## FEATURES

Low cost 10-bit DAC
Low cost AD7520 replacement
Linearity: $1 / 2$ LSB, 1 LSB, or 2 LSB
Low power dissipation
Full 4-quadrant multiplying DAC
CMOS/TTL direct interface
Latch free (protection Schottky not required)
Endpoint linearity

## APPLICATIONS

## Digitally controlled attenuators

Programmable gain amplifiers
Function generation
Linear automatic gain controls

## GENERAL DESCRIPTION

The AD7533 is a low cost, 10-bit, 4-quadrant multiplying DAC manufactured using an advanced thin-film-on-monolithic-
CMOS wafer fabrication process.
Pin and function equivalent to the AD7520 industry standard, the AD7533 is recommended as a lower cost alternative for old AD7520 sockets or new 10-bit DAC designs.
AD7533 application flexibility is demonstrated by its ability to interface to TTL or CMOS, operate on 5 V to 15 V power, and provide proper binary scaling for reference inputs of either positive or negative polarity.

FUNCTIONAL BLOCK DIAGRAM


Figure 1.

Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no

## AD7533* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

## COMPARABLE PARTS

View a parametric search of comparable parts.

## DOCUMENTATION

Application Notes

- AN-137: A Digitally Programmable Gain and Attenuation Amplifier Design
- AN-320A: CMOS Multiplying DACs and Op Amps Combine to Build Programmable Gain Amplifier, Part 1
- AN-912: Driving a Center-Tapped Transformer with a Balanced Current-Output DAC


## Data Sheet

- AD7533: CMOS Low Cost, 10-Bit Multiplying DAC Data Sheet


## REFERENCE MATERIALS

## Solutions Bulletins \& Brochures

- Digital to Analog Converters ICs Solutions Bulletin


## DESIGN RESOURCES

- AD7533 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints


## DISCUSSIONS

View all AD7533 EngineerZone Discussions.

## SAMPLE AND BUY

Visit the product page to see pricing options.

## TECHNICAL SUPPORT $\square$

Submit a technical question or find your regional support number.

## DOCUMENT FEEDBACK

Submit feedback for this data sheet.

## AD7533

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
General Description .....  1
Functional Block Diagram .....  1
Revision History ..... 2
Specifications ..... 3
Absolute Maximum Ratings ..... 4
ESD Caution ..... 4
Terminology ..... 5
Pin Configurations and Function Descriptions ..... 6
REVISION HISTORY
3/07—Rev. B to Rev. C
Changes to Table 1 ..... 3
Changes to Table 2 ..... 4
Changes to Figure 13, Figure 14, and Figure 17 ..... 9
Updated Outline Dimensions ..... 10
Changes to Ordering Guide ..... 12
1/06-Rev. A to Rev. B
at.Universal
Changes to Absolute Maximum Ratings ..... 4
Added Pin Configurations
and Function Descriptions Section ..... 6
Updated Outline Dimensions ..... 10
Changes to Ordering Guide ..... 12
Circuit Description .....  .7
General Circuit Information .....  7
Equivalent Circuit Analysis .....  7
Operation .....  8
Unipolar Binary Code .....  8
Bipolar (Offset Binary) Code. .....  8
Applications .....  9
Outline Dimensions ..... 10
Ordering Guide ..... 12
3/04—Rev. 0 to Rev. A
Changes to Specifications .....  2
Changes to Absolute Maximum Ratings .....  3
Changes to Ordering Guide .....  3
Updated Outline Dimensions .....  7

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, Vout $1=\mathrm{V}_{\text {out }} 2=0 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=10 \mathrm{~V}$, unless otherwise noted.
Table 1.

| Parameter | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | $\mathrm{T}_{\mathrm{A}}=$ Operating Range | Test Conditions |
| :---: | :---: | :---: | :---: |
| ```STATIC ACCURACY Resolution Relative Accuracy \({ }^{1}\) AD7533JN, AD7533AQ, AD7533SQ, AD7533JP AD7533KN, AD7533BQ, AD7533KP, AD7533TE AD7533LN, AD7533CQ, AD7533UQ DNL Gain Error \({ }^{2,3}\) Supply Rejection \({ }^{4}\) \(\Delta\) Gain/ \(\Delta V_{D D}\) Output Leakage Current lout 1 lout2``` | 10 Bits <br> $\pm 0.2 \%$ FSR maximum <br> $\pm 0.1 \%$ FSR maximum <br> $\pm 0.05 \%$ FSR maximum <br> $\pm 1$ LSB maximum <br> $\pm 1 \%$ FS maximum <br> 0.001\%/\% maximum <br> $\pm 5 \mathrm{nA}$ maximum <br> $\pm 5 \mathrm{nA}$ maximum | 10 Bits <br> $\pm 0.2 \%$ FSR maximum <br> $\pm 0.1 \%$ FSR maximum <br> $\pm 0.05 \%$ FSR maximum <br> $\pm 1$ LSB maximum <br> $\pm 1 \%$ FS maximum <br> $0.001 \% / \%$ maximum <br> $\pm 200$ nA maximum <br> $\pm 200$ nA maximum | Digital input $=\mathrm{V}_{\text {INH }}$ <br> Digital inputs $=\mathrm{V}_{\text {INH }}, \mathrm{V}_{\mathrm{DD}}=14 \mathrm{~V}$ to 17 V <br> Digital inputs $=\mathrm{V}_{\text {INL }}, \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ <br> Digital inputs $=\mathrm{V}_{\text {INH }}, \mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ |
| DYNAMIC ACCURACY <br> Output Current Settling Time <br> Feedthrough Error <br> Propagation Delay Glitch Impulse | 600 ns maximum ${ }^{4}$ <br> $\pm 0.05 \%$ FSR maximum ${ }^{5}$ <br> 100 ns typical <br> 100 nV -s typical | $800 n^{5}$ <br> $\pm 0.1 \%$ FSR maximum ${ }^{5}$ <br> 100 ns typical <br> 100 nV-s typical | To $0.05 \%$ FSR; R LOAD $=100 \Omega$, digital inputs $=\mathrm{V}_{\text {INH }}$ to $\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INL }}$ to $\mathrm{V}_{\text {INH }}$ <br> Digital inputs $=\mathrm{V}_{\text {INL, }}, \mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}$, 100 kHz sine wave |
| REFERENCE INPUT Input Resistance (VREF) | $5 \mathrm{k} \Omega \mathrm{min}, 20 \mathrm{k} \Omega$ maximum | $5 \mathrm{k} \Omega$ min, $20 \mathrm{k} \Omega$ maximum $^{6}$ | $11 \mathrm{k} \Omega$ nominal |
| ANALOG OUTPUTS <br> Output Capacitance <br> Clout1 <br> Cloutz <br> Clouti <br> Clout2 | 50 pF maximum ${ }^{5}$ <br> 20 pF maximum ${ }^{5}$ <br> 30 pF maximum ${ }^{5}$ <br> 50 pF maximum ${ }^{5}$ | 100 pF maximum ${ }^{5}$ 35 pF maximum ${ }^{5}$ 35 pF maximum ${ }^{5}$ 100 pF maximum ${ }^{5}$ | Digital inputs $=\mathrm{V}_{\text {INH }}$ <br> Digital inputs $=\mathrm{V}_{\mathrm{INL}}$ |
| DIGITAL INPUTS <br> Input High Voltage ( $\mathrm{V}_{\text {INH }}$ ) <br> Input Low Voltage (Vinı) <br> Input Leakage Current (IIN) <br> Input Capacitance ( $\mathrm{C}_{\mathrm{IN}}$ ) | 2.4 V minimum <br> 0.8 V maximum <br> $\pm 1 \mu \mathrm{~A}$ maximum <br> 8 pF maximum ${ }^{5}$ | 2.4 V minimum <br> 0.8 V maximum <br> $\pm 1 \mu \mathrm{~A}$ maximum <br> 8 pF maximum ${ }^{5}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ and $\mathrm{V}_{\text {DD }}$ |
| POWER REQUIREMENTS <br> VDD <br> $V_{D D}$ Ranges $^{5}$ <br> IDD | $15 \mathrm{~V} \pm 10 \%$ <br> 5 V to 16 V <br> 2 mA maximum <br> $25 \mu \mathrm{~A}$ maximum | $15 \mathrm{~V} \pm 10 \%$ <br> 5 V to 16 V <br> 2 mA maximum <br> $50 \mu \mathrm{~A}$ maximum | Rated accuracy <br> Functionality with degraded performance <br> Digital inputs $=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }} \mathrm{D}$ <br> Digital inputs over $\mathrm{V}_{\mathbb{I}}$ |

[^0]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 2.

| Parameter | Rating |
| :--- | :--- |
| V $_{\text {DD }}$ to GND | $-0.3 \mathrm{~V},+17 \mathrm{~V}$ |
| $\mathrm{R}_{\mathrm{FB}}$ to GND | $\pm 25 \mathrm{~V}$ |
| $\mathrm{~V}_{\text {REF }}$ to GND | $\pm 25 \mathrm{~V}$ |
| Digital Input Voltage Range | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| lout1, lout2 to GND | -0.3 V to VD |
| Power Dissipation (Any Package) |  |
| $\quad$ To $75^{\circ} \mathrm{C}$ | 450 mW |
| $\quad$ Derates above $75^{\circ} \mathrm{C}$ by | $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ |
| Operating Temperature Range |  |
| $\quad$ Plastic (JN, JP, KN, KP, LN Versions) | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Hermetic (AQ, BQ, CQ Versions) | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| $\quad$ Hermetic (SQ, TE, UQ Versions) | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature (Soldering, 10 sec ) | $300^{\circ} \mathrm{C}$ |

## TERMINOLOGY

## Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for ideal zero and full scale and is expressed in \% of full-scale range or (sub) multiples of 1 LSB.

## Resolution

Value of the LSB. For example, a unipolar converter with $n$ bits has a resolution of $\left(2^{-n}\right)\left(V_{\text {ReF }}\right)$. A bipolar converter of $n$ bits has a resolution of $\left[2^{-(\mathrm{n}-1)}\right]\left(\mathrm{V}_{\text {ref }}\right)$. Resolution in no way implies linearity.

## Settling Time

Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, that is, 0 to full scale.

## Gain Error

Gain error is a measure of the output error between an ideal DAC and the actual device output. It is measured with all 1 s in the DAC after offset error is adjusted out and is expressed in LSBs. Gain error is adjustable to zero with an external potentiometer.

## Feedthrough Error

Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches off.

Output Capacitance
Capacity from Iour1 and Iout 2 terminals to ground.

## Output Leakage Current

Current that appears on Iour1 terminal with all digital inputs low or on Iout 2 terminal when all inputs are high.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 2. 16-Lead PDIP Pin Configuration


Figure 3. 16-Lead SOIC Pin Configuration


Figure 4. 16-Lead CERDIP Pin Configuration

Table 3. Pin Function Descriptions

| Pin Number |  | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| 16-Lead PDIP, SOIC, CERDIP | 20-Lead LCC, PLCC |  |  |
| 1 | 2 | lout1 | DAC Current Output. |
| 2 | 3 | lout2 | DAC Analog Ground. This pin should normally be tied to the analog ground of the system. |
| 3 | 4 | GND | Ground. |
| 4 to 13 | 5,7 to 10, 12 to 15, 17 | BIT 1 to BIT 10 | MSB to LSB. |
| 14 | 18 | $V_{D D}$ | Positive Power Supply Input. These parts can be operated from a supply of 5 V to 16 V . |
| 15 | 19 | $V_{\text {REF }}$ | DAC Reference Voltage Input Terminal. |
| 16 | 20 | R ${ }_{\text {fb }}$ | DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting RFB to external amplifier output. |
| NA | 1,6,11,16 | NC | No Connect. |

## CIRCUIT DESCRIPTION

## GENERAL CIRCUIT INFORMATION

The AD7533 is a 10 -bit multiplying DAC that consists of a highly stable thin-film R-2R ladder and ten CMOS current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.
The simplified D/A circuit is shown in Figure 7. An inverted R- 2R ladder structure is used, that is, the binarily weighted currents are switched between the Iour 1 and Iour 2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.


DIGITAL INPUTS (DTL/TTL/CMOS COMPATIBLE)
Figure 7. Functional Diagram
One of the CMOS current switches is shown in Figure 8. The geometries of Device 1, Device 2, and Device 3 are optimized to make the digital control inputs DTL/TTL/CMOS compatible over the full military temperature range. The input stage drives two inverters (Device 4, Device 5, Device 6, and Device 7), which in turn drive the two output N channels. The on resistances of the switches are binarily sealed so that the voltage drop across each switch is the same. For example, Switch 1 in Figure 8 is designed for an on resistance of $20 \Omega$, Switch 2 for $40 \Omega$, and so on. For a 10 V reference input, the current through Switch 1 is 0.5 mA , the current through Switch 2 is 0.25 mA , and so on, thus maintaining a constant 10 mV drop across each switch. It is essential that each switch voltage drop be equal if the binarily weighted current division property of the ladder is to be maintained.


## EQUIVALENT CIRCUIT ANALYSIS

The equivalent circuits for all digital inputs high and digital inputs low are shown in Figure 9 and Figure 10. In Figure 9 with all digital inputs low, the reference current is switched to Iout 2. The current source $\mathrm{I}_{\text {Leakage }}$ is composed of surface and junction leakages to the substrate, while the I/1024 current source represents a constant 1-bit current drain through the termination resistor on the R-2R ladder. The on capacitance of the output N channel switch is 100 pF , as shown on the Iout 2 terminal. The off switch capacitance is 35 pF , as shown on the Iout 1 terminal. Analysis of the circuit for all digital inputs high, as shown in Figure 10, is similar to Figure 9; however, the on switches are now on Terminal Iout 1 . Therefore, there is the 100 pF at that terminal.


Figure 9. Equivalent Circuit—All Digital Inputs Low


Figure 10. Equivalent Circuit—All Digital Inputs High

## OPERATION

## UNIPOLAR BINARY CODE

Table 4. Unipolar Binary Operation (2-Quadrant Multiplication)

| Digital Input |  |
| :--- | :--- |
| MSB | ASB |
| (Vout as shown in Figure 11) |  |

Nominal LSB magnitude for the circuit of Figure 11 is given by

$$
L S B=V_{R E F}\left(\frac{1}{1024}\right)
$$



NOTES

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. C1 PHASE COMPENSATION ( 5 pF TO 15pF) MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER.

Figure 11. Unipolar Binary Operation (2-Quadrant Multiplication)

## BIPOLAR (OFFSET BINARY) CODE

Table 5. Unipolar Binary Operation
(4-Quadrant Multiplication)

| Digital Input |  | Analog Output <br> ( $\mathrm{V}_{\text {out }}$ as shown in Figure 12) |
| :---: | :---: | :---: |
| MSB | LSB |  |
| 1111111111 |  | $+V_{\text {REF }}\left(\frac{511}{512}\right)$ |
| 100 | 001 | $+V_{\text {REF }}\left(\frac{1}{512}\right)$ |
| 100 | 000 | 0 |
| 011 | 111 | $-V_{\text {REF }}\left(\frac{1}{512}\right)$ |
| 000 | 001 | $-V_{\text {REF }}\left(\frac{511}{512}\right)$ |
| 000 | 000 | $-V_{\text {REF }}\left(\frac{512}{512}\right)$ |

Nominal LSB magnitude for the circuit of Figure 12 is given by

$$
L S B=V_{R E F}\left(\frac{1}{512}\right)
$$



Figure 12. Bipolar Operation (4-Quadrant Multiplication)

## APPLICATIONS



Figure 14. Programmable Function Generator


Figure 17. Digitally Programmable Limit Detector

Figure 15. Divider (Digitally Controlled Gain)


Figure 16. Modified Scale Factor and Offset

## OUTLINE DIMENSIONS



Figure 18. 16-Lead Plastic Dual In-Line Package [PDIP] ( N -16)
Dimensions shown in inches and (millimeters)


COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR

Figure 19. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)


CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 20. 16-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-16)
Dimensions shown in inches and (millimeters)


CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 21. 20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20-1)
Dimensions shown in inches and (millimeters)


Figure 22. 20-Lead Plastic Leaded Chip Carrier [PLCC]
(P-20)
Dimensions shown in inches and (millimeters)

## ORDERING GUIDE

| Model | Temperature Range | Package Description | Package Option | Nonlinearity (\% FSR max) |
| :---: | :---: | :---: | :---: | :---: |
| AD7533ACHIPS |  |  | DIE |  |
| AD7533JN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | N-16 | $\pm 0.2$ |
| AD7533JNZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | $\mathrm{N}-16$ | $\pm 0.2$ |
| AD7533KN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | $\mathrm{N}-16$ | $\pm 0.1$ |
| AD7533KNZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | $\mathrm{N}-16$ | $\pm 0.1$ |
| AD7533LN | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | N-16 | $\pm 0.05$ |
| AD7533LNZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Plastic Dual In-Line Package [PDIP] | $\mathrm{N}-16$ | $\pm 0.05$ |
| AD7533JP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.2$ |
| AD7533JP-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.2$ |
| AD7533JPZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.2$ |
| AD7533JPZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.2$ |
| AD7533KP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.1$ |
| AD7533KP-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.1$ |
| AD7533KPZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.1$ |
| AD7533KPZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20-Lead Plastic Leaded Chip Carrier [PLCC] | P-20 | $\pm 0.1$ |
| AD7533KR | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Standard Small Outline Package [SOIC_W] | RW-16 | $\pm 0.1$ |
| AD7533KR-REEL | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Standard Small Outline Package [SOIC_W] | RW-16 | $\pm 0.1$ |
| AD7533KRZ ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Standard Small Outline Package [SOIC_W] | RW-16 | $\pm 0.1$ |
| AD7533KRZ-REEL ${ }^{1}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Standard Small Outline Package [SOIC_W] | RW-16 | $\pm 0.1$ |
| AD7533AQ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.2$ |
| AD7533BQ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.1$ |
| AD7533CQ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.05$ |
| AD7533SQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.2$ |
| AD7533UQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.05$ |
| AD7533UQ/883B | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 16-Lead Ceramic Dual In-Line Package [CERDIP] | Q-16 | $\pm 0.05$ |
| AD7533TE/883B | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 20-Terminal Ceramic Leadless Chip Carrier [LCC] | E-20-1 | $\pm 0.1$ |

${ }^{1} \mathrm{Z}=$ RoHS compliant part.


[^0]:    ${ }^{1}$ FSR = full-scale range
    ${ }^{2}$ Full scale (FS) $=V_{\text {REF }}$.
    ${ }^{3}$ Maximum gain change from $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$ is $\pm 0.1 \%$ FSR.
    ${ }^{4}$ AC parameter, sample tested to ensure specification compliance.
    ${ }^{5}$ Guaranteed, not tested.
    ${ }^{6}$ Absolute temperature coefficient is approximately $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

