ADG419

FEATURES

44 V supply maximum ratings $V_{s S}$ to $V_{D D}$ analog signal range
Low on resistance: <35 Ω
Ultralow power dissipation: < $35 \mu \mathrm{~W}$
Fast transition time: 160 ns maximum
Break-before-make switching action
Plug-in replacement for DG419

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC 1 INPUT

Figure 1.

APPLICATIONS

Precision test equipment
Precision instrumentation
Battery-powered systems
Sample hold systems

GENERAL DESCRIPTION

The ADG419 is a monolithic CMOS SPDT switch. This switch is designed on an enhanced $\mathrm{LC}^{2} \mathrm{MOS}$ process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The on resistance profile of the ADG419 is very flat over the full analog input range, ensuring excellent linearity and low distortion. The part also exhibits high switching speed and high signal bandwidth. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.
Each switch of the ADG419 conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. The ADG419 exhibits break-before-make switching action.

PRODUCT HIGHLIGHTS

1. Extended Signal Range.

The ADG419 is fabricated on an enhanced L^{2} MOS process, giving an increased signal range that extends to the supply rails.
2. Ultralow Power Dissipation.
3. Low Ron.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG419 can be operated from a single rail power supply. The part is fully specified with a single 12 V power supply and remains functional with single supplies as low as 5 V .

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anaiog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices Trademarks and registered trademarks are the property of their respective owners.

ADG419

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 4
REVISION HISTORY
8/09—Rev. B to Rev. C
Updated Format Universal
Changes to Table 1 3
Changes to Table 2 4
Updated Outline Dimensions 12
Changes to Ordering Guide 13
Absolute Maximum Ratings 5
ESD Caution. 5
Pin Configuration and Function Descriptions. 6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 11
Outline Dimensions 12
Ordering Guide 13

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter ${ }^{1}$	B Version			T Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range Ron	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	45	$V_{S S} \text { to } V_{D D}$ 45	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	$V_{S S} \text { to } V_{D D}$ 45	$\begin{aligned} & \Omega \text { typ } \\ & \Omega \text { max } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 12.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \\ & \pm 0.75 \\ & \pm 0.4 \\ & \pm 0.75 \end{aligned}$	± 5 ± 5 ± 5	$\begin{aligned} & \pm 15 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.75 \\ & \pm 0.4 \\ & \pm 0.75 \end{aligned}$	± 15 ± 30 ± 30	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$ see Figure 12 $V_{D}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} ;$ see Figure 12 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}$; see Figure 13
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or linh		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² ttransition Break-Before-Make Time Delay, t_{D} Off Isolation Channel-to-Channel Crosstalk C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	160 30 5 80 90 6 55	200	200	$\begin{aligned} & 145 \\ & 30 \\ & 5 \\ & 80 \\ & 70 \\ & 6 \\ & 55 \end{aligned}$	200	ns max ns typ ns min dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S} 2}=\mp 10 \mathrm{~V} \text {; see Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \text {; see Figure } 15 \\ & \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 17 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo Iss IL	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	2.5 2.5 2.5	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5.5 \mathrm{~V} \end{aligned}$

[^0]
ADG419

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1}$	B Version			T Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range Ron	40	60	$0 \text { to } V_{D D}$ 70	40	0 to $V_{D D}$ 70	V Ω typ Ω max	$\begin{aligned} & V_{D}=3 \mathrm{~V}, 8.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENT Source OFF Leakage, I (Off) Drain OFF Leakage, I_{D} (Off) Channel ON Leakage, $\mathrm{ID}_{\mathrm{I}} \mathrm{Is}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.1 \\ & \\ & \pm 0.25 \\ & \pm 0.1 \\ & \\ & \pm 0.75 \\ & \pm 0.4 \\ & \pm 0.75 \end{aligned}$	± 5 ± 5 ± 5	$\begin{aligned} & \pm 15 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \\ & \pm 0.75 \\ & \pm 0.4 \\ & \pm 0.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 30 \\ & \pm 30 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V} D \mathrm{DD}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} ; \end{aligned}$ see Figure 12 $V_{D}=12.2 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 12.2 \mathrm{~V} ;$ see Figure 12 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=12.2 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 13
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, Vint Input Current linl or $l_{\text {INH }}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.005 \\ & \pm 0.5 \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $\mathrm{t}_{\text {transition }}$ Break-Before-Make Time Delay, to Off Isolation Channel-to-Channel Crosstalk C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & 180 \\ & 60 \\ & 80 \\ & 90 \\ & 13 \\ & 65 \\ & \hline \end{aligned}$	250	250	$\begin{aligned} & 170 \\ & 60 \\ & 80 \\ & 70 \\ & 13 \\ & 65 \\ & \hline \end{aligned}$	250	ns max ns typ dB typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \mathrm{V}_{\mathrm{S} 1}=0 \mathrm{~V} / 8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S} 2}=8 \mathrm{~V} / 0 \mathrm{~V} ; \text { see Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} ; \text { see Figure } 15 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 17 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo I	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	2.5 2.5	2.5 2.5	$\begin{aligned} & 0.0001 \\ & 1 \\ & 0.0001 \\ & 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L}}=5.5 \mathrm{~V} \end{aligned}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	44 V
VDo to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
VL to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog, Digital Inputs ${ }^{1}$	$V_{S S}-2 V \text { to } V_{D D}+2 V$ or 30 mA , whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty-Cycle Maximum)	100 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Extended (TVersion)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
CERDIP Package, Power Dissipation	600 mW
$\theta_{j A}$, Thermal Impedance	$110^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
PDIP Package, Power Dissipation	400 mW
θ_{JA}, Thermal Impedance	$100^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 sec)	$260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation	400 mW
$\theta_{\text {JA, }}$ Thermal Impedance	$155^{\circ} \mathrm{C} / \mathrm{W}$
MSOP Package, Power Dissipation	315 mW
$\theta_{\text {JA, }}$, Thermal Impedance	$205^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S or D is clamped by internal diodes. Limit current to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG419

