

SNLS298D - MAY 2008 - REVISED APRIL 2013

DS90LV027AQ Automotive LVDS Dual Differential Driver

Check for Samples: DS90LV027AQ

FEATURES

- AECQ-100 Grade 1
- >600 Mbps (300MHz) Switching Rates
- 0.3 ns Typical Differential Skew
- 0.7 ns Maximum Differential Skew
- 3.3V Power Supply Design
- Low Power Dissipation (46 mW @ 3.3V Static)
- Flow-Through Design Simplifies PCB Layout
- Power Off Protection (Outputs in High Impedance)
- Conforms to TIA/EIA-644 Standard
- 8-Lead SOIC Package Saves Space

DESCRIPTION

The DS90LV027AQ is a dual LVDS driver device optimized for high data rate and low power applications. The device is designed to support data rates in excess of 600Mbps (300MHz) utilizing Low Voltage Differential Signaling (LVDS) technology. The DS90LV027AQ is a current mode driver allowing power dissipation to remain low even at high frequency. In addition, the short circuit fault current is also minimized.

The device is in a 8-lead SOIC package. The DS90LV027AQ has a flow-through design for easy PCB layout. The differential driver outputs provides low EMI with its typical low output swing of 360 mV. It is perfect for high speed transfer of clock and data. The DS90LV027AQ can be paired with its companion dual line receiver, the DS90LV028AQ, or with any of TI's LVDS receivers, to provide a high-speed point-to-point LVDS interface.

Connection Diagram

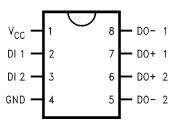
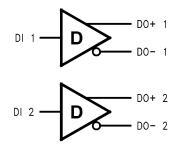



Figure 1. Dual-In-Line See Package Number D0008A

Functional Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

DS90LV027AQ

SNLS298D-MAY 2008-REVISED APRIL 2013

TEXAS INSTRUMENTS

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾

Supply Voltage (V _{CC})	-0.3V to +4V
Input Voltage (DI)	-0.3V to (V _{CC} + 0.3V)
Output Voltage (DO±)	-0.3V to +3.9V
Maximum Package Power Dissipation @ +25°C	
D Package	1068 mW
Derate D Package	9.71 mW/°C above +25°C
Package Thermal Resistance (4-Layer, 2 oz. Cu, JEDEC)	
θ _{JA}	103.0°C/W
θ _{JC}	50.0°C/W
Storage Temperature Range	−65°C to +150°C
Lead Temperature Range Soldering	
(4 sec.)	+260°C
Maximum Junction Temperature	+135°C
ESD Ratings	
HBM ⁽³⁾	≥ 8kV
MM ⁽⁴⁾	≥ 250V
CDM ⁽⁵⁾	≥ 1250V

(1) Absolute Maximum Ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that the devices should be operated at these limits. Electrical Characteristics specifies conditions of device operation.

(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

(3) Human Body Model, applicable std. JESD22-A114C

(4) Machine Model, applicable std. JESD22-A115-A

(5) Field Induced Charge Device Model, applicable std. JESD22-C101-C

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Temperature (T _A)	-40	25	+125	C°

Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified. (1)(2)(3)

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER CHARACTERISTIC	S					
V _{OD}	Output Differential Voltage	R _L = 100Ω	DO+,	250	360	450	mV
ΔV_{OD}	V _{OD} Magnitude Change	(Figure 2)	DO-		1	35	mV
V _{OH}	Output High Voltage				1.4	1.6	V
V _{OL}	Output Low Voltage			0.9	1.1		V
V _{OS}	Offset Voltage			1.125	1.2	1.375	V
ΔV_{OS}	Offset Magnitude Change			0	3	25	mV
I _{OXD}	Power-off Leakage	$V_{OUT} = V_{CC}$ or GND, $V_{CC} = 0V$			±1	±10	μA
I _{OSD}	Output Short Circuit Current				-5.7	-8	mA

⁽¹⁾ Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD}.

(2) All typicals are given for: $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$.

(3) The DS90LV027AQ is a current mode device and only function with datasheet specification when a resistive load is applied to the drivers outputs.

SNLS298D - MAY 2008 - REVISED APRIL 2013

Electrical Characteristics (continued)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter		Conditions			Тур	Max	Units
DIFFEREN	TIAL DRIVER CHARACTERISTI	CS						
V _{IH}	Input High Voltage			DI	2.0		V _{CC}	V
V _{IL}	Input Low Voltage						0.8	V
I _{IH}	Input High Current	$V_{IN} = 3.3V \text{ or}$	2.4V			<u>+2</u>	±10	μA
I _{IL}	Input Low Current	V _{IN} = GND or	V _{IN} = GND or 0.5V			±1	±10	μA
V _{CL}	Input Clamp Voltage	I _{CL} = −18 mA			-1.5	-0.6		V
I _{CC}	Power Supply Current	No Load	$V_{IN} = V_{CC}$ or GND	V _{CC}		8	14	mA
		$R_L = 100\Omega$				14	20	mA

Switching Characteristics

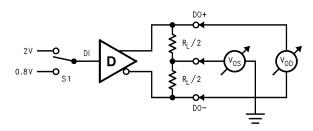
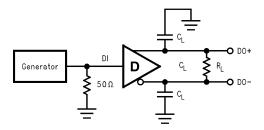
Over Supply Voltage and Operating Temperature Ranges, unless otherwise specified.⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾

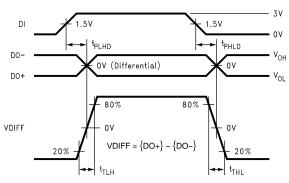
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	ITIAL DRIVER CHARACTERISTICS					
t _{PHLD}	Differential Propagation Delay High to Low	$R_L = 100\Omega, C_L = 15 \text{ pF}$	0.3	0.8	2.0	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 3 and Figure 4)	0.3	1.1	2.0	ns
t _{SKD1}	Differential Pulse Skew t _{PHLD} - t _{PLHD} ⁽⁵⁾		0	0.3	0.7	ns
t _{SKD2}	Channel to Channel Skew ⁽⁶⁾		0	0.4	0.8	ns
t _{SKD3}	Differential Part to Part Skew (7)		0		1.0	ns
t _{SKD4}	Differential Part to Part Skew ⁽⁸⁾		0		1.7	ns
t _{TLH}	Transition Low to High Time		0.2	0.5	1.0	ns
t _{THL}	Transition High to Low Time		0.2	0.5	1.0	ns
f _{MAX}	Maximum Operating Frequency ⁽⁹⁾			350		MHz

(1)

- All typicals are given for: $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$. These parameters are ensured by design. The limits are based on statistical analysis of the device over PVT (process, voltage, (2) temperature) ranges.
- C_L includes probe and fixture capacitance. (3)
- Generator waveform for all tests unless otherwise specified: f = 1 MHz, $Z_0 = 50\Omega$, $t_r \le 1$ ns, $t_f \le 1$ ns (10%-90%). (4)
- t_{SKD1}, |t_{PHLD} t_{PLHD}|, is the magnitude difference in differential propagation delay time between the positive going edge and the negative (5) going edge of the same channel.
- t_{SKD2} is the Differential Channel to Channel Skew of any event on the same device. (6)
- t_{SKD3}, Differential Part to Part Skew, is defined as the difference between the minimum and maximum specified differential propagation (7) delays. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.
- t_{SKD4}, part to part skew, is the differential channel to channel skew of any event between devices. This specification applies to devices (8) over recommended operating temperature and voltage ranges, and across process distribution. t_{SKD4} is defined as |Max - Min| differential propagation delay.
- (9) f_{MAX} generator input conditions: $t_r = t_f < 1$ ns (0% to 100%), 50% duty cycle, 0V to 3V. Output criteria: duty cycle = 45%/55%, $V_{OD} > 100$ 250mV, all channels switching.

Parameter Measurement Information


Figure 2. Differential Driver DC Test Circuit

SNLS298D - MAY 2008 - REVISED APRIL 2013

Parameter Measurement Information (continued)

Figure 4. Differential Driver Propagation Delay and Transition Time Waveforms

APPLICATION INFORMATION

DEVICE PIN DESCRIPTIONS

Pin #	Name	Description
2, 3	DI	TTL/CMOS driver input pins
6, 7	DO+	Non-inverting driver output pin
5, 8	DO-	Inverting driver output pin
4	GND	Ground pin
1	V _{CC}	Positive power supply pin, $+3.3V \pm 0.3V$

4

DS90LV027AQ

SNLS298D-MAY 2008-REVISED APRIL 2013

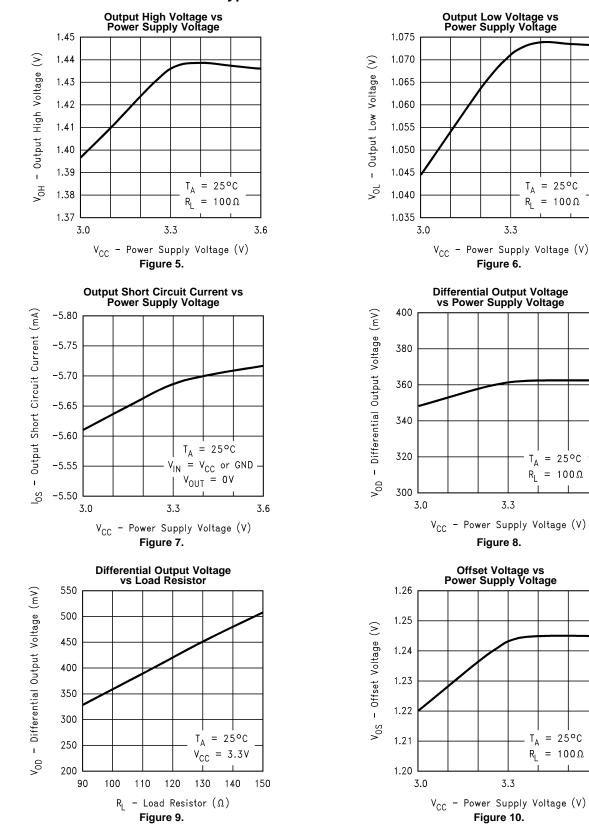
 T_A

 R_L = 100Ω

= 25°C

= 25°C

= 100Ω


3.6

Τ_Α

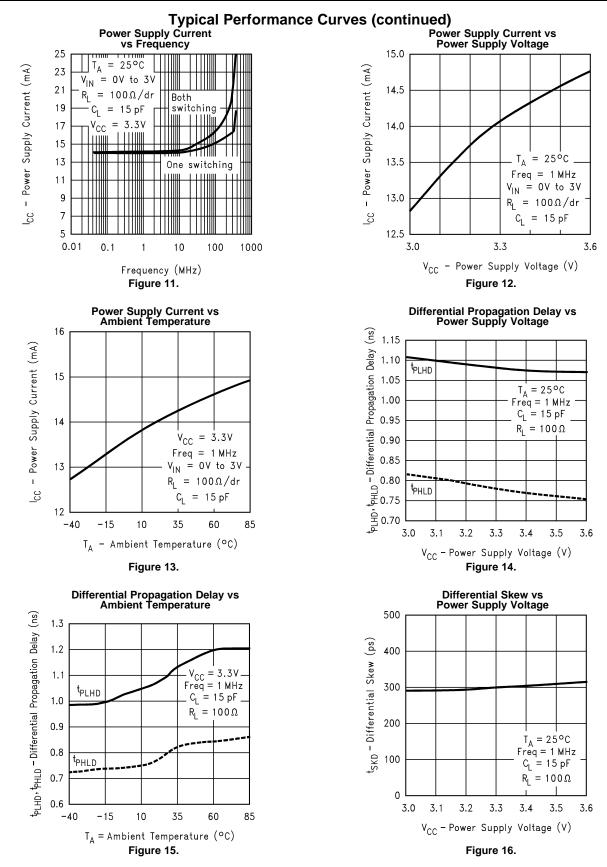
RL

3.6

Typical Performance Curves

= 25°C

3.6


Τ_A

R = 100Ω

SNLS298D-MAY 2008-REVISED APRIL 2013

TEXAS INSTRUMENTS

www.ti.com

6

SNLS298D - MAY 2008 - REVISED APRIL 2013

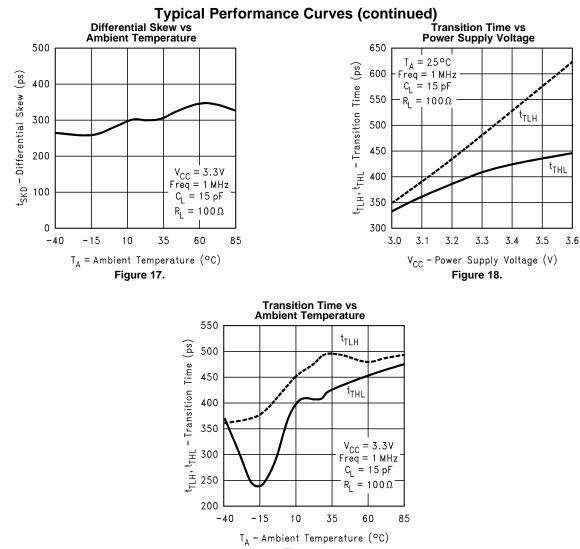


Figure 19.

SNLS298D-MAY 2008-REVISED APRIL 2013

С	hanges from Revision C (April 2013) to Revision D	Page
•	Changed layout of National Data Sheet to TI format	7

Page

www.ti.com

13-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DS90LV027AQMA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS	CU SN	Level-1-260C-UNLIM	-40 to 125	90LV0	Samples
						& no Sb/Br)				27AQM	
DS90LV027AQMAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	90LV0 27AQM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

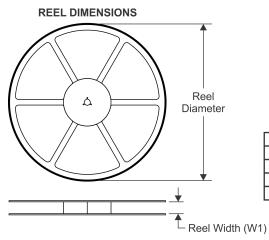
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

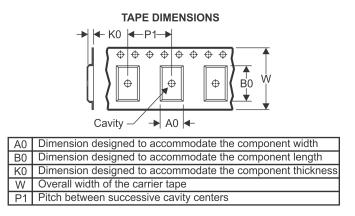
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

13-Sep-2014


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nomina	*All	Il dimensions	s are	nomina	I
----------------------------	------	---------------	-------	--------	---

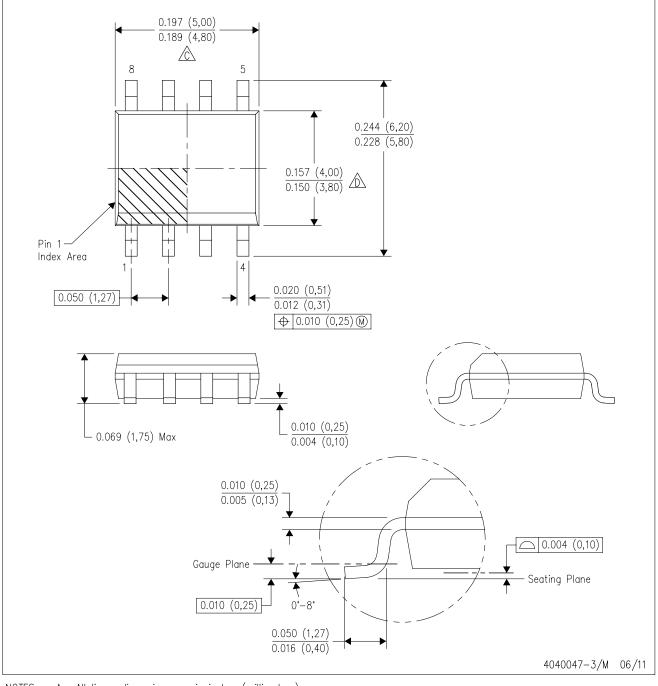

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90LV027AQMAX/NOP B	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Oct-2013



*All dimensions are nominal

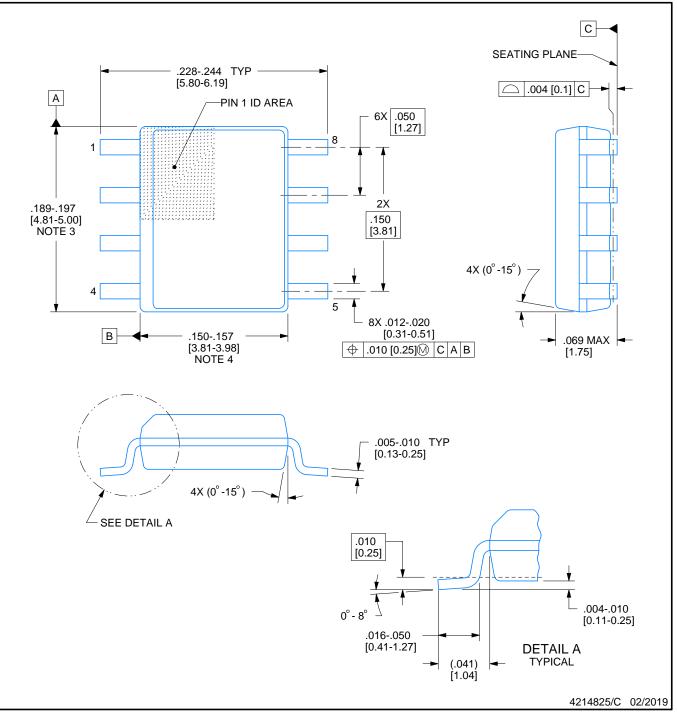
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90LV027AQMAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated