memory organized respectively in 512 pages of 128 bytes. This memory is both parallel and serial In-System Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash.

The programming does not require external dedicated programming voltage. The necessary high programming voltage is generated on-chip using the standard $V_{c c}$ pins of the microcontroller.

- Flash internal program memory.
- Boot vector allows user provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user.
- Default loader in Boot ROM allows programming via the serial port without the need of a user provided loader.
- Up to 64 K byte external program memory if the internal program memory is disabled ( $\mathrm{EA}=0$ ).
- Programming and erase voltage with standard power supply.
- Read/Programming/Erase:
- Byte-wise read without wait state
- Byte or page erase and programming (10 ms)
- Typical programming time ( 64 K bytes) is 22 s with on chip serial bootloader
- Parallel programming with 87C51 compatible hardware interface to programmer
- Programmable security for the code in the Flash
- 100k write cycles
- 10 years data retention


## Flash Programming and Erasure

The 64 K bytes Flash is programmed by bytes or by pages of 128 bytes. It is not necessary to erase a byte or a page before programming. The programming of a byte or a page includes a self erase before programming.

There are three methods of programming the Flash memory:

- First, the on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the UART.
- Second, the Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot ROM.
- Third, the Flash may be programmed using the parallel method by using a conventional EPROM programmer. The parallel programming method used by these devices is similar to that used by EPROM 87C51 but it is not identical and the commercially available programmers need to have support for the AT89C51ID2. The bootloader and the Application Programming Interface (API) routines are located in the BOOT ROM.


## Flash Registers and Memory Map

## Hardware Register

The AT89C51ID2 Flash memory uses several registers for his management:

- Hardware registers can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

The only hardware register of the AT89C51ID2 is called Hardware Security Byte (HSB).

Table 88. Hardware Security Byte (HSB)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X2 | BLJB | OSC | - | XRAM | LB2 | LB1 | LBO |
| Bit <br> Number | Bit <br> Mnemonic | Description |  |  |  |  |  |
| 7 | X2 | X2 Mode Programmed (' 0 ' value) to force X2 mode ( 6 clocks per instruction) after reset. Unprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset (Default). |  |  |  |  |  |
| 6 | BLJB | Boot Loader Jump Bit <br> Unprogrammed (' 1 ' value) to start the user's application on next reset at address 0000h. <br> Programmed ('0' value) to start the boot loader at address F800h on next reset (Default). |  |  |  |  |  |
| 5 | OSC | Oscillator Bit <br> Programmed to allow oscillator B at startup <br> Unprogrammed this bit to allow oscillator A at startup (Default). |  |  |  |  |  |
| 4 | - | Reserved |  |  |  |  |  |
| 3 | XRAM | XRAM config bit (only programmable by programmer tools) <br> Programmed to inhibit XRAM <br> Unprogrammed, this bit to valid XRAM (Default) |  |  |  |  |  |
| 2-0 | LB2-0 | User Memory Lock Bits (only programmable by programmer tools) See Table 89 |  |  |  |  |  |

## Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

- When this bit is programmed (' 1 ' value) the boot address is 0000h.
- When this bit is unprogrammed ('1' value) the boot address is F800h. By default, this bit is unprogrammed and the ISP is enabled.

The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 89.

Table 89. Program Lock Bits

| Program Lock Bits |  |  |  | Protection description |
| :---: | :---: | :---: | :---: | :---: |
| Security level | LB0 | LB1 | LB2 |  |
| 1 | U | U | U | No program lock features enabled. |
| 2 | P | U | U | MOVC instruction executed from external program memory is disabled from fetching code bytes from internal memory, $\overline{E A}$ is sampled and latched on reset, and further parallel programming of the on chip code memory is disabled. <br> ISP and software programming with API are still allowed. <br> Writing EEprom Data from external parallel programmer is disabled but still allowed from internal code execution. |
| 3 | X | P | U | Same as 2 , also verify code memory through parallel programming interface is disabled. <br> Writing And Reading EEPROM Data from external parallel programmer is disabled but still allowed from internal code execution.. |
| 4 | x | X | P | Same as 3, also external execution is disabled. (Default) |

## Default Values

## Software Registers

Note: U: unprogrammed or "one" level.
P: programmed or "zero" level.
X : do not care
WARNING: Security level 2 and 3 should only be programmed after Flash and code verification.

These security bits protect the code access through the parallel programming interface. They are set by default to level 4. The code access through the ISP is still possible and is controlled by the "software security bits" which are stored in the extra Flash memory accessed by the ISP firmware.

To load a new application with the parallel programmer, a chip erase must first be done. This will set the HSB in its inactive state and will erase the Flash memory. The part reference can always be read using Flash parallel programming modes.

The default value of the HSB provides parts ready to be programmed with ISP:

- BLJB: Programmed force ISP operation.
- X2: Unprogrammed to force X1 mode (Standard Mode).
- XRAM: Unprogrammed to valid XRAM
- LB2-0: Security level four to protect the code from a parallel access with maximum security.

Several registers are used, in factory and by parallel programmers. These values are used by Atmel ISP.

These registers are in the "Extra Flash Memory" part of the Flash memory. This block is also called "XAF" or eXtra Array Flash. They are accessed in the following ways:

- Commands issued by the parallel memory programmer.
- Commands issued by the ISP software.
- Calls of API issued by the application software.

Several software registers described in Table 90.


Table 90. Default Values

| Mnemonic | Definition | Default value | Description |
| :---: | :--- | :---: | :--- |
| SBV | Software Boot Vector | FCh |  |
| HSB | Copy of the Hardware security byte | $101 \times 1011 \mathrm{~b}$ |  |
| BSB | Boot Status Byte | 0FFh |  |
| SSB | Software Security Byte | FFh |  |
|  | Copy of the Manufacturer Code | D8h | ATMEL |
|  | Copy of the Device ID \#1: Family Code | C51 X2, Electrically Erasable |  |
|  | Copy of the Device ID \#2: memories size <br> and type | ECh | AT89C51ID2 64KB |
|  | Copy of the Device ID \#3: name and <br> revision | AT89C51ID2 64KB, Revision <br> 0 |  |

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 90 and Table 93.
To assure code protection from a parallel access, the HSB must also be at the required level.

Table 91. Software Security Byte
Table 92.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | LB1 | LB0 |


| Bit <br> Number | Bit <br> Mnemonic | Description |
| :---: | :---: | :--- |$|$| Reserved |
| :--- |
| Do not clear this bit. |, | 7 |
| :--- |

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown to Table 93.

Table 93. Program Lock bits of the SSB

| Program Lock Bits |  |  |  |
| :---: | :---: | :---: | :--- |
| Security <br> level | LB0 | LB1 |  |
| 1 | U | U | No program lock features enabled. |
| 2 | P | U | ISP programming of the Flash is disabled. |
| 3 | X | P | Same as 2, also verify through ISP programming interface is disabled. |
| Note: | U: unprogrammed or "one" level. <br>  <br> P: programmed or "zero" level. <br> X: do not care <br> WARNING: Security level 2 and 3 should only be programmed after Flash and code <br> verification. |  |  |

## Flash Memory Status

AT89C51ID2 parts are delivered in standard with the ISP rom bootloader.
After ISP or parallel programming, the possible contents of the Flash memory are summarized on the figure below:

Figure 45. Flash memory possible contents


## Memory Organization

When the $\overline{E A}$ pin high, the processor fetches instructions from internal program Flash. . If the $\overline{E A}$ pin is tied low, all program memory fetches are from external memory.

## Bootloader Architecture

Introduction
The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Figure 46. Diagram Context Description


## Acronyms

ISP : In-System Programming
SBV: Software Boot Vector
BSB: Boot Status Byte
SSB: Software Security Bit
HW : Hardware Byte

## Functional Description

Figure 47. Bootloader Functional Description


On the above diagram, the on chip bootloader processes are:

## - ISP Communication Management

The purpose of this process is to manage the communication and its protocol between the on-chip bootloader and a external device. The on-chip ROM implement a serial protocol (see section Bootloader Protocol). This process translate serial communication frame (UART) into flash memory acess (read, write, erase ...).

- User Call Management

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface (API calls), included in the ROM bootloader. The programming functions are selected by setting up the microcontroller's registers before making a call to a common entry point (0xFFFO). Results are returned in the registers. The purpose on this process is to translate the registers values into internal Flash Memory Management.

- Flash Memory Management

This process manages low level access to flash memory (performs read and write access).


## Bootloader Functionality

## Introduction

The bootloader can be activated by two means: Hardware conditions or regular boot process.

The Hardware conditions ( $\mathrm{EA}=1, \mathrm{PSEN}=0$ ) during the Reset\# falling edge force the on-chip bootloader execution. This allows an application to be built that will normally execute the end user's code but can be manually forced into default ISP operation.

As PSEN is a an output port in normal operating mode after reset, user application should take care to release PSEN after falling edge of reset signal. The hardware conditions are sampled at reset signal falling edge, thus they can be released at any time when reset input is low.

To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on (See Figure 48).

Figure 48. Hardware conditions typical sequence during power-on.


The on-chip bootloader boot process is shown Figure 49

|  | Purpose |
| :--- | :--- |
| Hardware Conditions | The Hardware Conditions force the bootloader execution whatever BLJB, <br> BSB and SBV values. |
| BLJB | The Boot Loader Jump Bit forces the application execution. <br> BLJB = 0 => Boot loader execution. <br> BLJB =1 => Application execution |
|  | The BLJB is a fuse bit in the Hardware Byte. <br> That can be modified by hardware (programmer) or by software (API). |
| Note: <br> The BLJB test is perform by hardware to prevent any program <br> execution.. |  |


|  | Purpose |
| :--- | :--- |
| SBV | The Software Boot Vector contains the high address of custumer <br> bootloader stored in the application. <br> SBV = FCh (default value) if no custumer bootloader in user Flash. |
|  | Note: <br> The costumer bootloader is called by JMP [SBV]00h instruction. |

## Boot Process

Figure 49. Bootloader Process


## ISP Protocol Description

Physical Layer

Frame Description

The UART used to transmit information has the following configuration:

- Character: 8-bit data
- Parity: none
- Stop: 2 bits
- Flow control: none
- Baudrate: autobaud is performed by the bootloader to compute the baudrate choosen by the host.

The Serial Protocol is based on the Intel Hex-type records.
Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below

Figure 50. Intel Hex Type Frame

| Record <br> Mark <br> ':' | Reclen | Load <br> Offset | Record <br> Type | Data <br> or <br> Info | Checksum |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 1-byte | 1-byte | 2-bytes | 1-byte | n-bytes | 1-byte |

- Record Mark:

Record Mark is the start of frame. This field must contain ':'.

- Reclen:

Reclen specifies the number of bytes of information or data which follows the Record Type field of the record.

- Load Offset:

Load Offset specifies the 16 -bit starting load offset of the data bytes, therefore this field is used only for

Data Program Record (see Section "ISP Commands Summary").

- Record Type:

Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types is described in Section "ISP Commands Summary".

- Data/Info:

Data/Info is a variable length field. It consists of zero or more bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the Record Type.

- Checksum:

The two's complement of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, and including the Reclen field to and including the last byte of the Data/Info field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the Reclen field to and including the Checksum field, is zero.

## Functional Description

Software Security Bits (SSB) The SSB protects any Flash access from ISP command.
The command "Program Software Security bit" can only write a higher priority level.
There are three levels of security:

- level 0: NO_SECURITY (FFh)

This is the default level.
From level 0, one can write level 1 or level 2.

- level 1: WRITE_SECURITY (FEh )

For this level it is impossible to write in the Flash memory, BSB and SBV.
The Bootloader returns ' $P$ ' on write access.
From level 1, one can write only level 2.

- level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory. The Bootloader returns 'L' on read or write access.
Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.
From level 2, one cannot read and write anything.

Table 94. Software Security Byte Behavior

|  | Level 0 | Level 1 | Level 2 |
| :---: | :---: | :---: | :---: |
| Flash/EEprom | Any access allowed | Read only access allowed | Any access not allowed |
| Fuse bit | Any access allowed | Read only access allowed | Any access not allowed |
| BSB \& SBV | Any access allowed | Read only access allowed | Any access not allowed |
| SSB | Any access allowed | Write level 2 allowed | Read only access allowed |
| Manufacturer info | Read only access allowed | Read only access allowed | Read only access allowed |
| Bootloader info | Read only access allowed | Read only access allowed | Read only access allowed |
| Erase block | Allowed | Not allowed | Not allowed |
| Full chip erase | Allowed | Allowed | Allowed |
| Blank Check | Allowed | Allowed | Allowed |

## Full Chip Erase

Checksum Error

The ISP command "Full Chip Erase" erases all User Flash memory (fills with FFh) and sets some bytes used by the bootloader at their default values:

- $\mathrm{BSB}=\mathrm{FFh}$
- $\mathrm{SBV}=\mathrm{FCh}$
- $\quad$ SSB = FFh and finally erase the Software Security Bits

The Full Chip Erase does not affect the bootloader.
When a checksum error is detected send ' $X$ ' followed with CR\&LF.

## Flow Description

## Overview <br> Communication Initialization

The host initializes the communication by sending a 'U' character to help the bootloader to compute the baudrate (autobaud).

Figure 51. Initialization

## Host

| $\longrightarrow$ | Init communication |
| :--- | :--- |
|  | If (not received "U") |
|  | Else |
| Communication opened |  |

## Bootloader



Performs autobaud

Sends back U character

## Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase $U$ ) be sent to the AT89C51ID2 to establish the baud rate. Table show the autobaud capability.
Table 95. Autobaud Performances

| Frequency (MHz) Baudrate (kHz) | 1.8432 | 2 | 2.4576 | 3 | 3.6864 | 4 | 5 | 6 | 7.3728 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2400 | OK |
| 4800 | OK | - | OK |
| 9600 | OK | - | OK |
| 19200 | OK | - | OK | OK | OK | - | - | OK | OK |
| 38400 | - | - | OK |  | OK | - | OK | OK | OK |
| 57600 | - | - | - | - | OK | - | - | - | OK |
| 115200 | - | - | - | - | - | - | - | - | OK |
|  |  |  |  |  |  |  |  |  |  |
| Frequency (MHz) Baudrate (kHz) | 8 | 10 | 11.0592 | 12 | 14.746 | 16 | 20 | 24 | 26.6 |
| 2400 | OK |

Table 95. Autobaud Performances (Continued)

| Frequency (MHz) <br> Baudrate (kHz) | $\mathbf{1 . 8 4 3 2}$ | $\mathbf{2}$ | $\mathbf{2 . 4 5 7 6}$ | $\mathbf{3}$ | $\mathbf{3 . 6 8 6 4}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7 . 3 7 2 8}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4800 | OK |
| 9600 | OK |
| 19200 | OK |
| 38400 | - | - | OK |
| 57600 | - | - | OK | - | OK | OK | OK | OK | OK |
| 115200 | - | - | OK | - | OK | - | - | - | - |

## Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Figure 52. Command Flow

Host


Bootloader

If (not received ":")
Sends echo and start reception
$\nabla$
Gets frame, and sends back ec for each received byte
$\qquad$

## Write I Program Commands

This flow is common to the following frames:

- Flash / Eeprom Programming Data Frame
- EOF or Atmel Frame (only Programming Atmel Frame)
- Config Byte Programming Data Frame
- Baud Rate Frame

Description

Figure 53. Write/Program Flow


## Example

Programming Data (write 55h at address 0010h in the Flash)

```
HOST : 01 0010 00 55 9A
BOOTLOADER : 01 0010 00 55 9A . CR LF
Programming Atmel function (write SSB to level 2)
```

```
HOST : 02 0000 03 05 01 F5
```

HOST : 02 0000 03 05 01 F5
BOOTLOADER : 02 0000 03 05 01 F5. CR LF

```
BOOTLOADER : 02 0000 03 05 01 F5. CR LF
```

Writing Frame (write BSB to 55h)

```
HOST : 03 0000 03 06 00 55 9F
BOOTLOADER : 03 0000 03 06 00 55 9F . CR LF
```


## Blank Check Command

## Description

Figure 54. Blank Check Flow


Example

Blank Check ok

| HOST | $:$ | 05 | 0000 | 04 | 0000 | $7 F F F$ | 01 | 78 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BOOTLOADER | $:$ | 05 | 0000 | 04 | 0000 | $7 F F F$ | 01 | 78 | . CR LF |

Blank Check ko at address xxxx

| HOST | $: 05$ | 0000 | 04 | 0000 | $7 F F F$ | 01 | 78 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BOOTLOADER | $:$ | 05 | 0000 | 04 | 0000 | $7 F F F$ | 01 | 78 | xxxx CR LF |

Blank Check with checksum error
HOST: : 050000040000 7FFF 0170
BOOTLOADER : 0500000400007 FFF 0170 X CR LF CR LF

Display Data

Description
Figure 55. Display Flow


Note: The maximum size of block is 400 h . To read more than 400 h bytes, the Host must send a new command.

## Example

Display data from address 0000h to 0020h


## Read Function

This flow is similar for the following frames:

- Reading Frame
- EOF Frame/ Atmel Frame (only reading Atmel Frame)


## Description

Figure 56. Read Flow


Example


## AT89C51ID2

## ISP Commands Summary

Table 96. ISP Commands Summary

| Command | Command Name | data[0] | data[1] | Command Effect |
| :---: | :---: | :---: | :---: | :---: |
| 00h | Program Data |  |  | Program Nb Data Byte. <br> Bootloader will accept up to 128 (80h) data bytes. The data bytes should be 128 byte page flash boundary. |
| 03h | Write Function | 01h | 00h | Erase block0 (0000h-1FFFh) |
|  |  |  | 20h | Erase block1 (2000h-3FFFh) |
|  |  |  | 40h | Erase block2 (4000h-7FFFh) |
|  |  |  | 80h | Erase block3 (8000h- BFFFh) |
|  |  |  | COh | Erase block4 (C000h- FFFFh) |
|  |  | 03h | 00h | Hardware Reset |
|  |  | 04h | 00h | Erase SBV \& BSB |
|  |  | 05h | 00h | Program SSB level 1 |
|  |  |  | 01h | Program SSB level 2 |
|  |  | 06h | 00h | Program BSB (value to write in data[2]) |
|  |  |  | 01h | Program SBV (value to write in data[2]) |
|  |  | 07h | - | Full Chip Erase (This command needs about 6 sec to be executed) |
|  |  | OAh | 02h | Program Osc fuse (value to write in data[2]) |
|  |  |  | 04h | Program BLJB fuse (value to write in data[2]) |
|  |  |  | 08h | Program X2 fuse (value to write in data[2]) |
| 04h | Display Function | Data[0:1] = start address <br> Data [2:3] = end address <br> Data[4] $=00 \mathrm{~h}$-> Display data <br> Data[4] = 01h -> Blank check <br> Data[4] = 02h -> Display EEPROMk |  | Display Data |
|  |  |  |  | Blank Check |
|  |  |  |  | Display EEPROM data |

Table 96. ISP Commands Summary (Continued)

| Command | Command Name | data[0] | data[1] | Command Effect |
| :---: | :---: | :---: | :---: | :---: |
| 05h | Read Function | 00h | 00h | Manufacturer Id |
|  |  |  | 01h | Device Id \#1 |
|  |  |  | 02h | Device Id \#2 |
|  |  |  | 03h | Device Id \#3 |
|  |  | 07h | 00h | Read SSB |
|  |  |  | 01h | Read BSB |
|  |  |  | 02h | Read SBV |
|  |  |  | 06h | Read Extra Byte |
|  |  | OBh | 00h | Read Hardware Byte |
|  |  | OEh | 00h | Read Device Boot ID1 |
|  |  |  | 01h | Read Device Boot ID2 |
|  |  | 0Fh | 00h | Read Bootloader Version |
| 07h | Program EEPROM data |  |  | Program Nb EEProm Data Byte. <br> Bootloader will accept up to 128 (80h) data bytes. |

## AT89C51ID2

## API Call Description

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at FFFOh. Results are returned in the registers.

When several bytes have to be programmed, it is highly recommended to use the Atmel API "PROGRAM DATA PAGE" call. Indeed, this API call writes up to 128 bytes in a single command.

All routines for software access are provided in the C Flash driver available on Atmel web site.

The API calls description and arguments are shown in Table

Table 97. API Call Summary

| Command | R1 | A | DPTR0 | DPTR1 | Returned Value | Command Effect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| READ MANUF ID | 00h | XXh | 0000h | XXh | $\begin{gathered} \text { ACC }=\text { Manufacturer } \\ \text { Id } \end{gathered}$ | Read Manufacturer identifier |
| READ DEVICE ID1 | 00h | XXh | 0001h | XXh | ACC = Device Id 1 | Read Device identifier 1 |
| READ DEVICE ID2 | 00h | XXh | 0002h | XXh | ACC = Device Id 2 | Read Device identifier 2 |
| READ DEVICE ID3 | 00h | XXh | 0003h | XXh | ACC = Device Id 3 | Read Device identifier 3 |
| ERASE BLOCK | 01h | XXh | DPH $=00 \mathrm{~h}$ | 00h | $\mathrm{ACC}=\mathrm{DPH}$ | Erase block 0 |
|  |  |  | DPH $=20 \mathrm{~h}$ |  |  | Erase block 1 |
|  |  |  | DPH $=40 \mathrm{~h}$ |  |  | Erase block 2 |
|  |  |  | Address of byte to program |  |  | Program one Data Byte in user Flash |
|  |  |  | XXh |  |  | Erase Software boot vector and boot status byte. $(\mathrm{SBV}=\mathrm{FCh}$ and $\mathrm{BSB}=\mathrm{FFh})$ |
| PROGRAM SSB | 05h | XXh | $\begin{aligned} & \mathrm{DPH}=00 \mathrm{~h} \\ & \mathrm{DPL}=00 \mathrm{~h} \end{aligned}$ | 00h | $A C C=S S B$ value | Set SSB level 1 |
|  |  |  | $\begin{aligned} & \mathrm{DPH}=00 \mathrm{~h} \\ & \mathrm{DPL}=01 \mathrm{~h} \end{aligned}$ |  |  | Set SSB level 2 |
|  |  |  | $\begin{aligned} & \mathrm{DPH}=00 \mathrm{~h} \\ & \mathrm{DPL}=10 \mathrm{~h} \end{aligned}$ |  |  | Set SSB level 0 |
|  |  |  | $\begin{aligned} \mathrm{DPH} & =00 \mathrm{~h} \\ \mathrm{DPL} & =11 \mathrm{~h} \end{aligned}$ |  |  | Set SSB level 1 |
| PROGRAM BSB | 06h | New BSB value | 0000h | XXh | none | Program boot status byte |
| PROGRAM SBV | 06h | New SBV value | 0001h | XXh | none | Program software boot vector |
| READ SSB | 07h | XXh | 0000h | XXh | ACC = SSB | Read Software Security Byte |
| READ BSB | 07h | XXh | 0001h | XXh | $\mathrm{ACC}=\mathrm{BSB}$ | Read Boot Status Byte |
| READ SBV | 07h | XXh | 0002h | XXh | $\mathrm{ACC}=\mathrm{SBV}$ | Read Software Boot Vector |

Table 97. API Call Summary (Continued)

| Command | R1 | A | DPTR0 | DPTR1 | Returned Value | Command Effect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PROGRAM DATA PAGE | 09h | Number of byte to program | Address of the first byte to program in the Flash memory | Address in XRAM of the first data to program | ACC = 0: DONE | Program up to 128 bytes in user Flash. <br> Remark: number of bytes to program is limited such as the Flash write remains in a single 128 bytes page. Hence, when ACC is 128 , valid values of DPL are 00 h , or, 80 h . |
| PROGRAM X2 FUSE | OAh | Fuse value 00h or 01h | 0008h | XXh | none | Program X2 fuse bit with ACC |
| PROGRAM BLJB FUSE | OAh | Fuse value 00h or 01h | 0004h | XXh | none | Program BLJB fuse bit with ACC |
| READ HSB | OBh | XXh | XXXXh | XXh | $\mathrm{ACC}=\mathrm{HSB}$ | Read Hardware Byte |
| READ BOOT ID1 | 0Eh | XXh | DPL $=00 \mathrm{~h}$ | XXh | ACC = ID1 | Read boot ID1 |
| READ BOOT ID2 | 0Eh | XXh | DPL $=01 \mathrm{~h}$ | XXh | ACC = ID2 | Read boot ID2 |
| READ BOOT VERSION | 0Fh | XXh | XXXXh | XXh | ACC = Boot_Version | Read bootloader version |

## Electrical Characteristics

## Absolute Maximum Ratings

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Power dissipation is based on the maximum allowable die temperature and the thermal resistance of the package.

## DC Parameters

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{F}=0$ to 40 MHz (both internal and external code execution)
$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$ to 5.5 V and $\mathrm{F}=0$ to 60 MHz (internal code execution only)

| Symbol | Parameter | Min | Typ | Max | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage | -0.5 |  | $0.2 \mathrm{~V}_{\mathrm{cc}}-0.1$ | V |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage except RST, XTAL1 | $0.2 \mathrm{~V}_{\mathrm{CC}}+0.9$ |  | $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |  |
| $\mathrm{V}_{\mathrm{IH} 1}$ | Input High Voltage RST, XTAL1 | $0.7 \mathrm{~V}_{\mathrm{Cc}}$ |  | $\mathrm{V}_{\mathrm{cc}}+0.5$ | V |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage, ports 1, 2, 3, $4^{(6)}$ |  |  | $\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}^{(4)} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}^{(4)} \\ & \mathrm{I}_{\mathrm{OL}}=3.5 \mathrm{~mA}^{(4)} \end{aligned}$ |
|  |  |  |  | 0.45 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=0.8 \mathrm{~mA}^{(4)} \end{aligned}$ |
| $\mathrm{V}_{\text {OL1 }}$ | Output Low Voltage, port 0, ALE, $\overline{\text { PSEN }}{ }^{(6)}$ |  |  | $\begin{gathered} 0.3 \\ 0.45 \\ 1.0 \end{gathered}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}^{(4)} \\ & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}^{(4)} \\ & \mathrm{I}_{\mathrm{OL}}=7.0 \mathrm{~mA}^{(4)} \end{aligned}$ |
|  |  |  |  | 0.45 | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}^{(4)} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage, ports 1, 2, 3, 4 | $\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.7 \\ & V_{C C}-1.5 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-30 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A} \end{aligned}$ |
|  |  | $0.9 \mathrm{~V}_{\mathrm{Cc}}$ |  |  | V | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \end{aligned}$ |

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$;
$V_{C C}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{F}=0$ to 40 MHz (both internal and external code execution)
$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$ to 5.5 V and $\mathrm{F}=0$ to 60 MHz (internal code execution only) (Continued)

| Symbol | Parameter | Min | Typ | Max |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |

Notes: 1. Operating $\mathrm{I}_{\mathrm{CC}}$ is measured with all output pins disconnected; $\mathrm{XTAL1}$ driven with $\mathrm{T}_{\mathrm{CLCH}}, \mathrm{T}_{\mathrm{CHCL}}=5 \mathrm{~ns}$ (see Figure 60 ), $\mathrm{V}_{\mathrm{IL}}=$ $\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$; XTAL2 N.C.; $\mathrm{EA}=\mathrm{RST}=$ Port $0=\mathrm{V}_{\mathrm{CC}} . \mathrm{I}_{\mathrm{CC}}$ would be slightly higher if a crystal oscillator used (see Figure 57).
2. Idle $\mathrm{I}_{\mathrm{CC}}$ is measured with all output pins disconnected; $X T A L 1$ driven with $\mathrm{T}_{\mathrm{CLCH}}, \mathrm{T}_{\mathrm{CHCL}}=5 \mathrm{~ns}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ $0.5 \mathrm{~V} ;$ XTAL2 N.C; Port $0=\mathrm{V}_{\mathrm{Cc}} ; \mathrm{EA}=\mathrm{RST}=\mathrm{V}_{\mathrm{SS}}$ (see Figure 58).
3. Power-down $\mathrm{I}_{\mathrm{cc}}$ is measured with all output pins disconnected; $\mathrm{EA}=\mathrm{V}_{\mathrm{cc}}, \mathrm{PORT} 0=\mathrm{V}_{\mathrm{cc}} ; \mathrm{XTAL2} \mathrm{NC}$.; RST $=\mathrm{V}_{\mathrm{SS}}$ (see Figure 59).
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the $\mathrm{V}_{\mathrm{OLS}}$ of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100 pF ), the noise pulse on the ALE line may exceed 0.45 V with maxi $\mathrm{V}_{\mathrm{OL}}$ peak 0.6 V . A Schmitt Trigger use is not necessary.
5. Typical values are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5 V .
6. Under steady state (non-transient) conditions, $\mathrm{I}_{\mathrm{OL}}$ must be externally limited as follows:

Maximum I ${ }_{\text {OL }}$ per port pin: 10 mA
Maximum I $\mathrm{I}_{\mathrm{L}}$ per 8-bit port:
Port 0: 26 mA
Ports 1, 2 and 3: 15 mA
Maximum total $\mathrm{I}_{\mathrm{OL}}$ for all output pins: 71 mA
If $\mathrm{I}_{\mathrm{OL}}$ exceeds the test condition, $\mathrm{V}_{\mathrm{OL}}$ may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Figure 57. $\mathrm{I}_{\mathrm{CC}}$ Test Condition, Active Mode


All other pins are disconnected.
Figure 58. $\mathrm{I}_{\mathrm{Cc}}$ Test Condition, Idle Mode


All other pins are disconnected.
Figure 59. $\mathrm{I}_{\mathrm{CC}}$ Test Condition, Power-down Mode


All other pins are disconnected.
Figure 60. Clock Signal Waveform for $\mathrm{I}_{\mathrm{CC}}$ Tests in Active and Idle Modes


## AC Parameters

## Explanation of the AC Symbols

External Program Memory Characteristics

Each timing symbol has 5 characters. The first character is always a " T " (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
Example: $T_{\text {AVLL }}=$ Time for Address Valid to ALE Low. $T_{\text {LLPL }}=$ Time for ALE Low to PSEN Low.
(Load Capacitance for port 0, ALE and PSEN $=100 \mathrm{pF}$; Load Capacitance for all other outputs = 80 pF .)

Table 98 Table 101, and Table 104 give the description of each AC symbols.
Table 99, Table 100, Table 102 and Table 105 gives the range for each AC parameter.
Table 99, Table 100 and Table 106 give the frequency derating formula of the AC parameter for each speed range description. To calculate each AC symbols. take the $x$ value in the correponding column ( -M or -L ) and use this value in the formula.
Example: $\mathrm{T}_{\text {LLIU }}$ for -M and 20 MHz , Standard clock.
$\mathrm{x}=35 \mathrm{~ns}$
T 50 ns
$\mathrm{T}_{\mathrm{CCIV}}=4 \mathrm{~T}-\mathrm{x}=165 \mathrm{~ns}$
Table 98. Symbol Description

| Symbol | Parameter |
| :---: | :--- |
| T | Oscillator clock period |
| $\mathrm{T}_{\text {LHLL }}$ | ALE pulse width |
| $\mathrm{T}_{\text {AVLL }}$ | Address Valid to ALE |
| $\mathrm{T}_{\text {LLAX }}$ | Address Hold After ALE |
| $\mathrm{T}_{\text {LLIV }}$ | ALE to Valid Instruction In |
| $\mathrm{T}_{\text {LLPL }}$ | ALE to $\overline{\text { PSEN }}$ |
| $\mathrm{T}_{\text {PLPH }}$ | $\overline{\text { PSEN Pulse Width }}$ |
| $\mathrm{T}_{\text {PLIV }}$ | $\overline{\text { PSEN }} \mathrm{to}$ Valid Instruction In |
| $\mathrm{T}_{\text {PXIX }}$ | Input Instruction Hold After $\overline{\mathrm{PSEN}}$ |
| $\mathrm{T}_{\text {PXIZ }}$ | Input Instruction Float After $\overline{\text { PSEN }}$ |
| $\mathrm{T}_{\text {AVIV }}$ | Address to Valid Instruction In |
| $\mathrm{T}_{\text {PLAZ }}$ | $\overline{\text { PSEN Low to Address Float }}$ |

Table 99. AC Parameters for a Fix Clock

| Symbol | -M |  | -L |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  |
| T | 25 |  | 25 |  | ns |
| $\mathrm{T}_{\text {LHLL }}$ | 35 |  | 35 |  | ns |
| $\mathrm{T}_{\text {AVLL }}$ | 5 |  | 5 |  | ns |
| TLLAX | 5 |  | 5 |  | ns |
| TLLIV |  | n 65 |  | 65 | ns |
| TLLPL | 5 |  | 5 |  | ns |
| $\mathrm{T}_{\text {PLPH }}$ | 50 |  | 50 |  | ns |
| TPLIV |  | 30 |  | 30 | ns |
| $\mathrm{T}_{\text {PXIX }}$ | 0 |  | 0 |  | ns |
| $\mathrm{T}_{\text {PXIZ }}$ |  | 10 |  | 10 | ns |
| $\mathrm{T}_{\text {AVIV }}$ |  | 80 |  | 80 | ns |
| $\mathrm{T}_{\text {PLAZ }}$ |  | 10 |  | 10 | ns |

Table 100. AC Parameters for a Variable Clock

| Symbol | Type | Standard Clock | X2 Clock | X parameter for -M range | X parameter for -L range | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {LHLL }}$ | Min | $2 \mathrm{~T}-\mathrm{x}$ | T-x | 15 | 15 | ns |
| $\mathrm{T}_{\text {AVLL }}$ | Min | T-x | 0.5 T - x | 20 | 20 | ns |
| TLLAX | Min | T-x | 0.5 T - x | 20 | 20 | ns |
| $\mathrm{T}_{\text {LLIV }}$ | Max | 4 T - x | 2 T - x | 35 | 35 | ns |
| TLLPL | Min | T-x | 0.5 T - x | 15 | 15 | ns |
| $\mathrm{T}_{\text {PLPH }}$ | Min | 3 T - x | 1.5 T - x | 25 | 25 | ns |
| $\mathrm{T}_{\text {PLIV }}$ | Max | 3 T - x | 1.5 T - x | 45 | 45 | ns |
| $\mathrm{T}_{\text {PXIX }}$ | Min | X | X | 0 | 0 | ns |
| $\mathrm{T}_{\text {PXIZ }}$ | Max | T-x | 0.5 T - x | 15 | 15 | ns |
| $\mathrm{T}_{\text {AVIV }}$ | Max | 5 T - x | 2.5 T - x | 45 | 45 | ns |
| $\mathrm{T}_{\text {PLAZ }}$ | Max | X | X | 10 | 10 | ns |

## External Program Memory

## Read Cycle



## External Data Memory

## Characteristics

Table 101. Symbol Description

| Symbol | Parameter |
| :---: | :--- |
| $\mathrm{T}_{\text {RLRH }}$ | $\overline{\mathrm{RD}}$ Pulse Width |
| $\mathrm{T}_{\text {WLWH }}$ | $\overline{\mathrm{WR}}$ Pulse Width |
| $\mathrm{T}_{\text {RLDV }}$ | $\overline{\mathrm{RD}}$ to Valid Data In |
| $\mathrm{T}_{\text {RHDX }}$ | Data Hold After $\overline{\mathrm{RD}}$ |
| $\mathrm{T}_{\text {RHDZ }}$ | Data Float After $\overline{\mathrm{RD}}$ |
| $\mathrm{T}_{\text {LLDV }}$ | ALE to Valid Data In |
| $\mathrm{T}_{\text {AVDV }}$ | Address to Valid Data In |
| $\mathrm{T}_{\text {LLWL }}$ | ALE to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ |
| $\mathrm{T}_{\text {AVWL }}$ | Address to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ |
| $\mathrm{T}_{\text {QUWX }}$ | Data Valid to $\overline{\mathrm{WR}}$ Transition |
| $\mathrm{T}_{\text {QVWH }}$ | Data Set-up to $\overline{\mathrm{WR}}$ High |
| $\mathrm{T}_{\text {WHQX }}$ | Data Hold After $\overline{\mathrm{WR}}$ |
| $\mathrm{T}_{\text {RLAZ }}$ | $\overline{\mathrm{RD}}$ Low to Address Float |
| $\mathrm{T}_{\text {WHLH }}$ | $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ High to ALE high |

Table 102. AC Parameters for a Fix Clock

| Symbol | -M |  | -L |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  |
| $\mathrm{T}_{\mathrm{RLRH}}$ | 125 |  | 125 |  | ns |
| $\mathrm{T}_{\text {WLWH }}$ | 125 |  | 125 |  | ns |
| $\mathrm{T}_{\text {RLDV }}$ |  | 95 |  | 95 | ns |
| $\mathrm{T}_{\text {RHDX }}$ | 0 |  | 0 |  | ns |
| $\mathrm{T}_{\text {RHDZ }}$ |  | 25 |  | 25 | ns |
| TLLDV |  | 155 |  | 155 | ns |
| $\mathrm{T}_{\text {AVDV }}$ |  | 160 |  | 160 | ns |
| TLLWL | 45 | 105 | 45 | 105 | ns |
| $\mathrm{T}_{\text {AVWL }}$ | 70 |  | 70 |  | ns |
| $\mathrm{T}_{\text {Qvwx }}$ | 5 |  | 5 |  | ns |
| $\mathrm{T}_{\text {QVWH }}$ | 155 |  | 155 |  | ns |
| $\mathrm{T}_{\text {WHQx }}$ | 10 |  | 10 |  | ns |
| $\mathrm{T}_{\text {RLAZ }}$ | 0 |  | 0 |  | ns |
| $\mathrm{T}_{\text {WHLH }}$ | 5 | 45 | 5 | 45 | ns |

Table 103. AC Parameters for a Variable Clock

| Symbol | Type | Standard Clock | X2 Clock | X parameter for -M range | X parameter for -L range | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {RLRH }}$ | Min | 6 T - x | 3 T - x | 25 | 25 | ns |
| $\mathrm{T}_{\text {WLWH }}$ | Min | 6 T - x | 3 T - x | 25 | 25 | ns |
| $\mathrm{T}_{\text {RLDV }}$ | Max | 5 T - x | 2.5 T - x | 30 | 30 | ns |
| $\mathrm{T}_{\text {RHDX }}$ | Min | X | X | 0 | 0 | ns |
| $\mathrm{T}_{\text {RHDZ }}$ | Max | $2 \mathrm{~T}-\mathrm{x}$ | T-x | 25 | 25 | ns |
| TLLDV | Max | 8 T - x | $4 \mathrm{~T}-\mathrm{x}$ | 45 | 45 | ns |
| $\mathrm{T}_{\text {AVDV }}$ | Max | 9 T - x | 4.5 T - x | 65 | 65 | ns |
| TLLWL | Min | 3 T - x | $1.5 \mathrm{~T}-\mathrm{x}$ | 30 | 30 | ns |
| $\mathrm{T}_{\text {LLWL }}$ | Max | $3 \mathrm{~T}+\mathrm{x}$ | $1.5 \mathrm{~T}+\mathrm{x}$ | 30 | 30 | ns |
| $\mathrm{T}_{\text {AVWL }}$ | Min | 4 T-x | 2 T -x | 30 | 30 | ns |
| $\mathrm{T}_{\mathrm{Qvwx}}$ | Min | T-x | 0.5 T - x | 20 | 20 | ns |
| $\mathrm{T}_{\text {QVWH }}$ | Min | 7 T - x | 3.5 T - x | 20 | 20 | ns |
| $\mathrm{T}_{\text {WHQx }}$ | Min | T-x | 0.5 T - x | 15 | 15 | ns |
| $\mathrm{T}_{\text {RLAZ }}$ | Max | x | x | 0 | 0 | ns |
| $\mathrm{T}_{\text {WHLH }}$ | Min | T-x | 0.5 T - x | 20 | 20 | ns |
| $\mathrm{T}_{\text {WHLH }}$ | Max | T + x | $0.5 \mathrm{~T}+\mathrm{x}$ | 20 | 20 | ns |

## External Data Memory Write

## Cycle



## External Data Memory Read Cycle



Serial Port Timing - Shift Register Mode

Table 104. Symbol Description

| Symbol | Parameter |
| :---: | :--- |
| $\mathrm{T}_{\mathrm{XLXL}}$ | Serial port clock cycle time |
| $\mathrm{T}_{\mathrm{QVHX}}$ | Output data set-up to clock rising edge |
| $\mathrm{T}_{\mathrm{XHQX}}$ | Output data hold after clock rising edge |
| $\mathrm{T}_{\mathrm{XHDX}}$ | Input data hold after clock rising edge |
| $\mathrm{T}_{\mathrm{XHDV}}$ | Clock rising edge to input data valid |

Table 105. AC Parameters for a Fix Clock

| Symbol | -M |  | -L |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  |
| $\mathrm{T}_{\text {XLXL }}$ | 300 |  | 300 |  | ns |
| $\mathrm{T}_{\text {QVHX }}$ | 200 |  | 200 |  | ns |
| $\mathrm{T}_{\mathrm{XHQX}}$ | 30 |  | 30 |  | ns |
| $\mathrm{T}_{\mathrm{XHDX}}$ | 0 |  | 0 |  | ns |
| $\mathrm{T}_{\text {XHDV }}$ |  | 117 |  | 117 | ns |

Table 106. AC Parameters for a Variable Clock

| Symbol | Type | Standard <br> Clock | X2 Clock | X Parameter For <br> -M Range | X Parameter For <br> -L Range | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{XLXL}}$ | Min | 12 T | 6 T |  |  | ns |
| $\mathrm{~T}_{\mathrm{QVHX}}$ | Min | $10 \mathrm{~T}-\mathrm{x}$ | $5 \mathrm{~T}-\mathrm{x}$ | 50 | 50 | ns |
| $\mathrm{~T}_{\mathrm{XHQX}}$ | Min | $2 \mathrm{~T}-\mathrm{x}$ | $\mathrm{T}-\mathrm{x}$ | 20 | 20 | ns |
| $\mathrm{~T}_{\mathrm{XHDX}}$ | $\operatorname{Min}$ | x | x | 0 | 0 | ns |
| $\mathrm{~T}_{\mathrm{XHDV}}$ | $\operatorname{Max}$ | $10 \mathrm{~T}-\mathrm{x}$ | $5 \mathrm{~T}-\mathrm{x}$ | 133 | 133 | ns |

Shift Register Timing

## Waveforms



## External Clock Drive

## Waveforms



## AC Testing Input/Output

 Waveforms
## INPUT/OUTPUT



AC inputs during testing are driven at $\mathrm{V}_{\mathrm{CC}}-0.5$ for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurement are made at $V_{I H}$ min for a logic " 1 " and $V_{I L}$ max for a logic " 0 ".

## Float Waveforms

## Clock Waveforms



For timing purposes as port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ level occurs. $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}} \geq \pm 20 \mathrm{~mA}$.

Valid in normal clock mode. In X2 mode XTAL2 must be changed to XTAL2/2.

Figure 61. Internal Clock Signals


PORT OPERATION
MOV PORT SRC OLD DAT/4 NEW DATA


This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns . This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ( $T_{A}=25^{\circ} \mathrm{C}$ fully loaded) $\overline{R D}$ and $\overline{W R}$ propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.


## Ordering Information

Table 107. Possible Order Entries

| Part Number | Supply Voltage | Temperature Range | Package | Packing | Product Marking |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AT89C51ID2-SLSIM | 2.7V-5.5V | Industrial | PLCC44 | Stick | AT89C51ID2-IM |
| AT89C51ID2-RLTIM |  |  | VQFP44 | Tray | AT89C51ID2-IM |
| AT89C51ID2-SLSUM |  | Industrial \& Green | PLCC44 | Stick | AT89C51ID2-UM |
| AT89C51ID2-RLTUM |  |  | VQFP44 | Tray | AT89C51ID2-UM |

Change Log for 4289A 09/03 to 4289B - 12/03

4289B-12/03 to 4289C 11/05

1. Improvement of explanations throughout the document.
2. Added 'Industrial \& Green" product versions.

## Packaging Information

## PLCC44



VQFP44


|  | Min | $\operatorname{Max}$ | $\mathrm{Mi} n$ | $\operatorname{Max}$ |
| :---: | :---: | :---: | :---: | :---: |
| A | - | 1. 60 | - | 063 |
| A1 |  | REF |  | 2EF |
| $\triangle 2$ |  | REF |  | REF |
| A3 | 1.35 | 1. 45 | . 053 | 057 |
| D | 11.90 | 12.10 | . 468 | 476 |
| D1 | 9.90 | 10.10 | . 390 | . 398 |
| E | 11.90 | 12.10 | . 468 | . 476 |
| E1 | 9.90 | 10.10 | 390 | 398 |
| $\checkmark$ | 0.05 | - | . 002 | - |
|  | 0.45 | 0.75 | . 018 | 030 |
| e | 0.80 BSC |  | .0315 BSC |  |
| f | 035 BSC |  | . 014 BSC |  |

## Table of Contents

Features ..... 1
Description ..... 1
Block Diagram ..... 3
SFR Mapping ..... 4
Pin Configurations ..... 10
Oscillators ..... 14
Overview ..... 14
Registers ..... 14
Functional Block Diagram ..... 17
Operating Modes ..... 17
Design Considerations ..... 19
Timer 0: Clock Inputs ..... 20
Enhanced Features ..... 21
X2 Feature ..... 21
Dual Data Pointer Register DPTR. ..... 25
Expanded RAM (XRAM) ..... 28
Registers ..... 30
Reset ..... 31
Introduction ..... 31
Reset Input ..... 31
Reset Output. ..... 32
Power Monitor ..... 33
Description ..... 33
Timer 2 ..... 35
Auto-Reload Mode ..... 35
Programmable Clock-Output ..... 36
Registers ..... 38
Programmable Counter Array PCA ..... 40
PCA Capture Mode ..... 48
16-bit Software Timer/ Compare Mode. ..... 48
High Speed Output Mode ..... 49
Pulse Width Modulator Mode ..... 50
PCA Watchdog Timer ..... 51
Serial I/O Port ..... 52
Framing Error Detection ..... 52
Automatic Address Recognition ..... 53
Registers ..... 55
Baud Rate Selection for UART for Mode 1 and 3 ..... 55
UART Registers ..... 58
Interrupt System ..... 63
Registers ..... 64
Interrupt Sources and Vector Addresses. ..... 71
Power Management ..... 72
Introduction ..... 72
Idle Mode ..... 72
Power-Down Mode ..... 72
Registers ..... 75
Keyboard Interface ..... 76
Registers ..... 77
2-wire Interface (TWI) ..... 80
Description ..... 82
Notes ..... 85
Registers ..... 95
Serial Port Interface (SPI). ..... 98
Features. ..... 98
Signal Description ..... 98
Functional Description ..... 100
Hardware Watchdog Timer ..... 107
Using the WDT ..... 107
WDT During Power Down and Idle ..... 108
ONCE(TM) Mode (ON Chip Emulation) ..... 109
Power-off Flag ..... 110
EEPROM Data Memory. ..... 111
Write Data ..... 111
Read Data ..... 113
Registers. ..... 114
Reduced EMI Mode ..... 115
Flash Memory ..... 116
Features ..... 116
Flash Programming and Erasure ..... 116
Flash Registers and Memory Map ..... 117
Flash Memory Status ..... 120
Memory Organization ..... 120
Bootloader Architecture ..... 121
ISP Protocol Description ..... 126
Functional Description ..... 127
Flow Description ..... 129
API Call Description ..... 138
Electrical Characteristics ..... 140
Absolute Maximum Ratings ..... 140
DC Parameters ..... 140
AC Parameters ..... 143
Ordering Information ..... 151
Change Log for 4289A - 09/03 to 4289B - 12/03 ..... 151
4289B-12/03 to 4289C - 11/05 ..... 151
Packaging Information ..... 152
PLCC44 ..... 152
VQFP44 ..... 153
Table of Contents ..... i

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

## Regional Headquarters

## Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

## Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

## Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

## Atmel Operations

\author{

## Memory

 <br> 2325 Orchard Parkway <br> San Jose, CA 95131, USA <br> Tel: 1(408) 441-0311 <br> Fax: 1(408) 436-4314 <br> \section*{Microcontrollers} <br> 2325 Orchard Parkway <br> San Jose, CA 95131, USA <br> Tel: 1(408) 441-0311 <br> Fax: 1(408) 436-4314 <br> La Chantrerie <br> BP 70602 <br> 44306 Nantes Cedex 3, France <br> Tel: (33) 2-40-18-18-18 <br> Fax: (33) 2-40-18-19-60 <br> ASIC/ASSP/Smart Cards <br> Zone Industrielle <br> 13106 Rousset Cedex, France <br> Tel: (33) 4-42-53-60-00 <br> Fax: (33) 4-42-53-60-01 <br> 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA <br> Tel: 1(719) 576-3300 <br> Fax: 1(719) 540-1759 <br> Scottish Enterprise Technology Park <br> Maxwell Building <br> East Kilbride G750QR, Scotland <br> Tel: (44) 1355-803-000 <br> Fax: (44) 1355-242-743}

## RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

## Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests<br>www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2005. All rights reserved. Atmel ${ }^{\circledR}$ and combinations thereof are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.


[^0]:    Reset Value $=0000$ 0000b
    Bit addressable

