MOSFET - Power, Single

N-Channel

80 V, 10 mΩ, 61 A

NTMFSC010N08M7

Features

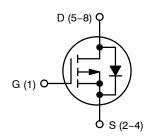
- DUAL COOL Top Side Cooling PQFN Package
- Max $r_{DS(on)} = 10 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- 100% UIL Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	٧
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{θJC}	Steady State	T _C = 25°C	I _D	61	Α
(Notes 1, 3)	State	T _C = 100°C		38.6	
Power Dissipation		T _C = 25°C	P_{D}	78.1	W
R _{θJC} (Note 1)		T _C = 100°C		31.2	
Continuous Drain	Steady State	T _A = 25°C	I _D	12.5	Α
Current R _{θJA} (Notes 1, 2, 3)		T _A = 100°C		7.9	
Power Dissipation		T _A = 25°C	P_{D}	3.3	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.3	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	180	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C
Source Current (Body Diode)			I _S	61	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 3.9 A)			E _{AS}	640	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	10 mΩ @ 10 V	61 A

N-Channel MOSFET

MARKING DIAGRAM

XXXXXX = Specific Device Code Α = Assembly Location

W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NTMFSC010N08M7	POWER 56 DC (Pb-Free)	3000 / Tape & Reel

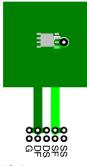
ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•					
Drain to Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				49		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 80 V	T _J = 25°C			1	μΑ
Zero Gate Voltage Drain Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = :	± 20 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 1$	20 μΑ	2.5	3.3	4.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		7.6	10	mΩ
Forward Transconductance	gFS	V _{DS} = 5 V	I _D = 10 A		21.5	40	S
CHARGES, CAPACITANCES & GATE F	RESISTANCE		•				
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1 MHz	V _{DS} = 0 V		2373		pF
	C _{iss}	1	V _{DS} = 40 V		2080	2700	
Output Capacitance	C _{oss}	1			286	430	
Reverse Transfer Capacitance	C _{rss}	1			11	17	
Diode Capacitance	C _{diode}		1		275		
Gate Resistance	R _g	V _{GS} = 0.5 V, f = 1MHz			0.6	4	Ω
Gate Charge (1V)	Q _{G(1V)}	V _{GS} = 0 to 1 V	V _{DS} = 40 V;		2.1		nC
Threshold Gate Charge	Q _{g(th)}	V _{GS} = 0 to 2 V	I _D = 10 A		4.3		
Gate Charge (3V)	Q _{G(3V)}	V _{GS} = 0 to 3 V			6.4		
Gate Charge (4V)	Q _{G(4V)}	V _{GS} = 0 to 4 V			8.6		
Gate Charge (5V)	Q _{G(5V)}	V _{GS} = 0 to 5 V			9.6		
Gate Charge (6V)	Q _{G(6V)}	V _{GS} = 0 to 6 V	1		18.7		
Gate Charge (7V)	Q _{G(7V)}	V _{GS} = 0 to 7 V	1		21.3		
Gate Charge (8V)	Q _{G(8V)}	V _{GS} = 0 to 8 V	1		24		
Gate Charge (9V)	Q _{G(9V)}	V _{GS} = 0 to 9 V	1		26.6		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 0 to 10 V	1		29.3	38	
Gate to Source Gate Charge	Q_{gs}	V _{DS} = 40 V _, I _D =	10 A		11.8		
Gate to Drain "Miller" Charge	Q _{gd}	1			4.3		
Switching Charge	Q_{sw}	1			13.1		
Plateau Voltage	V_{GP}	1			5.5		V
Output Charge	Q _{oss}	V _{DS} = 40 V, V _{GS} = 0 V			26		nC
SWITCHING CHARACTERISTICS (Note	= 5)						
Turn-On Delay Time	t _{d(ON)}	$V_{DD} = 40 \text{ V, } I_{D} = V_{GS} = 10 \text{ V, } R_{GEN}$	10 A,		14		ns
Turn-On Rise Time	t _r	V_{GS} = 10 V, R_{GEN} = 6 Ω			6		ns
Turn-Off Delay Time	t _{d(OFF)}				27		ns
Turn-Off Fall Time	t _f				6		ns
DRAIN – SOURCE DIODE CHARACTE	RISTICS						
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 10 A, V _{GS} :	= 0 V		0.82	1.2	V

^{4.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
5. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
DRAIN – SOURCE DIODE CHARACTERISTICS								
Reverse Recovery Time	T _{RR}	V_{GS} = 0 V, dI_{SD}/dt = 100 A/ μ s, I_{S} = 10 A		41	50	ns		
Charge Time	t _a			24.6				
Discharge Time	t _b			16.1				
Reverse Recovery Charge	Q _{RR}			45	58	nC		


- 4. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 5. Switching characteristics are independent of operating junction temperatures.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter		Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Top Source)	1.6	
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	3.0	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	38	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	81	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	27	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	34	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	16	0000
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	19	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	61	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	16	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	23	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	11	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	13	

 R_{θJA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{θJA} is guaranteed by design while R_{CA} is determined by the user's board design.

a) 38°C/W when mounted on a 1 in2 pad of 2 oz copper.

b) 81°C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, 20.9·10.4·12.7 mm Aluminum Heat Sink, 1 in2 pad of 2 oz copper
- d) Still air, 20.9·10.4·12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2-41.4-11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in2 pad of 2 oz copper
- f) Still air, 45.2-41.4-11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) .200FPM Airflow, No Heat Sink, 1 in2 pad of 2 oz copper
- h) .200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) .200FPM Airflow, 20.9·10.4·12.7 mm Aluminum Heat Sink, 1 in2 pad of 2 oz copper
- j) .200FPM Airflow, 20.9 10.4 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- ,, k) .200FPM Airflow, 45.2-41.4-11.7 mm Aavid Thermalloy Part # 10 L41B 11 Heat Sink, 1 in 2 pad of 2 oz copper
- I) .200FPM Airflow, 45.2 41.4 11.7 mm Aavid Thermalloy Part # 10 L41B 11 Heat Sink, minimum pad of 2 oz copper
- 7. Pulse Test: Pulse Width < 300 _s, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS

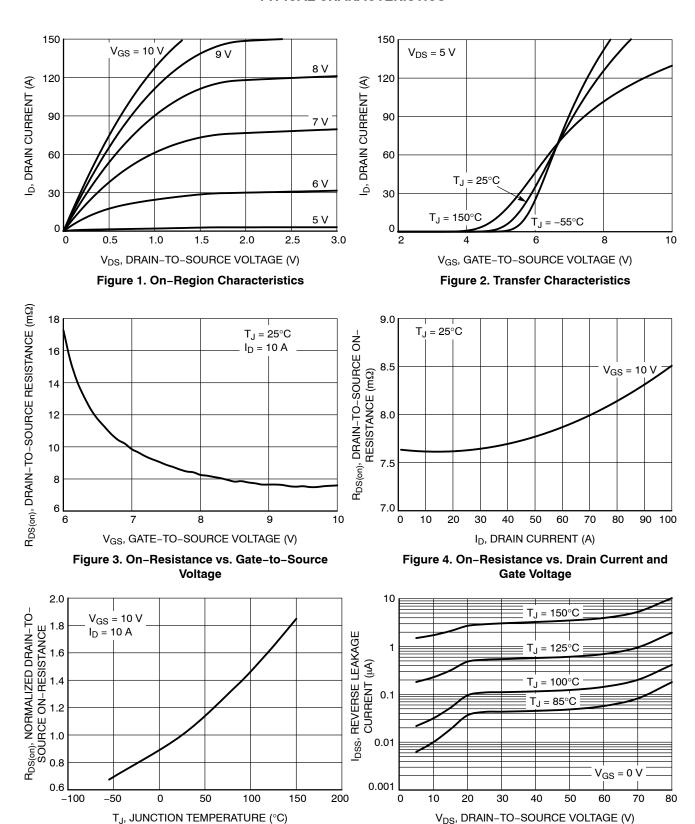
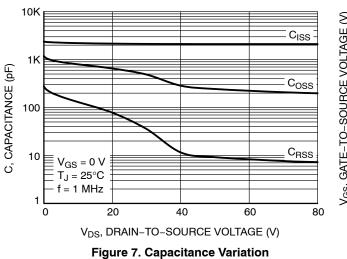



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

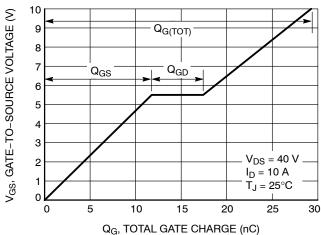


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

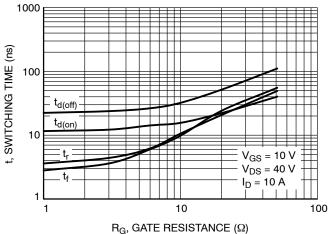


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

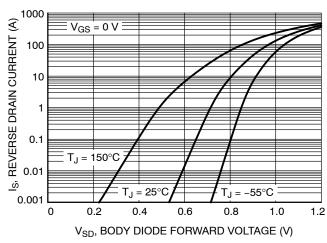


Figure 10. Diode Forward Voltage vs. Current

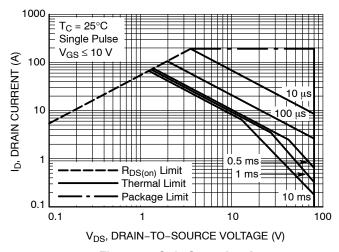


Figure 11. Safe Operating Area

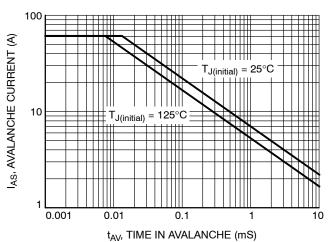
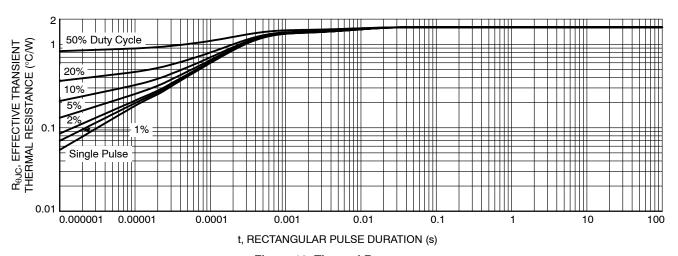
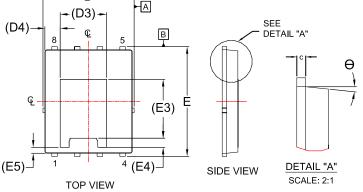


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS




Figure 13. Thermal Response

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PACKAGE DIMENSIONS

DFN8 5.1x6.15, 1.27P, DUAL COOL

CASE 506EG ISSUE D

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS.
 "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM

MILLIMETERS

MAX.

0.95 0.05 0.05 0.51

0.41

0.30

5.10

5.00

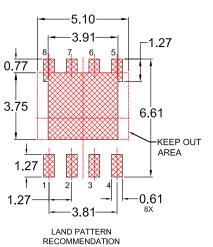
3.97

6.25

5.90

3.58

1.50


0.76

0.72

12°

	J	MIN.	NOM.	Г		
IG	Α	0.85	0.90	Γ		
	A1					
	A2	-	-	Γ		
	b	0.31	0.41			
	b1	0.21	0.31	Γ		
	С	0.20	0.25	Γ		
	D	4.90	5.00	Γ		
	D1	4.80	4.90	Γ		
	D2	3.67	3.82	Γ		
	D3		2.60 RE	F		
	D4		0.86 RE	F		
	Е	6.05	6.15			
	E1	5.70	5.80	Γ		
	E2	3.38	3.48	Г		
	E3	3.30 REF				
	E4	0.50 REF				
	E5	0.34 REF				
	E6	0.30 REF				
	E7	0.52 REF				
	е	1.27 BSC				
	1/2e	0.635 BSC				
	K	1.30	1.40	Ĺ		
	L	0.56	0.66	Ĺ		
	L1	0.52	0.62			
	Φ	0°		ľ		

| 1/2e | 0.10(C A B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B B | 0.05(C A B | 0.05(C

SCALE 2.1

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0