

Spec No.: DS70-2008-0032 Effective Date: 12/15/2009

Revision: -

LITE-ON DCC

RELEASE

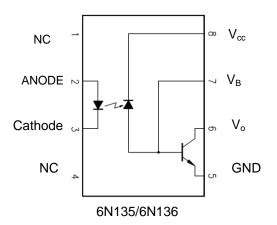
BNS-OD-FC001/A4

Property of Lite-on Only

6N135, **6N136**Single Channel, High Speed Optocouplers

Jan.2009

Description


The 6N135/6 consists of a high efficient AlGaAs Light Emitting Diode and a high speed optical detector. This design provides excellent AC and DC isolation between the input and output sides of the Optocoupler. Connection for the bias of the photodiode improves the speed that of a conventional phototransistor coupler by reducing the base-collector capacitances. The internal shield ensures high common mode transient immunity. A guaranteed common mode transient immunity is up to 1KV/ μ sec.

Features

- High speed 1MBd typical
- Available in Dual-in-line, Wide lead spacing, Surface mounting package.
- Storable output.
- UL, CSA approval

Functional Diagram

Truth Table (Positive Logic)

Trutti Table (1 ositive Logie)				
LED	OUT			
ON	L			
OFF	Н			

A 0.1µF bypass Capacitor must be connected between Pin8 and Pin5

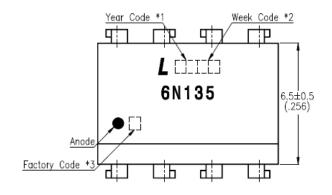
Application

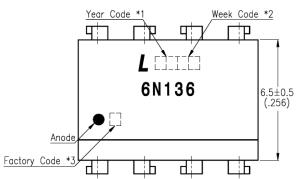
- High Voltage Isolation
- Isolation in line receivers
- Feedback element in switching mode power supplier
- Power transistor isolation in motor drives
- Interface between Microprocessor system, computer and their peripheral
- Replace pulse transformers.
- Replace slower optocoupler isolators.

Part No.: 6N135 / 6N136 series Page: 1 of 15

Property of Lite-on Only

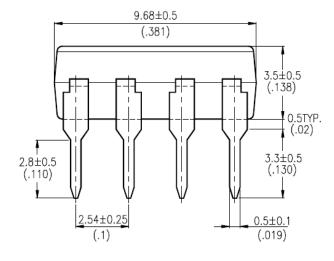
Ordering Information

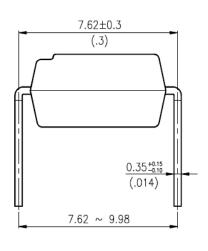

		Minimum CMR																				
Part	Option	dV/dt (V/μs)	V _{CM} (V)	CTR	Remarks																	
					Single Channel, DIP-8																	
6N135	M			10																	7	Single Channel, Wide Lead Spacing
	S	1000	1000			Single Channel, SMD-8																
		1000	10		10	10	10	10	10	10	10	10	10		Single Channel, DIP-8							
6N136	M			19	Single Channel, Wide Lead Spacing																	
	S				Single Channel, SMD-8																	


Part No.: 6N135 / 6N136 series Page: 2 of 15

Property of Lite-on Only

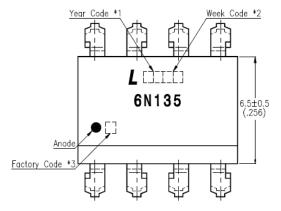
Package Dimensions

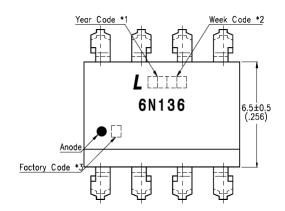

8-pin DIP Package (6N135 / 6N136)



- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark (Z: Taiwan, Y: Thailand).

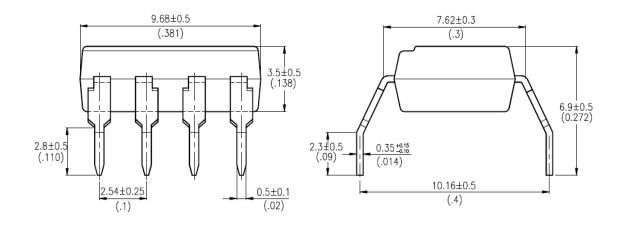
Dimensions are in Millimeters and (Inches).


Part No.: 6N135 / 6N136 series Page: 3 of 15


BNS-OD-C131/A4

Property of Lite-on Only

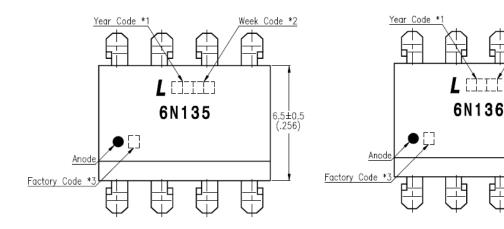
Package Dimensions


8-pin DIP Wide Lead Spacing Package (6N135M / 6N136M)

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark (Z: Taiwan, Y: Thailand).

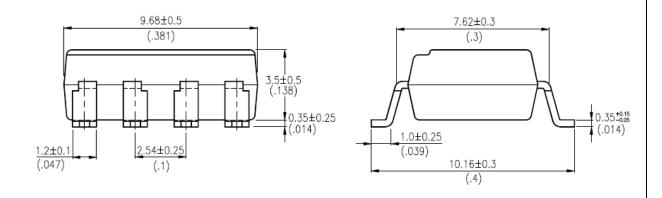
Dimensions are in Millimeters and (Inches).

Part No.: 6N135 / 6N136 series Page: 4 of 15


Property of Lite-on Only

Week Code *2

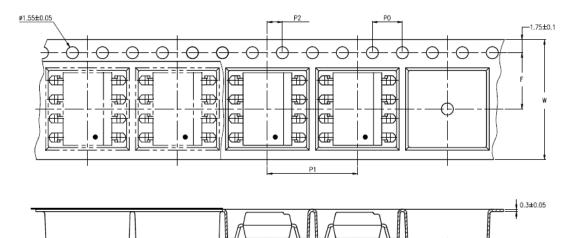
6.5±0.5 (.256)


Package Dimensions

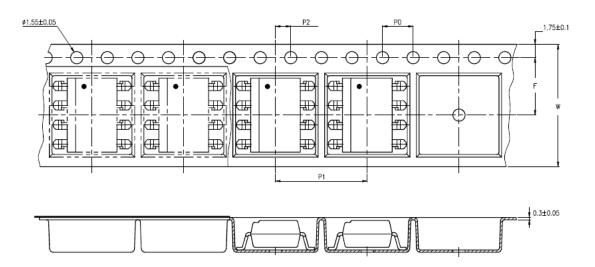
8-pin DIP Surface Mount Package (6N135S / 6N136S)

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark (Z: Taiwan, Y: Thailand).

Dimensions are in Millimeters and (Inches).



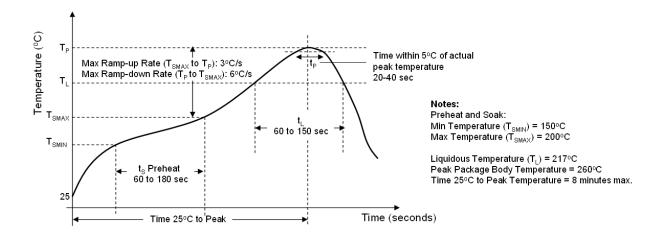
Part No.: 6N135 / 6N136 series Page: 5 of 15


Property of Lite-on Only

Taping Dimensions

6N135S/136S-TA

6N135S/136S-TA1



Description	Symbol	Dimensions in millimeters (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P0	4 ± 0.1 (.15)
Distance of compartment	F P2	7.5 ± 0.1 (.295) 2 ± 0.1 (.079)
Distance of compartment to compartment	P1	12 ± 0.1 (.472)

Part No.: 6N135 / 6N136 series Page: 6 of 15

Property of Lite-on Only

Recommended Lead Free Reflow Profile

Part No.: 6N135 / 6N136 series Page: 7 of 15

Property of Lite-on Only

Absolute Maximum Ratings*1

Parameter	Symbol	Min	Max	Units	Note
Storage Temperature	T _{ST}	-55	125	°C	
Operating Temperature	T _A	-40	85	°C	
Isolation Voltage	V _{ISO}	5000		V _{RMS}	
Supply Voltage	V _{CC}		15	V	
Lead Solder Temperature * 2			260	°C	2
Input					
Average Forward Input Current	l _F		25	mA	
Reverse Input Voltage	V_R		5	V	
Input Power Dissipation	Pı		45	mW	
Output					
Output Collector Current	Io		8	mA	
Output Collector Voltage	Vo	-0.5	20	V	
Output Collector Power Dissipation	Po		100	mW	

^{1.}Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

2.260°C for 10 seconds. Refer to Lead Free Reflow Profile.

