
SxX8xSx EV Series

Main Features						
Symbol	Value	Unit				
I _{T(RMS)}	0.8	А				
V _{DRM} /V _{RRM}	400, 600, or 800	V				
Ι _{GT}	5 to 450	μΑ				

Schematic Symbol

Description

This new component series offers high static dv/dt and low turn off time (tq) sensitive SCR. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) and Gas Ignition applications. All SCRs junctions are glass-passivated to ensure long term reliability and parametric stability.

RoHS

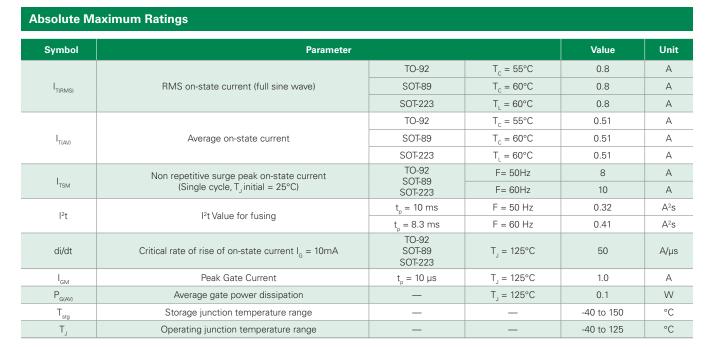
Features

- RoHS compliant and Halogen-Free
- Through-hole and surface mount packages
- Surge current capability > 10Amps
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 800V

Applications

The SxX8xSx EV series is specifically designed for GFCI (Ground Fault Circuit Interrupter) and gas ignition applications.

Additional Information


• High dv/dt noise immunity

Improved turn-off time (t_a)

• Sensitive gate for direct

microprocessor interface

< 25 µsec

Symbol	Description	Test Conditions	Limit		Va	lue		Unit
Symbol	Description	lest Conditions	Limit	SxX8yS1	SxX8yS2	SxX8yS	SxX8yS3	Unit
	DC Gate Trigger Current	$V_{p} = 6V$	MIN.	0.5	1	15	70	μA
I _{GT}	DC Gate ingger Current	$R_L = 100 \Omega$	MAX.	5	50	200	450	μA
V _{gt}	DC Gate Trigger Voltage	$ \begin{array}{c c} V_{\rm D} = 6V \\ R_{\rm L} = 100 \ \Omega \end{array} \qquad {\rm MAX}. \qquad \qquad 0.8 \end{array} $			V			
V _{grm}	Peak Reverse Gate Voltage	I _{RG} = 10μΑ	MIN.	5			V	
I _H	Holding Current	$R_{_{GK}} = 1 \text{ K}\Omega$ Initial Current = 20mA	MAX.	5		10	mA	
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_J = 125^{\circ}C$ $V_D = V_{DRM} N_{RRM}$ Exp. Waveform $R_{GK} = 1 k\Omega$	MIN.	75		200	V/µs	
V_{gD}	Gate Non-Trigger Voltage	$V_D = V_{DRM}$ $R_{GK} = 1 k\Omega$ $T_1 = 125^{\circ}C$	MIN.	0.2		V		
t _q	Turn-Off Time	T _J = 25°C @ 600 V R _{GK} =1 kΩ	MAX.	30	25	25	15	μs
t _{gt}	Turn-On Time	l _g =10mA PW = 15μsec I _τ = 1.6A(pk)	TYP.	2.0	2.0	2.0	4	μs

Note: x = voltage/100, y = package

Static C	Static Characteristics (T _j = 25°C, unless otherwise specified)								
Cumhal	Description	Test Conditions	Lincit	Value			11		
Symbol	Description	Test Conditions Lim	Limit	SxX8yS1	SxX8yS2	SxX8yS	SxX8yS3	Unit	
V _{TM}	Peak On-State Voltage	I _{TM} = 1.6A (pk)	MAX.	1.7		V			
I	Off State Current Deak Ponctitive	$T_{J} = 25^{\circ}C @V_{D} = V_{DRM}$ $R_{GK} = 1 k\Omega$	MAX.		3			μA	
DRM	I _{DRM} Off-State Current, Peak Repetitive	$T_J = 125^{\circ}C @VD = V_{DRM}$ $R_{GK} = 1 k\Omega$	MAX.		500		100	μA	

ermal Resistances								
Symbol	Description	Test Conditio	ns	Value	Unit			
			TO-92	75	°C/W			
R _{euc}	Junction to case (AC)	$I_{T}=0.8A_{(RMS)}^{1}$	SOT-223	30	°C/W			
			SOT-89	50	°C/W			
			TO-92	150	°C/W			
R _{ejc}	Junction to ambient	$I_{T} = 0.8A_{(RMS)}^{1}$	SOT-223	60	°C/W			
			SOT-89	90	°C/W			

1 - 60Hz AC resistive load condition, 100% conduction.

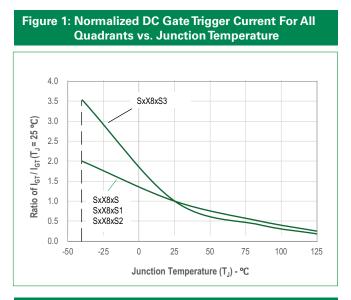
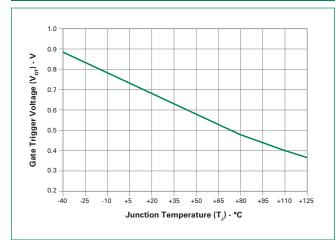
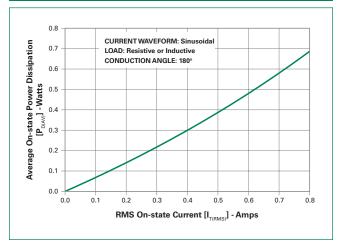




Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

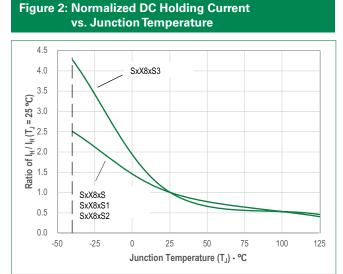
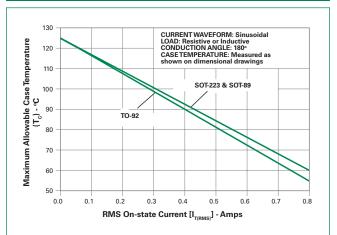



Figure 4: On-State Current vs. On-State Voltage (Typical)

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

^{© 2022} Littelfuse, Inc. Specifications are subject to change without notice. Revised: TK.01/26/22

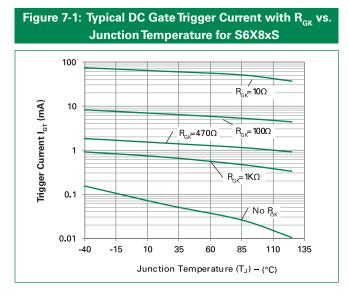
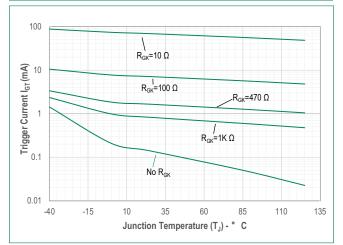



Figure 7-3: Typical DC Gate Trigger Current with R_{GK} vs. Junction Temperature for S6X8xS3

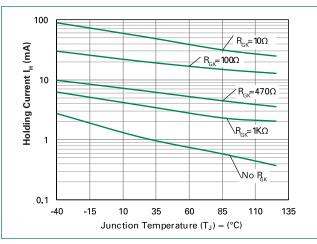


Figure 7-2: Typical DC Gate Trigger Current with R_{GK} vs. Junction Temperature for S8X8xS

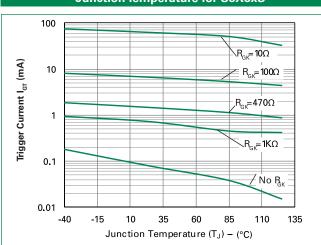


Figure 8-1: Typical DC Holding Current with R_{GK} vs. Junction Temperature for S6X8xS

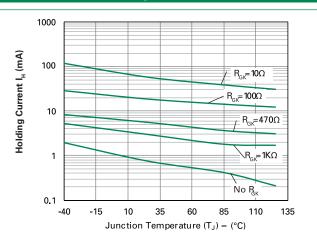
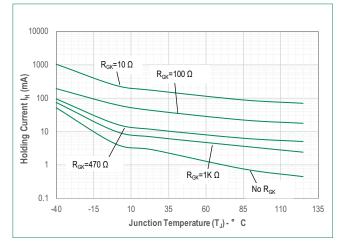



Figure 8-3: Typical DC Holding Current with R_{GK} vs. Junction Temperature for S6X8xS3

^{© 2022} Littelfuse, Inc. Specifications are subject to change without notice. Revised: TK.01/26/22

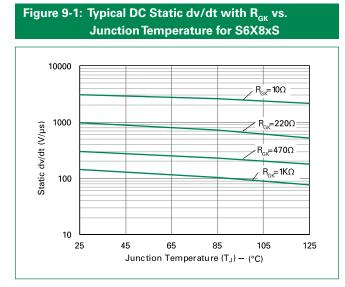
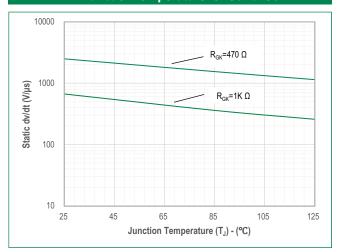



Figure 9-3: Typical DC Static dv/dt with R_{gκ} vs. Junction Temperature for S6X8xS3

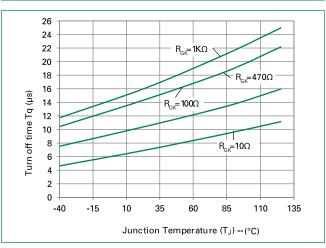


Figure 9-2: Typical DC Static dv/dt with R_{GK} vs. Junction Temperature for S8X8xS

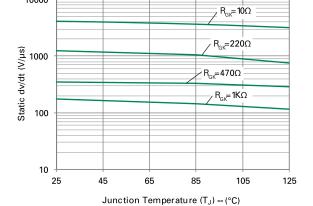
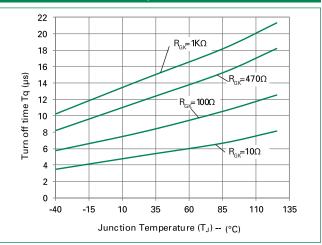
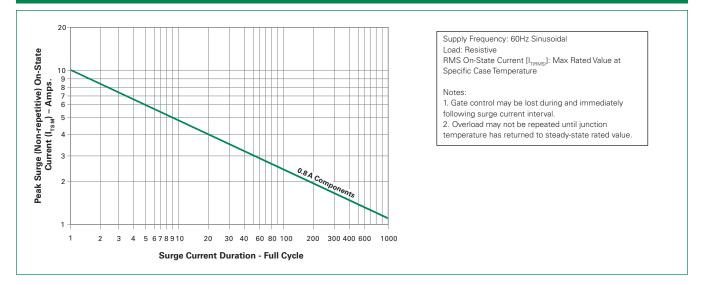




Figure 10-1: Typical DC turn off time with R_{gk} vs. Junction Temperature for S6X8xS

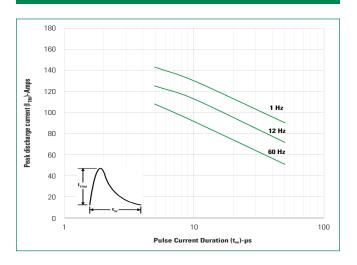


Figure 11: Surge Peak On-State Current vs. Number of Cycles


Figure 12: Peak Repetitive Sinusoidal Pulse Current

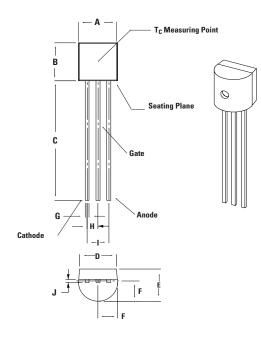
Soldering Parameters

Reflow Cond	dition	Pb – Free assembly
	- Temperature Min (T _{s(min)})	150°C
Pre Heat	- Temperature Max (T _{s(max)})	200°C
	- Time (min to max) (t _s)	60 - 180 secs
Average ram	np up rate (Liquidus Temp) (T_L) to peak	5°C/second max
$T_{S(max)}$ to T_L -	5°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C
nellow	- Time (min to max) (t _s)	60 - 150 seconds
Peak Temper	rature (T _P)	260+ ^{0/-5} °C
Time within	5°C of actual peak Temperature (t_p)	20 – 40 seconds
Ramp-down	Rate	5°C/second max
Time 25°C to	o peak Temperature (T _P)	8 minutes Max.
Do not exce	ed	280°C

Physical Specifications

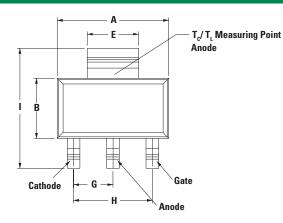
Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

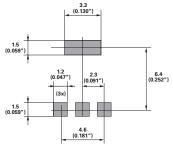
Reliability/Environmental Tests

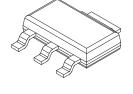

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

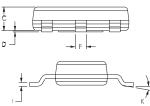
Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

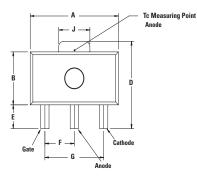


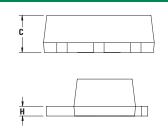

Dimensions – TO-92


Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.175	0.205	4.450	5.200	
В	0.170	0.210	4.320	5.330	
С	0.500	-	12.70	-	
D	0.135	-	3.430	-	
E	0.125	0.165	3.180	4.190	
F	0.080	0.105	2.040	2.660	
G	0.016	0.021	0.407	0.533	
н	0.045	0.055	1.150	1.390	
I	0.095	0.105	2.420	2.660	
J	0.015	0.020	0.380	0.500	

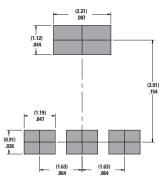

Dimensions – SOT-223

Dimensions in Millimeters (Inches)





Dimensions		Inches		Γ	Villimeter	s
Dimensions	Min	Тур	Max	Min	Тур	Max
Α	0.248	0.256	0.264	6.30	6.50	6.71
В	0.130	0.138	0.146	3.30	3.50	3.70
С	—	—	0.071	_	—	1.80
D	0.001	—	0.005	0.02	—	0.13
E	0.114	0.118	0.124	2.90	3.00	3.15
F	0.024	0.027	0.034	0.60	0.70	0.85
G	—	0.090	—	—	2.30	—
н	—	0.181	_	_	4.60	_
I	0.264	0.276	0.287	6.70	7.00	7.30
J	0.009	0.010	0.014	0.23	0.26	0.35
к			10° I	MAX		


Dimensions – SOT-89

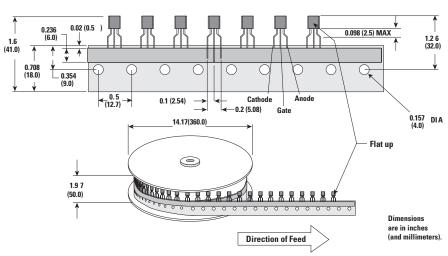
Dimension		Inches		Millimeters			
Dimension	Min	Тур	Max	Min	Тур	Max	
Α	0.173	—	0.181	4.40	—	4.60	
В	0.090	—	0.102	2.29	—	2.60	
С	0.055	—	0.063	1.40	—	1.60	
D	0.155	_	0.167	3.94	_	4.25	
E	0.035	—	0.047	0.89	—	1.20	
F	0.056	—	0.062	1.42	—	1.57	
G	0.115	—	0.121	2.92	—	3.07	
н	0.014	—	0.017	0.35	—	0.44	
I	0.014	—	0.019	0.36	—	0.48	
J	0.064	0.067	0.072	1.62	1.69	1.83	

Pad Layout for SOT-89

Dimensions in Millimeters (Inches)

Product Selector

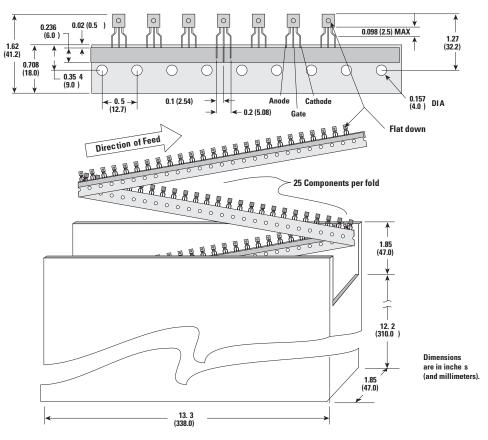
Part Numbr		Voltage	Gate Sensitivity		
	400V	600V	800V	Gate Sensitivity	Package
SxX8BS	Х	Х	-	200 µA	SOT-89
SxX8ES	Х	Х	Х	200 µA	TO-92
SxX8TS	Х	Х	Х	200 µA	SOT-223
SxX8BS1	Х	Х	-	5 μΑ	SOT-89
SxX8ES1	Х	Х	X	5 μΑ	TO-92
SxX8TS1	Х	Х	Х	5 μΑ	SOT-223
SxX8BS2	Х	Х	-	50 µA	SOT-89
SxX8ES2	Х	Х	Х	50 µA	TO-92
SxX8TS2	Х	Х	Х	50 µA	SOT-223
SxX8TS3	-	Х	-	450 µA	SOT-223

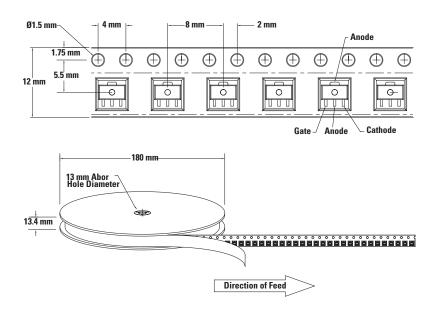

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
SxX8ESy	SxX8ESy	0.217g	Bulk	2500
SxX8ESyAP	SxX8ESy	0.217g	Ammo Pack	2000
SxX8ESyRP	SxX8ESy	0.217g	Tape & Reel	2000
SxX8TSyRP	SxX8TSy	0.120g	Tape & Reel	1000
SxX8BSyRP	хХ8у	0.053g	Tape & Reel	1000
SxX8BSyRP1	хХ8у	0.053g	Tape & Reel	1000

Note: x = voltage/100, y = gate sensitivity

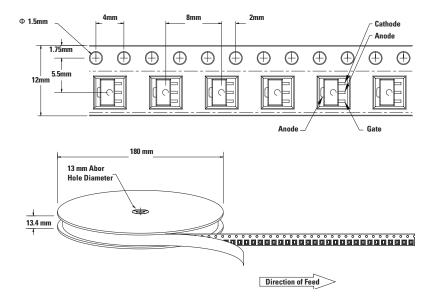
TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications


Meets all EIA-468-C Standards

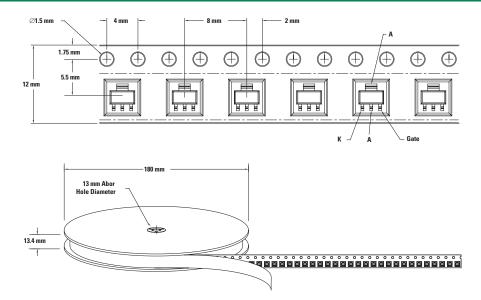


TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

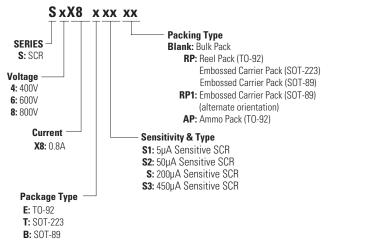
Meets all EIA-468-C Standards

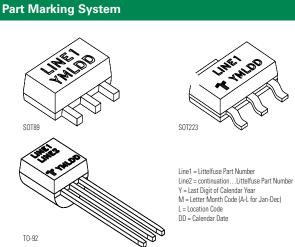


SOT-89 Reel Pack (RP) Specifications



SOT-89 Reel Pack (RP1) Specifications




SOT-223 Reel Pack (RP) Specifications

Part Numbering System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.