BAV99W, BAV99RW

SC-70/SOT-323 Dual Series Switching Diodes

The BAV99WT1G is a smaller package, equivalent to the BAV99LT1G.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

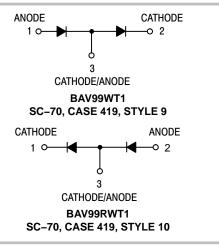
Suggested Applications

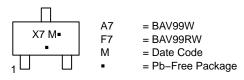
- ESD Protection
- Polarity Reversal Protection
- Data Line Protection
- Inductive Load Protection
- Steering Logic

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	Vdc
Forward Current	١ _F	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V _{RRM}	100	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non–Repetitive Peak Forward Current $t = 1.0 \ \mu s$ $t = 1.0 \ ms$ $t = 1.0 \ s$	I _{FSM}	2.0 1.0 0.5	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

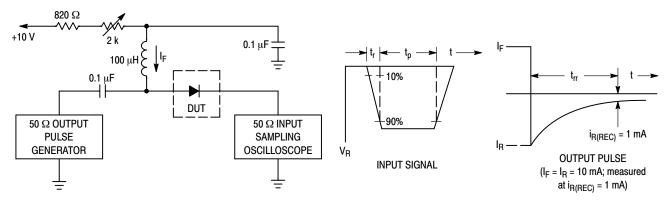
Device	Package	Shipping [†]
BAV99WT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
SBAV99WT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
BAV99RWT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
SBAV99RWT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
NSVBAV99WT3G	SC–70 (Pb–Free)	10,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAV99W, BAV99RW

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR−5 Board, (Note 1) T _A = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	625	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-65 to +150	°C


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Reverse Breakdown Voltage $(I_{(BR)} = 100 \ \mu A)$	V _(BR)	100	-	Vdc
Reverse Voltage Leakage Current $(V_R = 100 \text{ Vdc})$ $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _R	- - -	1.0 30 50	μAdc
Diode Capacitance ($V_R = 0, f = 1.0 \text{ MHz}$)	CD	_	1.5	pF
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	V _F	- - - -	715 855 1000 1250	mVdc
Reverse Recovery Time (I _F = I _R = 10 mAdc, $i_{R(REC)}$ = 1.0 mAdc) (Figure 1) R _L = 100 Ω	t _{rr}	_	6.0	ns
Forward Recovery Voltage ($I_F = 10 \text{ mA}, t_f = 20 \text{ ns}$)	V _{FR}	_	1.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

Notes: (a) A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA. (b) Input pulse is adjusted so I_{R(peak)} is equal to 10 mA. (c) t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

BAV99W, BAV99RW

CURVES APPLICABLE TO EACH DIODE

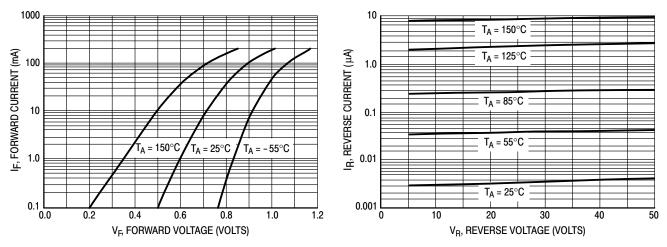


Figure 2. Forward Voltage

Figure 3. Leakage Current

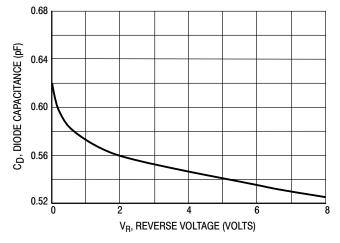
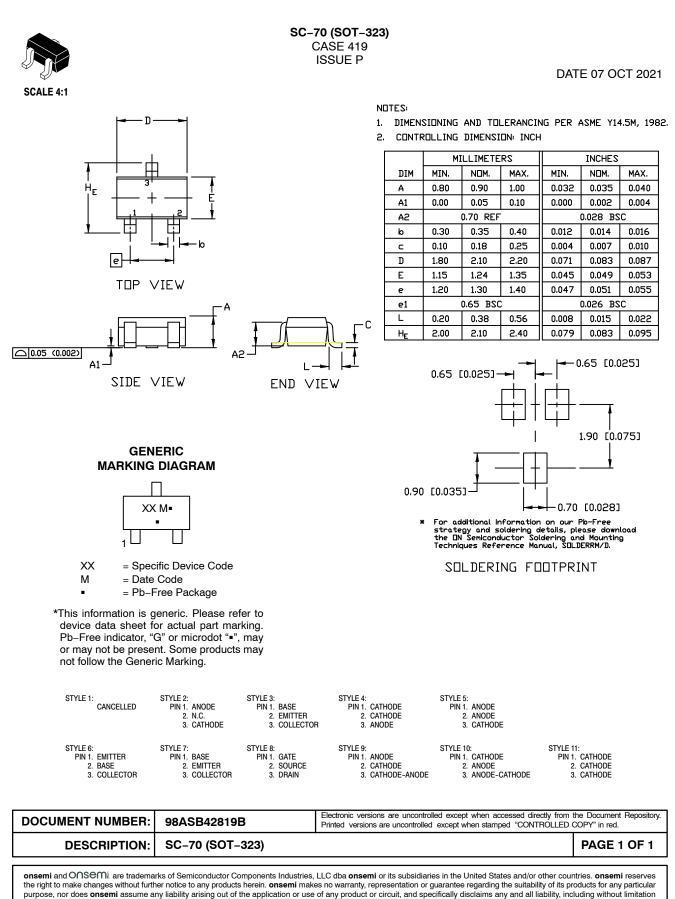



Figure 4. Capacitance

ONSEM¹.

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond