

RF Power LDMOS Transistors

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

These high ruggedness devices are designed for use in high VSWR industrial, medical, broadcast, aerospace, and mobile radio applications. Their unmatched input and output design allows for wide frequency range use from 1.8 to 600 MHz.

Typical Performance: V_{DD} = 50 Vdc

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
87.5–108 (1,3)	CW	600 CW	24.0	81.8
230 (2)	Pulse (100 μsec, 20% Duty Cycle)	600 Peak	24.7	73.5

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
230 (2)	Pulse (100 μsec, 20% Duty Cycle)	> 65:1 at all Phase Angles	4.0 Peak (3 dB Overdrive)	50	No Device Degradation

1. Measured in 87.5-108 MHz broadband reference circuit.

2. Measured in 230 MHz narrowband production test circuit.

3. The values shown are the center band performance numbers across the indicated frequency range.

Features

- Unmatched Input and Output Allowing Wide Frequency Range Utilization
- · Device can be used Single-Ended or in a Push-Pull Configuration
- Qualified up to a Maximum of 50 V_{DD} Operation
- Characterized from 30 to 50 V for Extended Power Range
- Suitable for Linear Application with Appropriate Biasing
- Integrated ESD Protection with Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Recommended drivers: AFT05MS004N (4 W) or MRFE6VS25N (25 W)

Typical Applications

- FM broadcast

- Plasma etching

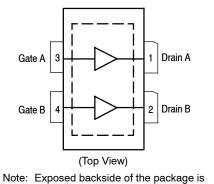
Broadcast

- Aerospace
 - VHF omnidirectional range (VOR)
 - Weather radar
- Mobile Radio
 - HF and VHF communications
 - PMR base stations
- MRI
- Industrial heating/welding

- HF and VHF broadcast

- CO₂ laser generation

Industrial, Scientific, Medical (ISM)


- Particle accelerators (synchrotrons)

© Freescale Semiconductor, Inc., 2015. All rights reserved.

1.8–600 MHz, 600 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS

Note: Exposed backside of the package is the source terminal for the transistors.

Figure 1. Pin Connections

Document Number: MRFE6VP6600N Rev. 0, 5/2015

<u>√RoHS</u>

Table 1. Maximum Ratings

Rating			Symbol	Value	Unit
Drain-Source Voltage			V _{DSS}	-0.5, +133	Vdc
Gate-Source Voltage			V_{GS}	-6.0, +10	Vdc
Storage Temperature Range			T _{stg}	-65 to +150	°C
Case Operating Temperature Range			T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)			TJ	-40 to +225	°C
able 2. Thermal Characteristics					
Characteristic			Symbol	Value ^(2,3)	Unit
Thermal Impedance, Junction to Case Pulse: Case Temperature 78°C, 600 W Pulse, 100 μ sec Pulse Wid I _{DQ(A+B)} = 100 mA, 230 MHz	th, 20% Duty Cyc	cle,	$Z_{\theta JC}$	0.033	°C/W
able 3. ESD Protection Characteristics					
Test Methodology				Class	
Human Body Model (per JESD22-A114)			Class 2	, passes 2500 V	
Machine Model (per EIA/JESD22-A115)			Class E	3, passes 200 V	
Charge Device Model (per JESD22-C101) C			Class IV	/, passes 2000 V	
able 4. Moisture Sensitivity Level					
Test Methodology	Rating	Package Peak Temperature		Unit	
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260			°C
able 5. Electrical Characteristics (T _A = 25°C unless otherwise r	noted)				
Characteristic	Symbol	Min	Тур	Мах	Unit
Off Characteristics ⁽⁴⁾					1
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 50 mAdc)	V _{(BR)DSS}	133	_	_	Vdc
Zero Gate Voltage Drain Leakage Current ($V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}$)	I _{DSS}	-	_	10	μAdo
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 100 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	20	μAdo
On Characteristics					
Gate Threshold Voltage ⁽⁴⁾ (V _{DS} = 10 Vdc, I _D = 888 μAdc)	V _{GS(th)}	1.7	2.2	2.7	Vdc
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 100 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.0	2.6	3.0	Vdc
Drain-Source On-Voltage ⁽⁴⁾ (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	_	0.2	—	Vdc
Forward Transconductance (4) (V _{DS} = 10 Vdc, I _D = 30 Adc)	9 _{fs}	_	28.0	-	S

MTTF calculator available at <u>http://www.freescale.com/rf/calculators</u>.
<u>AN1955</u> – *Thermal Measurement Methodology of RF Power Amplifiers*. Go to <u>http://www.freescale.com/rf</u> and search AN1955.

4. Each side of device measured separately.

(continued)

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Dynamic Characteristics ⁽¹⁾					
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}		2.4		pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	98	—	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	290	_	pF

Functional Tests ⁽²⁾ (In Freescale Production Test Fixture, 50 ohm system) $V_{DD} = 50$ Vdc, $I_{DQ(A+B)} = 100$ mA, $P_{out} = 600$ W Peak (120 W Avg.), f = 230 MHz, 100 μ sec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	23.3	24.7	26.6	dB
Drain Efficiency	η_D	70	73.5	_	%
Input Return Loss	IRL	_	-15	-9	dB

Table 6. Load Mismatch/Ruggedness (In Freescale Production Test Fixture, 50 ohm system) I_{DQ(A+B)} = 100 mA

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
230	Pulse (100 μsec, 20% Duty Cycle)	> 65:1 at all Phase Angles	4.0 Peak (3 dB Overdrive)	50	No Device Degradation

Table 7. Ordering Information

Device	Tape and Reel Information	Package	
MRFE6VP6600NR3		OM-780-4L	
MRFE6VP6600GNR3	R3 Suffix = 250 Units, 32 mm Tape Width, 13-inch Reel	OM-780G-4L	

1. Each side of device measured separately.

2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

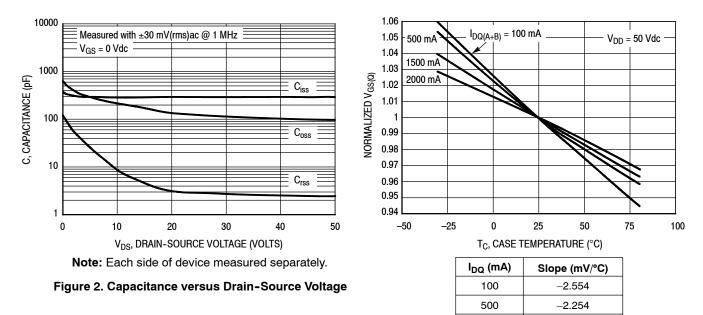


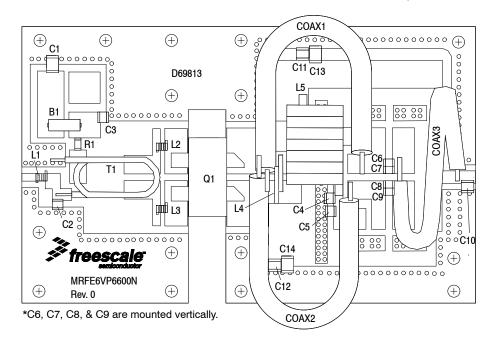
Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

-1.973 -1.573

1500

2000

87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73" × 2.88" (12.0 cm × 7.32 cm)


Table 8. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)

 $V_{DD} = 50 \text{ Vdc}, I_{DQ(A+B)} = 150 \text{ mA}, P_{in} = 3 \text{ W}, \text{ CW}$

Frequency (MHz)	G _{ps} (dB)	η _D (%)	P _{out} (W)
87.5	23.8	82.4	722
98	24.0	81.8	746
108	23.5	80.9	679

87.5–108 MHz BROADBAND REFERENCE CIRCUIT — 4.73" × 2.88" (12.0 cm × 7.32 cm)

Figure 4. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Layout
--

Table 9. MRFE6VP6600N 87.5–108 MHz Broadband Reference Circuit Component Designat	ions and Values
---	-----------------

Part	Description	Part Number	Manufacturer
B1	95 Ω, 100 MHz, Long RF Bead	2743021447	Fair-Rite
C1	6.8 μF Chip Capacitor	C4532X7R1H685M250KB	TDK
C2	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
C3, C6, C7, C8, C9, C11, C12	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C4, C5	470 pF Chip Capacitors	ATC100B471JT200XT	ATC
C10	8.2 pF Chip Capacitor	ATC100B8R2CT500XT	ATC
C13, C14	2.2 µF Chip Capacitors	HMK432B7225KM-T	Taiyo Yuden
Coax1, Coax2	Coax Cable, 12 Ω , 4.72" (12 cm) Shield Length	TC-12	Communication Concepts, RF Power Systems
Coax3	Coax Cable, 50 Ω, 6.69″ (17 cm) Shield Length, 2 Loops, ≈ 0.750″ (19 mm) ∅ (FEP)	Sucoform 141	Huber & Suhner
L1	100 nH Inductor	1812SMS-R10JLC	Coilcraft
L2, L3	8.0 nH, 3 Turn Inductors	A03TKLC	Coilcraft
L4	2 Turns, #14 AWG Copper Loop, ID = 0.26" (7 mm) Inductor, Hand Wound	Copper Wire	
L5	7 Turns, #14 AWG Copper Loop, ID = 0.39" (10 mm) Inductor, Hand Wound	Copper Wire	
Q1	RF Power LDMOS Transistor	MRFE6VP6600NR3	Freescale
R1	11 Ω, 1/4 W Chip Resistor	CRCW120611R0FKEA	Vishay
T1	TUI-LF-9 Transformer	TUI-LF-9	Communication Concepts, RF Power Systems
РСВ	Arlon TC-350, $\epsilon_r = 3.50, 0.03''$	D69813	Shenzhen Multilayer PCB Technology Co.

TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT

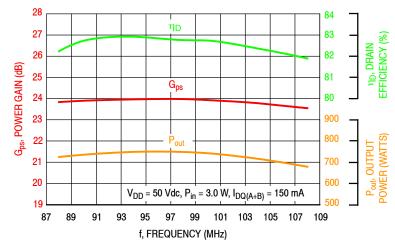


Figure 5. Power Gain, Pout and Drain Efficiency versus Frequency

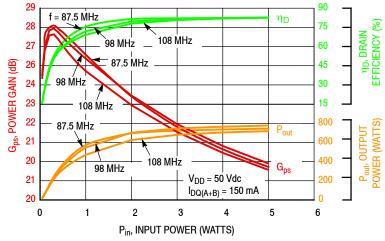
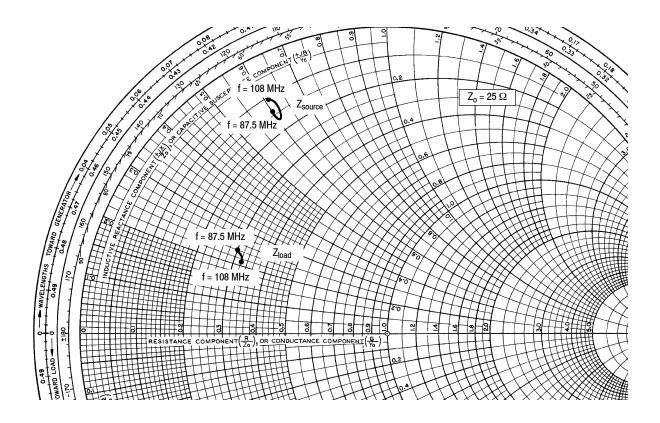



Figure 6. Power Gain, Drain Efficiency and CW Output Power versus Input Power and Frequency

87.5–108 MHz BROADBAND REFERENCE CIRCUIT

f MHz	Z _{source} Ω	Z _{load} Ω
87.5	3.4 + j15.0	7.5 + j6.12
98	3.9 + j14.9	7.9 + j5.57
108	2.8 + j15.3	8.0 + j5.19

 Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

 Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

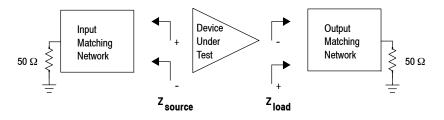
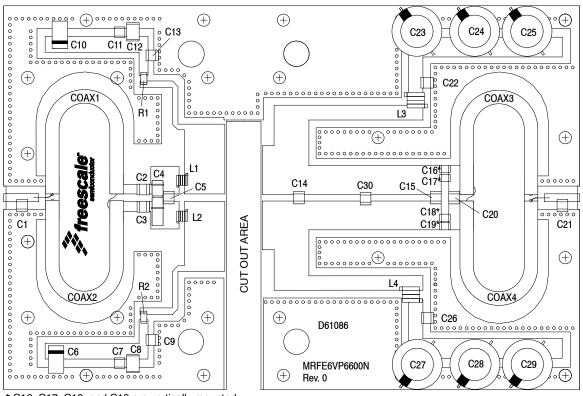