Part No.: 6N135 / 6N136 series Page: 8 of 15

Property of Lite-on Only

Electrical Specifications

Parameters	Test Condition	Symbol	Device	Min	Тур	Max	Units
Input							
Input Forward Voltage	I _F =16mA, T _A =25℃	V_{F}	6N135		1.4	1.7	V
Input Reverse Voltage	I _R = 10μA	BV_R	6N136	5			٧
Detector							
Current transfer ratio	I _F =16mA;Vcc=4.5V; T _A =25°C;Vo=0.4V	CTR	6N135	7	18	50	. %
			6N136	19	24	50	
Logic low output voltage	I_F =16mA;Vcc=4.5V; I_o =1.1mA; T_A =25°C	V	6N135		0.18	0.4	V
output voltage	I_F =16mA;Vcc=4.5V; I_o =3mA; T_A =25°C	- V _{OL}	6N136		0.25	0.4	V
Logic high output oursest	I_F =0mA, Vo=Vcc=5.5V T_A =25 $^{\circ}$ C		6N135			0.5	A
Logic high output current	I _F =0mA, Vo=Vcc=15V T _A =25°C	Іон	^{IOH} 6N136			1	μ A
Logic low supply current	I _F =16mA, V _o =open (Vcc=15V)	I _{ccL}	6N135 6N136		400		μ A
Logic high supply current	$I_F=0$ mA, $V_o=$ open; $T_A=25^{\circ}C$ (Vcc=15V)	I _{ccH}	6N135 6N136			1	μ Α

^{*}All Typical at T_A =25° C

Part No.: 6N135 / 6N136 series Page: 9 of 15

Property of Lite-on Only

Switching Specifications

 $T_A \!\!=\!\! 0 \!\!\sim\!\! 70^\circ\!\!\! \text{C}$, Vcc=5V, unless otherwise specified.

	Parameter	Test Condition	Symbol	Device	Min	Тур	Max	Units
Pro	Propagation Delay Time to Low Output Level	$T_A=25^{\circ}C$ (R _L =4.1K Ω , I _F =16mA)	,	6N135		0.09	1.5	μ s
		$T_A=25^{\circ}C$ (R _L =1.9K Ω , I _F =16mA)	t _{PHL}	6N136		0.1	0.8	μ s
Pro	pagation Delay Time to	$T_A=25^{\circ}C$ ($R_L=4.1K\Omega, I_F=16mA$)		6N135		0.8	1.5	μ s
	h Output Level	T_A =25 $^{\circ}$ C (R _L =1.9K Ω , I _F =16mA)	t _{PLH}	6N136		0.4	0.8	μ s
Log	jic High Common Mode	$I_{\text{F}}\text{=}0\text{mA;V}_{\text{CM}}\text{=}10\text{Vp-p;}\\ R_{\text{L}}\text{=}4.1\text{K}\Omega;T_{\text{A}}\text{=}25\text{C}$	1011	6N135	1			KV/µs
	nsient Immunity	$I_{\text{F}}=0\text{mA}; V_{\text{CM}}=10\text{Vp-p}; \\ R_{\text{L}}=1.9\text{K}\Omega; T_{\text{A}}=25\text{C}$	CM _H	6N136	1			KV/µs
Log	Logic Low Common Mode	$I_{\text{F}}\text{=}0\text{mA;} V_{\text{CM}}\text{=}10\text{Vp-p;} \\ R_{\text{L}}\text{=}4.1\text{K}\Omega; T_{\text{A}}\text{=}25\text{C}$	ICM	6N135	1			KV/µs
Transient Immunity	$I_{\text{F}}\text{=}0\text{mA;} V_{\text{CM}}\text{=}10\text{Vp-p;} \\ R_{\text{L}}\text{=}1.9\text{K}\Omega\text{;} T_{\text{A}}\text{=}25\text{C}$	CM _L	6N136	1			KV/µs	

^{*}All Typical at T_A =25°C

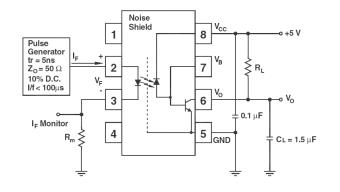
Part No.: 6N135 / 6N136 series Page: 10 of 15

Property of Lite-on Only

Isolation Characteristics

Parameter	Test Condition	Symbol	Min	Тур	Max	Units
Input-Output Insulation Leakage Current	45% RH, t = 5s, V _{I-O} = 3kV DC, T _A = 25°C	I _{I-O}			1.0	μΑ
Withstand Insulation Test Voltage	RH \leq 50%, t = 1min, T _A = 25°C	V _{ISO}	5000			V _{RMS}
Input-Output Resistance	V _{I-O} = 500V DC	R _{I-O}		10 ¹²		Ω

^{*}All Typical at T_A =25°℃


Notes

- 1. A 0.1 μF or bigger bypass capacitor for V_{CC} is needed as shown in Fig.1
- 2. Current Transfer Ratio is defined as the ratio of output collector current lo, to the forward LED input current IF, times 100.
- 3. The 1.9K Ω load represents 1TTL unit load of 1.6mA and the 5.6K Ω pull-up resistor.
- 4. The 4.1K Ω load represents 1LSTTL unit load of 0.36mA and the 6.1K Ω pull-up resistor.

Part No.: 6N135 / 6N136 series Page: 11 of 15

Property of Lite-on Only

Switching Time Test Circuit

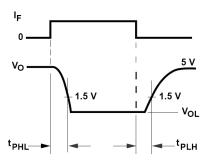
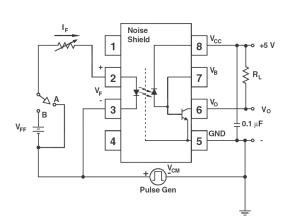
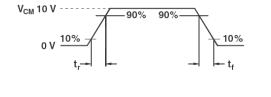




Figure 1: Single Channel Test Circuit for t_{PHL} and t_{PLH}

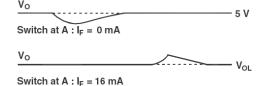


Figure 2: Single Channel Test Circuit for Common Mode Transient Immunity

Part No.: 6N135 / 6N136 series Page: 12 of 15

Property of Lite-on Only

Characteristics Curves

Figure 3: DC and pulsed transfer characteristics

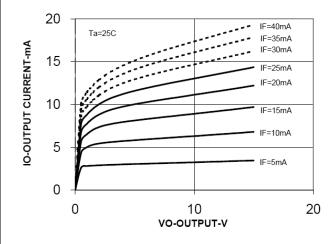


Figure 4: Input current vs. forward voltage

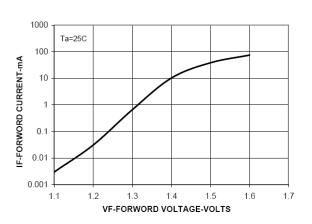


Figure 5: Logic high output current vs. temperature

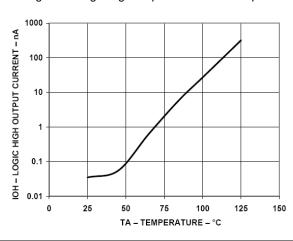


Figure 6: Current transfer ratio vs. input

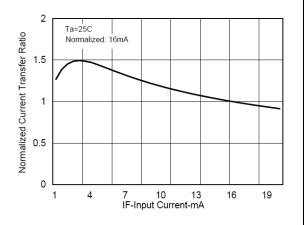


Figure 7: Current transfer ratio vs. temperature

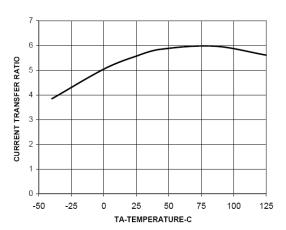
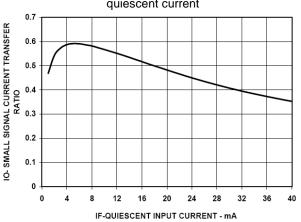



Figure 8: Small-signal current transfer ratio vs. quiescent current

Part No.: 6N135 / 6N136 series Page: 13 of 15

Property of Lite-on Only

Characteristics Curves

Figure 9: Propagation delay time vs. temperature

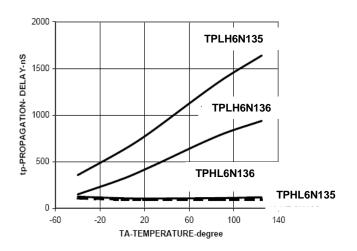
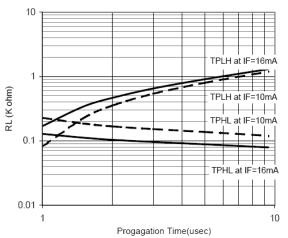



Figure 10: Propagation delay time vs. load resistance

Part No.: 6N135 / 6N136 series Page: 14 of 15

Property of Lite-on Only

110perty of Ente-on Only			
Notice			
Notice			
Specifications of the products displayed herein are subject to change without notice.			
The products shown in this publication are designed for the general use in electronic ay office automation equipment, communications devices, audio/visual equi instrumentation and application. For equipment/devices where high reliability or safet as space applications, nuclear power control equipment, medical equipment, etc, pasales representatives.	pment, elect ty is required, s	trical such	
Part No.: 6N135 / 6N136 series	Page: 15	α f	15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Lite-On:

6N135S-TA1 6N135M 6N135S 6N136M 6N136S-TA1 6N136S