EMI Filter for T-Flash / MicroSD Interfaces

Description

The CM1624 is a combination EMI filter and line termination device with integrated TVS diodes for use on Multimedia Card interfaces. This state-of-the-art device utilizes solid-state, silicon-avalanche technology for superior clamping performance and DC electrical characteristics. The CM1624 has been optimized for protection of T-Flash/MicroSD interfaces in cellular phones and other portable electronics.

The CM1624 consists of six circuits that includes series impedance matching resistors and pull-up resistors as required by the SD specification. TVS diodes are included on each line for ESD protection. An additional TVS diode connection is included for protection of the voltage (Vcc) bus. Termination resistor value of 40 Ω is provided on the SDData0, SDData1, SDData2, SDData3, CMD, and CLK lines.

Pull–up resistors of 25 k Ω are included on the SDData0, SDData1, SDData2, SDData3 and CMD lines, as well. These may be configured for devices operating in SD or SPI mode. The TVS diodes provide effective suppression of ESD voltages in excess of ±15 kV (contact discharge) per IEC 61000–4–2, level 4. The CM1624 is in a 16–pin, RoHS/WEEE compliant, UDFN 16–pin package. It measures 3.30 x 1.35 x 0.50 mm. The leads are spaced at a pitch of 0.4 mm and are finished with lead–free NiPd.

Features

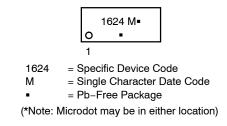
- Bidirectional EMI/RFI Filtering and Line Termination with Integrated ESD Protection
- Provides ESD Protection to IEC61000-4-2: ±15 kV Contact Discharge
- TVS Working Voltage: 5 V
- Termination Resistors: 40Ω
- Pull–up Resistors: 25 k Ω
- Typical Capacitance per Line: $12 \text{ pF} (V_{IN} = 2.5 \text{ V})$
- Protection and Termination for Six Lines + Vcc
- Solid-state Technology

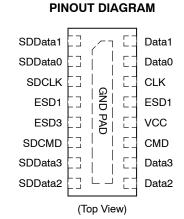
Applications

- T-Flash / MicroSD Interfaces
- MMC Interfaces
- CDMA, GSM, 3G Cell Phones

Mechanical Characteristics

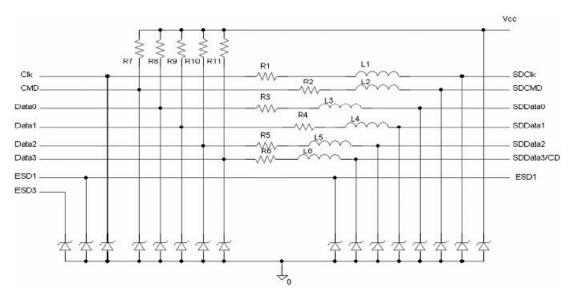
- 0.40 mm, uDFN 16-pin Package
- Nominal Dimensions: 3.30 x 1.35 x 0.50 mm
- Pitch: 0.4 mm
- Pin-lead Finish: NiPd
- RoHS/WEEE Compliance, Lead–free Finish


ON Semiconductor®


http://onsemi.com

DE SUFFIX CASE 517BE

MARKING DIAGRAM



ORDERING INFORMATION

Device	Package	Shipping [†]
CM1624-08DE	UDFN16 (Pb-Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL SCHEMATIC

Table 1. PIN DESCRIPTIONS

Pin	Name	Description Data line #1 input/output with pull-up resistor		
1	SDData1			
2	SDData0	Data line #0 input/output with pull-up resistor		
3	SDCLK	Clock line Input/Output		
4	ESD1	Single ESD		
5	ESD3	Single ESD		
6	SDCMD	Command Line Input/Output		
7	SDData3	Data line #3 input/output with pull-up resistor		
8	SDData2	Data line #2 input/output with pull-up resistor		
9	Data2	Data line #2 input/output with pull-up resistor		
10	Data3	Data line #3 input/output with pull-up resistor		
11	CMD	Command Line Input/Output		
12	VCC	Power Supply ESD Protection		
13	ESD1	Single ESD		
14	CLK	Clock line Input/Output		
15	Data0	Data line #0 input/output with pull-up resistor		
16	Data1	Data line #1 input/output with pull-up resistor		
GND PAD	GND	Ground return to shield		

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units	
Operating Temperature Range	-40 to +85	°C	
Storage Temperature Range	–55 to +150	°C	

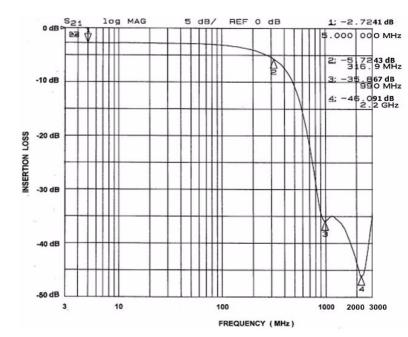
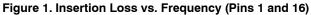

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

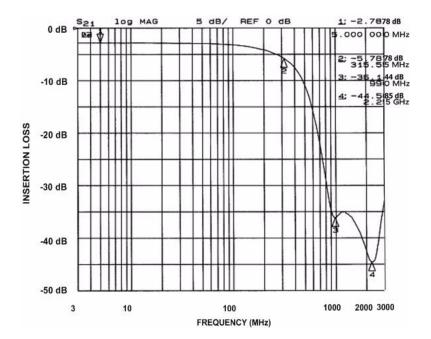
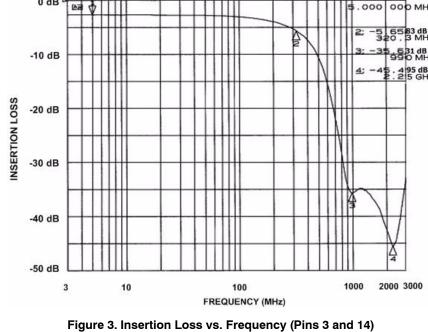
Table 3. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

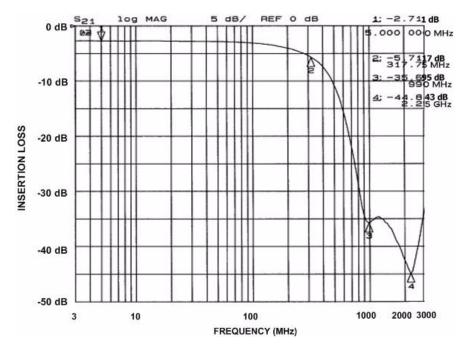

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{CH}	Channel Resistance (R1 to R6)		34	40	46	Ω
L _{CH}	Channel Inductance			20		nH
С	Capacitance per Channel	V _{IN} = 0 V; 1 MHz; 30 mV _{RMS}	16	20	24	pF
		V _{IN} = 2.5 V; 1 MHz; 30 mV _{RMS} ; (Note 2)		12		pF
R _{UP}	Pull-up Resistance (R7 to R11)		21	25	29	kΩ
I _{LEAK}	Diode Leakage Current per Channel	V _{IN} = 3 V		0.1	0.5	μA
V _{SIG}	Signal Clamp Voltage Positive Clamp Negative Clamp	I _{LOAD} = 10 mA I _{LOAD} = -10 mA	5.6 -1.5	6.8 -0.8	9.0 -0.4	V
V _{ESD}	 ESD Protection – Peak Discharge Voltage at any channel input, in system: a) Contact discharge per IEC 61000–4–2 Standard and b) Air discharge per IEC 61000–4–2 Standard 	(Note 2) (Note 2)	±15 ±15			kV
f _C	Cut–off frequency Z_{SOURCE} = 50 Ω , Z_{LOAD} = 50 Ω			300		MHz