Figure 7. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz

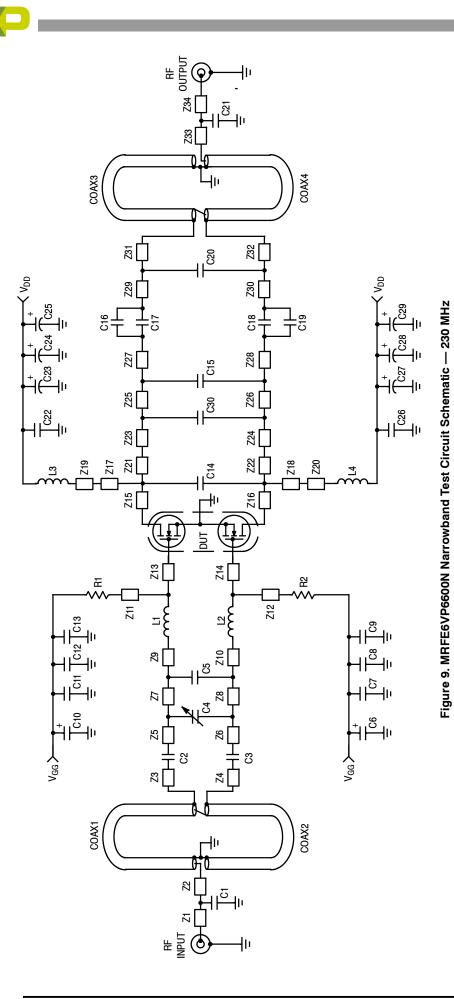
8

230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4" × 6" (10.16 cm × 15.24 cm)


Table 10. 230 MHz Narrowband Performance ⁽¹⁾ V_{DD} = 50 Vdc, $I_{DQ(A+B)}$ = 100 mA, P_{out} = 600 W Peak (120 W Avg.), f = 230 MHz, 100 µsec Pulse Width, 20% Duty Cycle

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain	G _{ps}	23.3	24.7	26.6	dB
Drain Efficiency	η_D	70	73.5	_	%
Input Return Loss	IRL	—	-15	-9	dB

1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.


230 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4" × 6" (10.16 cm × 15.24 cm)

* C16, C17, C18, and C19 are vertically mounted

Figure 8. MRFE6VP6600N Narrowband Test Circuit Component Layout - 230 MHz

Part	Description	Part Number	Manufacturer
C1	12 pF Chip Capacitor	ATC100B120JT500XT	ATC
C2, C3	27 pF Chip Capacitors	ATC100B270JT500XT	ATC
C4	0.8-8.0 pF Variable Capacitor, Gigatrim	27291SL	Johanson
C5	33 pF Chip Capacitor	ATC100B330JT500XT	ATC
C6, C10	22 μ F, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C7, C11	0.1 μF Chip Capacitors		AVX
C8, C12	220 nF Chip Capacitors	C1812C224K5RAC-TU	Kemet
C9, C13, C22, C26	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C14,C20	39 pF Chip Capacitors	ATC100B390JT500XT	ATC
C15	30 pF Chip Capacitor	ATC100B300JT500XT	ATC
C16, C17, C18, C19	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C21	13 pF Chip Capacitor	ATC100B130JT500XT	ATC
C23, C24, C25, C27, C28, C29	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C30	16 pF Chip Capacitor	ATC100B160JT500XT	ATC
Coax1, 2, 3, 4	25 Ω Semi-Rigid Coax, 2.2" (5.6 mm) Shield Length	UT-141C-25	Micro-Coax
L1, L2	5 nH Inductors	A02TKLC	Coilcraft
L3, L4	6.6 nH Inductors	GA3093-ALC	Coilcraft
R1, R2	10 Ω, 1/4 W Chip Resistors	CRCW120610R0JNEA	Vishay
PCB	Arlon AD255A 0.030", $\epsilon_r = 2.55$	D61086	MTL

Microstrip	Description	Microstrip	Description
Z1	0.192" × 0.082" Microstrip	Z19*, Z20*	1.187" × 0.154" Microstrip
Z2	0.175" × 0.082" Microstrip	Z21, Z22	0.104" × 0.507" Microstrip
Z3, Z4	0.170" × 0.100" Microstrip	Z23, Z24	0.590" × 0.300" Microstrip
Z5, Z6	0.116" × 0.285" Microstrip	Z25, Z26	0.731" × 0.300" Microstrip
Z7, Z8	0.116" × 0.285" Microstrip	Z27, Z28	0.056" × 0.300" Microstrip
Z9, Z10	0.108" × 0.285" Microstrip	Z29, Z30	0.055" × 0.300" Microstrip
Z11*, Z12*	Z11*, Z12* 0.872" × 0.058" Microstrip	Z31, Z32	0.061" × 0.300" Microstrip
Z13, Z14	0.412" × 0.726" Microstrip	Z33	0.186" × 0.082" Microstrip
Z15, Z16	0.371" × 0.507" Microstrip	Z34	0.179" × 0.082" Microstrip
Z17*, Z18*	Z17*, Z18* 0.422″ × 0.363″ Microstrip		

Table 12. MRFE6VP6600N Narrowband Test Circuit Microstrips — 230 MHz

* Line lengths include microstrip bends

MRFE6VP6600N MRFE6VP6600GN

RF Device Data Freescale Semiconductor, Inc.

TYPICAL CHARACTERISTICS — 230 MHz

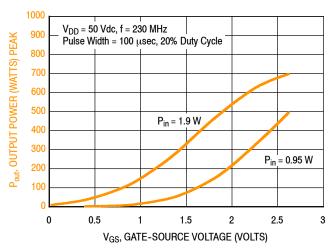
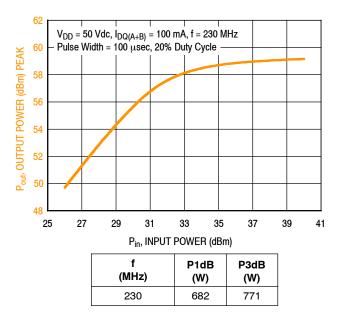
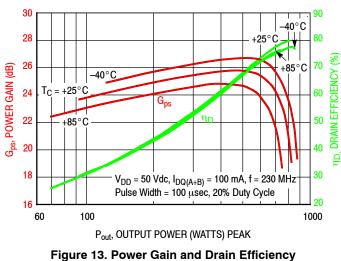
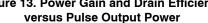





Figure 10. Output Power versus Gate-Source Voltage at a Constant Input Power

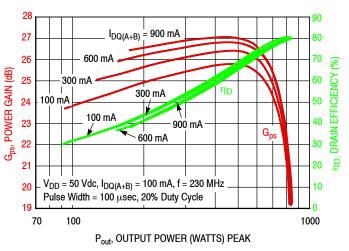
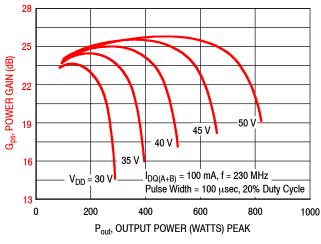
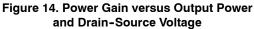




Figure 12. Power Gain and Drain Efficiency versus Output Power and Quiescent Current

230 MHz NARROWBAND PRODUCTION TEST FIXTURE

	f MHz	Z _{source} Ω	Z _{load} Ω
	230	1.9 + j4.8	4.0 + j4.0
Zs		est circuit impedance ate to gate, balance	
Z	ouu	est circuit impedance rain to drain, balance	
Input Matchin	ıg .	Device + Under	

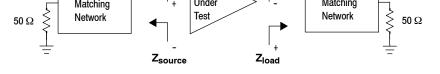
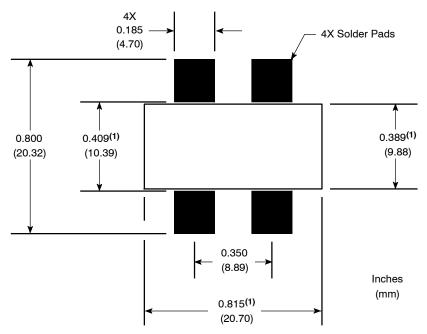
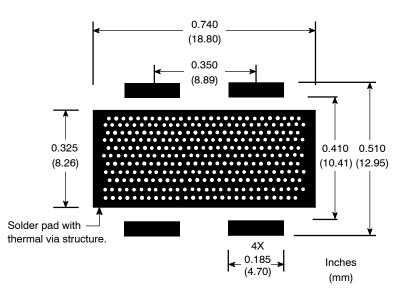
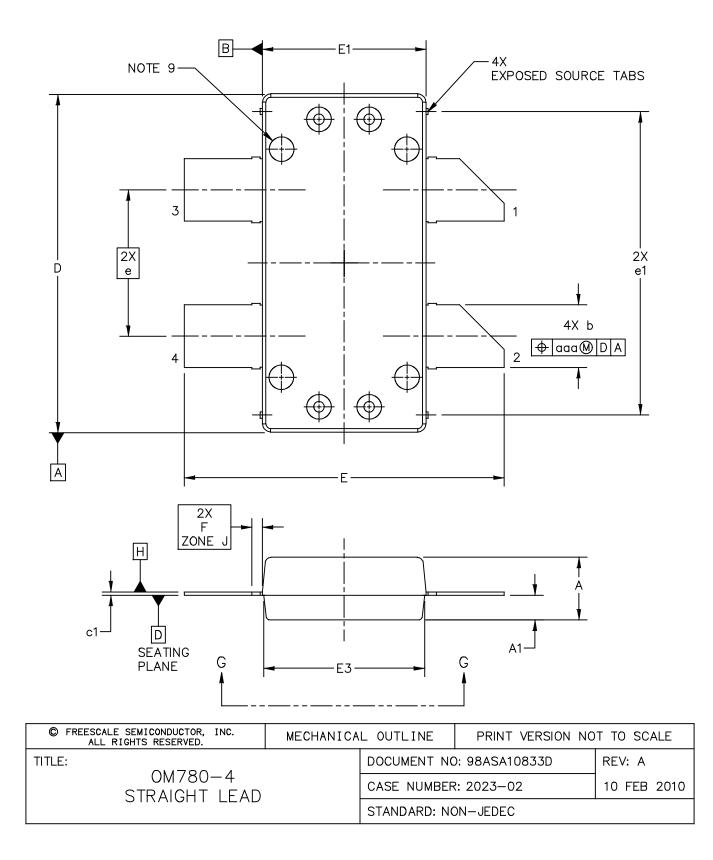
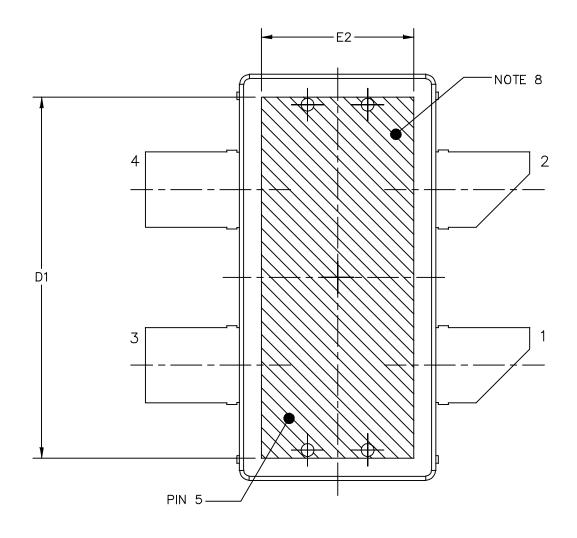



