

STF16N60M6

N-channel 600 V, 0.26 Ω typ., 12 A MDmesh™ M6 Power MOSFET in a TO-220FP package

Datasheet - production data

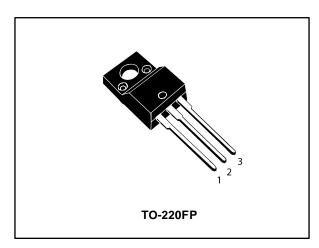
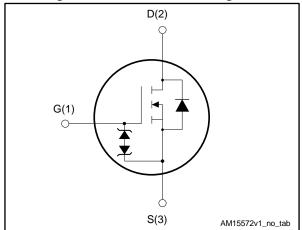



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	lσ
STF16N60M6	600 V	0.32 Ω	12 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LLC converters
- Boost PFC converters

Description

The new MDmeshTM M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent $R_{DS(on)}$ * area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum endapplication efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STF16N60M6	16N60M6	TO-220FP	Tube

Contents STF16N60M6

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

STF16N60M6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
I _D	Drain current (continuous) at T _c = 25 °C	12 ⁽¹⁾	Α
ID	Drain current (continuous) at T _c = 100 °C	7.6 ⁽¹⁾	Α
I _{DM}	Drain current (pulsed)	32 ⁽¹⁾⁽²⁾	Α
P _{TOT}	Total dissipation at T _c = 25 °C	25	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/IIS
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2.5	kV
T _{stg}	Storage temperature range	FF to 150	°C
Tj	Operating junction temperature range	-55 to 150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case		°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	2.5	Α
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	110	mJ

⁽¹⁾ Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq$ 12 A, di/dt \leq 400 A/ μ s; VDS(peak) < V(BR)DSS, VDD = 400 V

 $^{^{(4)}}$ V_{DS} ≤ 480 V

Electrical characteristics STF16N60M6

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zaro goto voltogo droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$ (1)			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 6 A		0.26	0.32	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
Ciss	Input capacitance		-	575	ı	
Coss	Output capacitance	V _{GS} = 100 V, f = 1 MHz,	-	33	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	3	-	Pi
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	104	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	5.2	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 0$	-	16.7	-	
Q _{gs}	Gate-source charge	to 10 V (see Figure 15: "Test circuit for gate charge	-	3.5	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	9.4	-	

Notes:

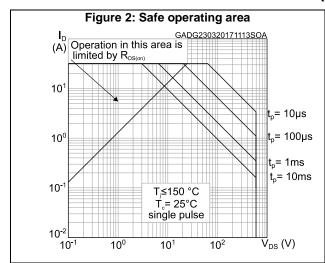
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 6 \text{ A}$	ı	13	ı	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for	-	7.6	-	
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	19.8	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	1	6.8	-	

 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

Table 8: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 12 A			1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	210		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	1.7		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	1	13.8		Α
t _{rr}	Reverse recovery time	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	310		ns
Qrr	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 16: "Test circuit for	ı	3.2		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	15.4		Α

Notes:

 $^{^{(1)}}$ Pulse width is limited by safe operating area.

 $^{^{(2)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

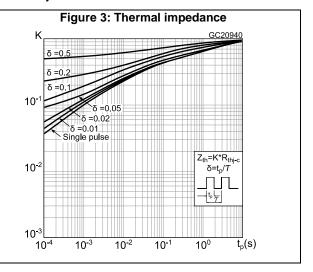
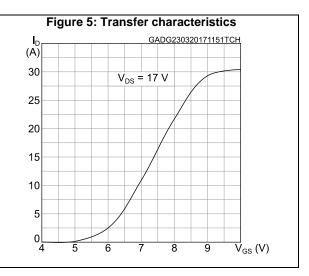
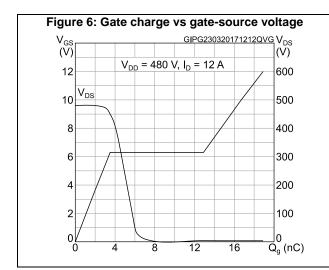




Figure 4: Output characteristics GADG230320171114OCH **I**_D (Α) V_{GS} = 9, 10 V 30 25 8 V 20 15 7 V 10 5 6 V 8 12 16 $\overline{V}_{DS}(V)$

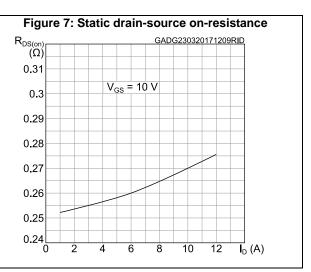


Figure 8: Capacitance variations

C (pF)

103

104

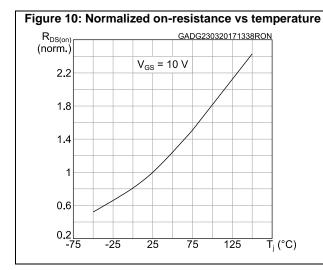
105

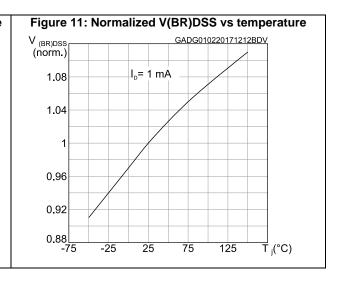
C (pS)

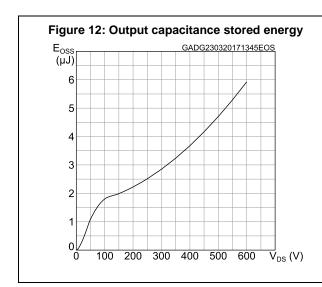
C (pS

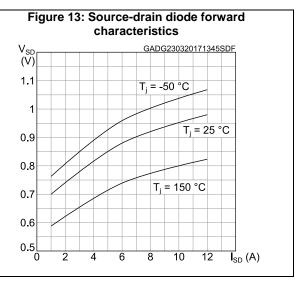
Figure 9: Normalized gate threshold voltage vs temperature $V_{GS(th)}$ (norm.)

1.1 $I_D = 250 \ \mu A$ 1.1


0.9


0.8


0.7


0.6

-75
-25
25
75
125 T_j (°C)

Test circuits STF16N60M6

3 Test circuits

Figure 14: Test circuit for resistive load switching times

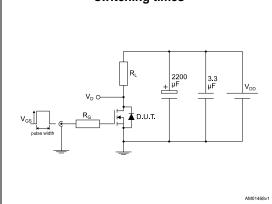


Figure 15: Test circuit for gate charge behavior

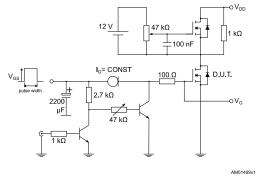


Figure 16: Test circuit for inductive load switching and diode recovery times

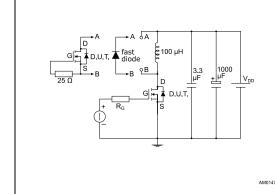


Figure 17: Unclamped inductive load test circuit

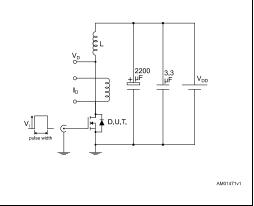


Figure 18: Unclamped inductive waveform

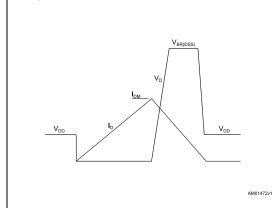
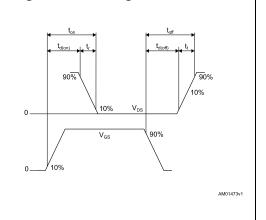



Figure 19: Switching time waveform

STF16N60M6 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

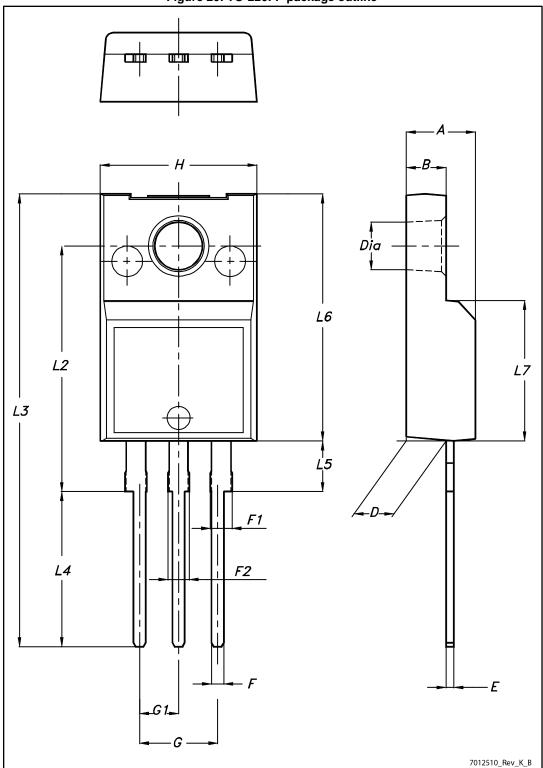


Table 9: TO-220FP package mechanical data

Di			
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF16N60M6

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
23-Mar-2017	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