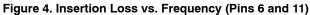
All parameters specified at T_A = 25°C unless otherwise noted.
 This parameter is guaranteed by design and verified by device characterization

PERFORMANCE INFORMATION

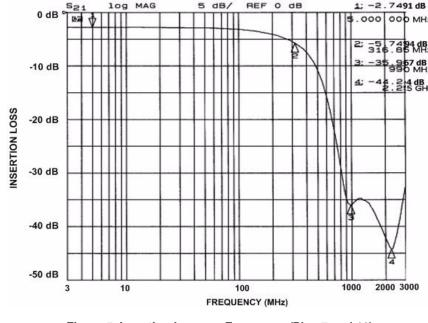
Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ω Environment)


Figure 2. Insertion Loss vs. Frequency (Pins 2 and 15)


5 dB/ REF 0 dB 1: -2.5584 dB 109 MAG 52 0 dB 000 000 MHz (ba 6583 dB F 20 631 dB -10 dB 4: 4 95 dB -20 dB -30 dB -40 dB -50 dB 2000 3000 1000 3 10 100

PERFORMANCE INFORMATION (cont'd)


Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ω Environment)

log MAG 5 dB/ REF 0 dB 1; -2.7491 dB S2 0 dB 000 000 MHz 13. 2: 85 MHz A 31 57 dB O MHz -10 dB 4: NO 4 dB -20 dB -30 dB -40 dB -50 dB 1000 2000 3000 10 100 3 FREQUENCY (MHz)

PERFORMANCE INFORMATION (cont'd)

Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ω Environment)

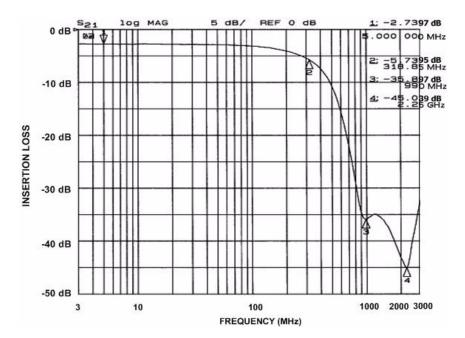
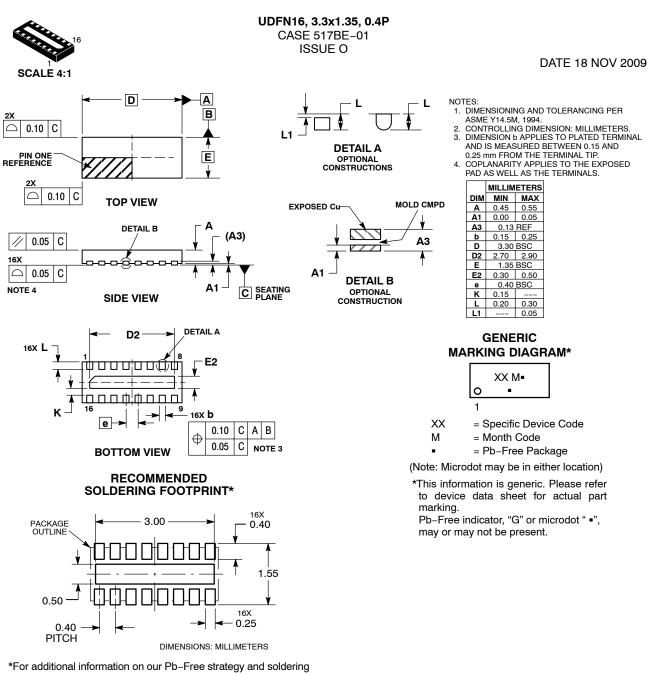



Figure 6. Insertion Loss vs. Frequency (Pins 8 and 9)

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON47062E
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 UDFN16, 3.3X1.35, 0.4P
 PAGE 1 OF 1

 ON Semiconductor and Image are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative