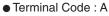
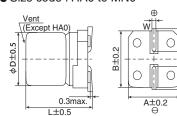
High heat resistance, 125℃

ODownsizing, High capacitance

- ●Endurance : 2,000 to 5,000 hours at 125°C
- For high temperature and high reliability applications (Base station equipment, etc)

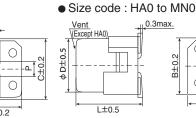

High temperature reflow soldering

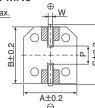
- Solvent resistant type(see PRECAUTIONS AND GUIDELINES)
- Vibration resistant structure
- RoHS2 Compliant
- ●AEC-Q200 compliant : Please contact Chemi-Con for more details, test data, information.


\$SPECIFICATIONS

Items	Characteristics										
Category Temperature Range	-40 to +125℃										
Rated Voltage Range	16 to 100V _{dc}										
Capacitance Tolerance											
Leakage Current	HA0, JA0		l=0.0	I=0.01CV							
	KE0 to MN0		l=0.0	0.03CV							
	Where, I: N	Where, I : Max. leakage current (μ A), \overline{C} : Nominal capacitance (μ F), V : Rated voltage (V) (at 20°C after 2 minute of the control of								oltage (V) (at 20°C after 2 minutes)	
Dissipation Factor	Rated voltage (V _{dc})			16V	25V	35V	50V	63V	80V	100V	
(tan δ)	tanδ (Max.)	HA0, JA0		0.20	0.16	0.14	0.14	0.14	0.12	—	
		KE0 to MN0		0.18	-		0.14	0.14			
		· · ·	ce exce	eds 1,	000µF,	add 0	02 to t	he valu	e abov	/e for e	ach 1,000μF increase. (at 20°C, 120Hz)
Low Temperature	Rated voltage (Vdc)			16V	25V	35V	50V	63V	80V	100V	
Characteristics (Max. Impedance Ratio)	HA0, JA0	Z(-25°C)/Z(+20°C)		2	2	2	2	2	2	_	
(wax. impedance hauo)		Z(-40°C)/Z(+20°C)		4	4	3	3	3	3	—	
	KE0 to MN0	Z(-25°C)/Z(+	/	3	2	2	2	2	2	2	
			Z(-40°C)/Z(+20°C)			3	3	3	3	3	(at 120Hz)
Endurance	The following specifications shall be satisfied when the capacitors are restored to 20°C after the rated voltage is applied for the specified time at 125°C.										
				HA0, JA0 : 2,000hours KE0 to MN0 : 5,000hours							
	Capacitance change $\leq \pm$			\pm 30% of the initial value							
	D.F. (tan δ) ≤ 3		≦30	300% of the initial specified value				alue			
	Leakage current ≦T		≦Th	≦The initial specified value							
Shelf Life	The following specifications shall be satisfied when the capacitors are restored to 20°C after exposing them fo voltage applied. Before the measurement, the capacitor shall be preconditioned by applying voltage according							, s			
	Capacitance change \leq :			$\leq \pm 30\%$ of the initial value							
	D.F. $(\tan \delta)$ ≤ 3		≦30	≦300% of the initial specified value				alue			
	Leakage current ≦Th			The initial specified value							

DIMENSIONS [mm]




Size code : HA0 to MN0

• Terminal Code : G(Vibration resistant structure)

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

,								
Size code	φD	L	Α	В	С	W	Р	
HA0	8	10.0	8.3	8.3	9.0	0.7 to 1.1	3.1	
JA0	10	10.0	10.3	10.3	11.0	0.7 to 1.1	4.5	
KE0	12.5	13.5	13.0	13.0	13.7	1.0 to 1.3	4.2	
KG5	12.5	16.0	13.0	13.0	13.7	1.0 to 1.3	4.2	
LH0	16	16.5	17.0	17.0	18.0	1.0 to 1.3	6.5	
LN0	16	21.5	17.0	17.0	18.0	1.0 to 1.3	6.5	
MHO	18	16.5	19.0	19.0	20.0	1.0 to 1.3	6.5	
MN0	18	21.5	19.0	19.0	20.0	1.0 to 1.3	6.5	