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Description

Pin No.	Mnemonic	Description
1	D	Drain terminal. May be an input or an output.
2	S1	Source terminal. May be an input or an output.
3	GND	Ground (0 V) reference.
4	VDD $_{\text {D }}$	Most positive power supply potential.
5	VL 2	Logic power supply (5 V).
6	IN	Logic control input.
7	VSS	Most negative power supply potential in dual-supply applications. In single-supply applications, it may be
8	S2	connected to GND.
8	Source terminal. May be an input or an output.	

Table 5. Truth Table

Logic	Switch 1	Switch 2
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Ron as a Function of $V_{D}\left(V_{S}\right)$, Dual-Supply Voltage

Figure 4. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 5. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

Figure 6. Ron as a Function of $V_{D}\left(V_{S}\right)$, Single-Supply Voltage

Figure 7. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 8. Leakage Currents as a Function of $V_{S}\left(V_{D}\right)$

ADG419

Figure 9. Supply Current (IsuppLr) vs. Input Switching Frequency

Figure 10. Transition Time ($t_{\text {TRANSITION }}$) vs. Power Supply Voltage

ADG419

TEST CIRCUITS

Figure 11. On Resistance

Figure 12. Off Leakage

Figure 13. On Leakage

Figure 14. Transition Time, $t_{\text {TRANSITION }}$

Figure 15. Break-Before-Make Time Delay, to

ADG419

Figure 16. Off Isolation

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
Vss
Most negative power supply potential in dual-supply applications.
In single-supply applications, it may be connected to GND.
\mathbf{V}_{L}
Logic power supply (5 V).

GND

Ground (0 V) reference.
S
Source terminal. May be an input or an output.
D
Drain terminal. May be an input or an output.
IN
Logic control input.
Ron
Ohmic resistance between D and S .
Is (Off)
Source leakage current with the switch off.

I_{D} (Off)

Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current with the switch on.
$V_{D}\left(V_{s}\right)$
Analog voltage on terminals D, S.

Cs (Off)
Off switch source capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
t_{D}
Off time or on time measured between the 90% points of both switches when switching from one address state to the other.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off channel.
$I_{D D}$
Positive supply current.
Iss
Negative supply current.

ADG419

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 18. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
($\mathrm{N}-8$)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR (iN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR

Figure 19. 8-Lead Ceramic Dual In-Line Package [CERDIP] ($Q-8$)
Dimensions shown in inches and (millimeters)

Figure 21. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG419BN	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-8$	
ADG419BNZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Plastic Dual In-Line Package [PDIP]	$\mathrm{N}-8$	
ADG419BR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BRZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BRZ-REEL'	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BRZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package [SOIC_N]	$\mathrm{R}-8$	
ADG419BRM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419BRMZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419BRMZ-REEL ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419BRMZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package [MSOP]	$\mathrm{RM}-8$	
ADG419TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Ceramic Dual In-Line Package [CERDIP]	$\mathrm{Q}-8$	

[^2]
ADG419

NOTES

| ADG419 |
| :--- | :--- |

NOTES

ADG419

NOTES

[^0]: Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part, \# denotes that RoHS compliant part is top or bottom marked.