EX) 35V680µF

6d

680

35V

т́мнš

V H

 \oplus

: Dummy terminals

MARKING EX) 35V470µF

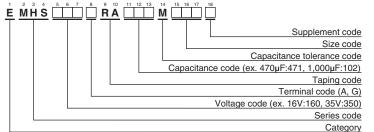
θ

3Q

470

VHS

Symbol


 \oplus

Rated voltage symbol (HA0, JA0)

Rated voltage (Vdc) 16 25 35 50 63 80

C E

Please refer to "Product code guide (surface mount type)"

J K

Alchip[™]-MHS^(Upgrade!)

♦STANDARD RATINGS

wv	Сар	Size code	ESR (Ω ma	ax./100kHz)	Rated ripple current	Part No.	
(V _{dc})	(μF)	Size code	20°C	−40°C	(mArms/125℃, 100kHz)		
	680	HA0	0.19	2.6	620	EMHS160 RA681MHA0G	
	1,000	JA0	0.13	1.7	780	EMHS160 RA102MJA0G	
	1,500	KE0	0.087	1.1	1,060	EMHS160 RA152MKE0S	
16	2,000	KG5	0.070	0.84	1,160	EMHS160 RA202MKG5S	
10	2,700	LH0	0.057	0.59	1,900	EMHS160 RA272MLH0S	
	3,600	MH0	0.055	0.44	2,000	EMHS160 RA362MMH0S	
	4,700	LN0	0.037	0.39	2,520	EMHS160 RA472MLN0S	
	6,200	MN0	0.036	0.28	2,570	EMHS160 RA622MMN0S	
	470	HA0	0.19	2.6	620	EMHS250 RA471MHA0G	
	680	JA0	0.13	1.7	780	EMHS250 RA681MJA0G	
	1,000	KE0	0.087	1.1	1,060	EMHS250 RA102MKE0S	
25	1,300	KG5	0.070	0.84	1,160	EMHS250 RA132MKG5S	
20	1,800	LH0	0.057	0.59	1,900	EMHS250 RA182MLH0S	
	2,400	MH0	0.055	0.44	2,000	EMHS250 RA242MMH0S	
	3,300	LN0	0.037	0.39	2,520	EMHS250 RA332MLN0S	
	4,300	MN0	0.036	0.28	2,570	EMHS250 RA432MMN0S	
	220	HA0	0.19	2.6	620	EMHS350 RA221MHA0G	
	270	HA0	0.19	2.6	620	EMHS350 RA271MHA0G	
	470	JA0	0.13	1.7	780	EMHS350 RA471MJA0G	
	680	KE0	0.087	1.1	1,060	EMHS350 RA681MKE0S	
35	820	KG5	0.070	0.84	1,160	EMHS350 RA821MKG5S	
	1,200	LH0	0.057	0.59	1,900	EMHS350 RA122MLH0S	
	1,500	MH0	0.055	0.44	2,000	EMHS350 RA152MMH0S	
	2,000	LN0	0.037	0.39	2,520	EMHS350 RA202MLN0S	
	2,400	MN0	0.036	0.28	2,570	EMHS350 RA242MMN0S	
	100	HA0	0.65	8.1	440	EMHS500 RA101MHA0G	
	150	JA0	0.45	4.6	600	EMHS500 RA151MJA0G	
	180	JA0	0.45	4.6	600	EMHS500 RA181MJA0G	
[360	KE0	0.16	2.0	880	EMHS500 RA361MKE0S	
50	470	KG5	0.12	1.5	970	EMHS500 RA471MKG5S	
[560	LH0	0.088	0.94	1,640	EMHS500 RA561MLH0S	
	750	MH0	0.085	0.78	1,720	EMHS500 RA751MMH0S	
	1,000	LN0	0.056	0.61	2,230	EMHS500 RA102MLN0S	
	1,300	MN0	0.053	0.45	2,300	EMHS500 RA132MMN0S	
	68	HA0	0.65	8.1	440	EMHS630 RA680MHA0G	
	82	HA0	0.65	8.1	440	EMHS630 RA820MHA0G	
	100	JA0	0.45	4.6	600	EMHS630 RA101MJA0G	
	120	JA0	0.45	4.6	600	EMHS630 RA121MJA0G	
63	240	KE0	0.17	2.5	920	EMHS630 RA241MKE0S	
05	330	KG5	0.13	1.8	1,030	EMHS630 RA331MKG5S	
	430	LH0	0.098	1.3	1,640	EMHS630 RA431 MLH0S	
	560	MH0	0.091	0.98	1,720	EMHS630 RA561MMH0S	
	680	LN0	0.063	0.80	2,230	EMHS630 RA681 MLN0S	
	910	MN0	0.059	0.59	2,300	EMHS630 RA911MMN0S	
	47	HA0	0.65	8.1	440	EMHS800 RA470MHA0G	
	68	JA0	0.45	4.6	600	EMHS800 RA680MJA0G	
	82	JA0	0.45	4.6	600	EMHS800 RA820MJA0G	
	180	KE0	0.17	2.5	920	EMHS800 RA181MKE0S	
80	240	KG5	0.13	1.8	1,030	EMHS800 RA241MKG5S	
	270	LH0	0.098	1.3	1,640	EMHS800 RA271MLH0S	
	360	MH0	0.091	0.98	1,720	EMHS800 RA361MMH0S	
	430	LN0	0.063	0.80	2,230	EMHS800 RA431MLN0S	
	560	MN0	0.059	0.59	2,300	EMHS800 RA561MMN0S	
100	110	KE0	0.17	2.5	920	EMHS101 RA111MKE0S	
	150	KG5	0.13	1.8	1,030	EMHS101 RA151MKG5S	
	160	LH0	0.098	1.3	1,640	EMHS101 RA161MLH0S	
	200	MH0	0.091	0.98	1,720	EMHS101 RA201MMH0S	
	240	LN0	0.063	0.80	2,230	EMHS101 RA241MLN0S	
	330	MN0	0.059	0.59	2,300	EMHS101 RA331MMN0S	

 $\hfill\square$: Enter the appropriate terminal code.

♦RATED RIPPLE CURRENT MULTIPLIERS

Frequency Multipliers

Size code	Capacitance(µF) Frequency(Hz)	120	1k	10k	100k
	47 to 180	0.40	0.75	0.90	1.00
HA0, JA0	220 to 470	0.50	0.85	0.94	1.00
	680 to 1,000	0.60	0.87	0.95	1.00
	110 to 200	0.40	0.75	0.90	1.00
	220 to 620	0.50	0.85	0.94	1.00
KE0 to MN0	680 to 2,000	0.60	0.87	0.95	1.00
	2,400 to 4,300	0.75	0.90	0.95	1.00
	4,700 to 6,200	0.85	0.95	0.98	1.00

The deterioration of aluminum electrolytic capacitors accelerates their life due to the internal heating produced by ripple current. For details, refer to Section "5-3 Ripple Current Effect on Lifetime" in the catalog, Technical Note.

CHEMI-CON ALUMINUM ELECTROLYTIC CAPACITORS

- Always read "Notes on Use" before using the product in order to enable you to use the product correctly and prevent any faults and accidents from occurring.
- Request the Product Specification on the product of NIPPON CHEMI-CON CORPORATION to refer to it as well as this brochure prior to the order of the products. Some specific notes on use of the ordered product may be described in the specifications.
- The products listed in this catalog are designed and manufactured for general electronics equipment use and are not intended for use in applications that can adversely affect human life; where the malfunction of equipment may cause damage to life or property. In addition, our products are not intended to be used in specific applications that may cause a major social impact. Please consult with us in advance of usage of our products in the following listed applications. ① Aerospace equipment ② Power generation equipment such as thermal power, nuclear power etc. ③ Medical equipment ④ Transport equipment (automobiles, trains, ships, etc.) ⑤ Transportation control equipment ⑥ Disaster prevention / crime prevention equipment ⑦ Highly publicized information processing equipment ⑧ Submarine equipment ⑨ Other applications that are not considered general-purpose applications.
- The circuits described as examples in this catalog and the "delivery specifications" are featured in order to show the operations and usage of our products, however, this fact does not guarantee that the circuits are available to function in your equipment systems. We are not in any case responsible for any failures or damage caused by the use of information contained herein. You should examine our products, of which the characteristics are described in the "delivery specifications" and other documents, and determine whether or not our products suit your requirements according to the specifications of your equipment systems. Therefore, you bear final responsibility regarding the use of our products.

Please make sure that you take appropriate safety measures such as use of redundant design and malfunction prevention measures in order to prevent fatal accidents and/or fires in the event any of our products malfunction.

- We strongly recommend our customers to purchase Nippon Chemi-Con products only through our official sales channels. We assume no responsibility for any defects or damages caused by using products purchased from outside our official sales channel or of counterfeit goods. In addition, we will ask the customer to pay the investigation cost for products purchased outside our official sales channel.
- We reserve the right to discontinue production and delivery of products. We do not guarantee that all the products included in this catalog will be available in the future. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products
- We continually strive to improve the quality and reliability of our products, but in any case that our product does not meet our published specifications, please stop using it promptly and contact us immediately. As for compensation for non-conforming goods delivered by Chemi-Con, we will limit it only to goods found in non-compliance of our published specifications. This may be accomplished by a no cost replacement of non-conforming individual products, a credit of the piece price paid per each individual non-conforming product, or in other ways deemed necessary.

In addition, we have an established system with enhanced traceability, therefore we will limit the applicable lot items for any potential compensation.

Product specifications in this catalog are subject to change without notice. Request our product specifications before purchase and/or use. Please use our products based on the information contained in this catalog and product specifications.

Part Numbering System Part Numbering System (Appendix) Standardization Available Items by Manufacturing Locations Environmental Measures Technical Note Precautions and Guidelines Recommended Soldering Conditions Taping, Lead-preforming and Packaging Available Terminals for Snap-in and Screw Mount Type

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Chemi-Con:

EMHS630ARA331MKG5	S EMHS800ARA181MKE08	EMHS160ARA202MKG5	EMHS800ARA241MKG5S
EMHS350ARA821MKG5S	EMHS250ARA102MKE0S	EMHS500ARA361MKE0S	EMHS500ARA471MKG5S
EMHS101ARA151MKG5S	EMHS101ARA111MKE0S	EMHS630ARA241MKE0S	EMHS160ARA152MKE0S
EMHS250ARA132MKG5S	EMHS350ARA681MKE0S	EMHS800ARA561MMN0S	EMHS630ARA561MMH0S
EMHS630ARA681MLN0S	EMHS630ARA911MMN0S	EMHS800ARA271MLH0S	EMHS800ARA361MMH0S
EMHS800ARA431MLN0S	EMHS350ARA242MMN0S	EMHS500ARA102MLN0S	EMHS500ARA132MMN0S
EMHS500ARA561MLH0S	EMHS500ARA751MMH0S	EMHS630ARA431MLH0S	EMHS250ARA242MMH0S
EMHS250ARA332MLN0S	EMHS250ARA432MMN0S	EMHS350ARA122MLH0S	EMHS350ARA152MMH0S
EMHS350ARA202MLN0S	EMHS101ARA201MMH0S	EMHS101ARA241MLN0S	EMHS160ARA362MMH0S
EMHS160ARA472MLN0S	EMHS160ARA622MMN0S	EMHS250ARA182MLH0S	EMHS101ARA331MMN0S
EMHS101ARA161MLH0S			