Figure 15. Narrowband Series Equivalent Source and Load Impedance — 230 MHz

PCB PAD LAYOUTS

1. Slot dimensions are minimum dimensions and exclude milling tolerances.

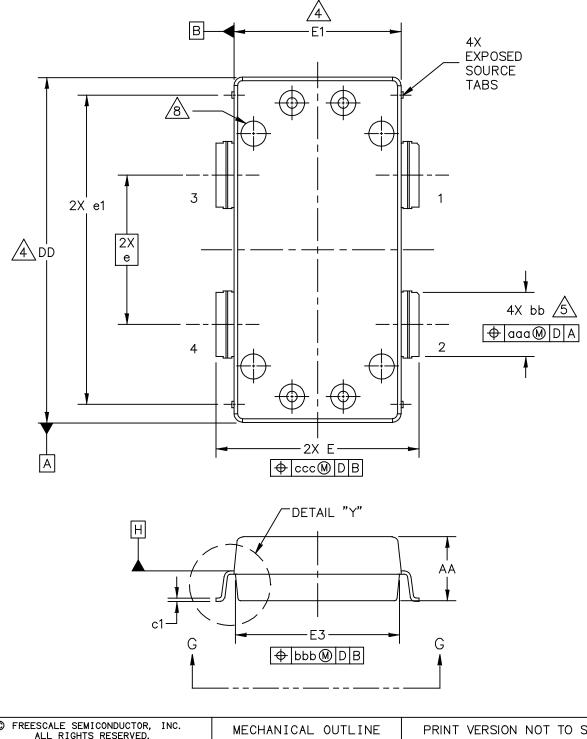




Figure 17. PCB Pad Layout for OM-780G-4L

PACKAGE DIMENSIONS

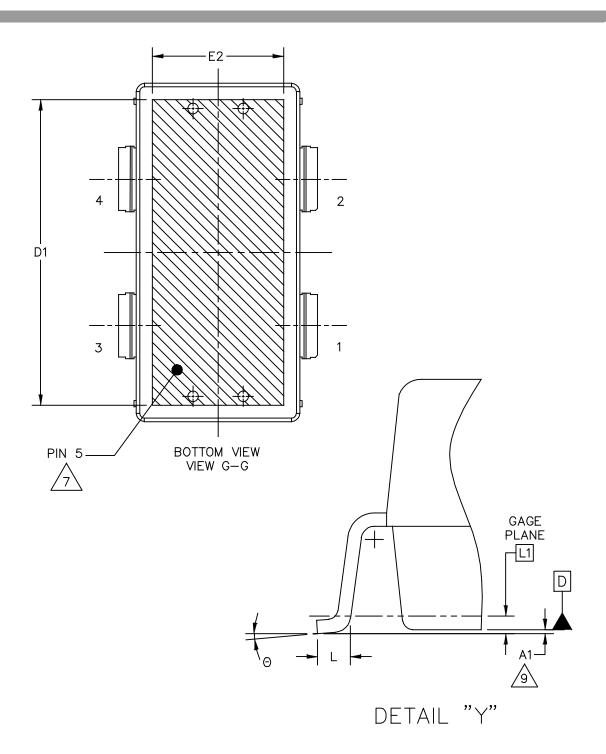
BOTTOM VIEW VIEW G-G

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE:		DOCUMENT NO): 98ASA10833D	REV: A
OM780-4 STRAIGHT LEAD		CASE NUMBER	10 FEB 2010	
		STANDARD: NO	DN-JEDEC	


NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A1 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.
- 9. DIMPLED HOLE REPRESENTS INPUT SIDE.

	IN	СН	MIL	LIMETER		INCH		MI	LLIMETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	0.148	.152	3.76	3.86	b	.147	.153	3.73	3 3.89
A1	.059	.065	1.50	1.65	c1	.007	.011	0.18	3 0.28
D	.808	.812	20.52	20.62	е	.350 BSC		3	3.89 BSC
D1	.720		18.29		e1	.721	.729	18.3	1 18.52
E	.762	.770	19.36	19.56					
E1	.390	.394	9.91	10.01	aaa		.004		0.10
E2	.306		7.77						
E3	.383	.387	9.72	9.83					
F	.025	5 BSC	0.	635 BSC					
© F	FREESCALE SEI ALL RIGHT	MICONDUCTOR, IS RESERVED.	INC.	MECHANIC	AL OUTLINE PRINT VERSION NOT TO SCAL			T TO SCALE	
TITLE:): 98ASA10833	3D	REV: A		
	C.	OM780 [.] TRAIGHT			CASE	NUMBER	R: 2023–02		10 FEB 2010
		MAIGITT	LLAD		STANDARD: NON-JEDEC				



PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO) SCALE
TITLE:		DOCUME	NT NO: 98ASA10834D	REV: D
OM-780G-4L		STANDAF	RD: NON-JEDEC	
			14 1	NOV 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO	SCALE
TITLE:		DOCUME	NT NO: 98ASA10834D	REV: D
OM-780G-4L		STANDAF	RD: NON-JEDEC	
			14 N	IOV 2013

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- A. DIMENSIONS DD AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS DD AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 5. DIMENSION 65 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 66 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

A HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. THE DIMENSIONS D1 AND E2 REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF HEAT SLUG.

8. DIMPLED HOLE REPRESENTS INPUT SIDE.

9. DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM D. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.

		СН		IMETER		INCH		MILLIN			
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX		
AA	.148	.152	3.76	3.86	bb	.147	.153	3.73	3.89		
A1	002	.002	-0.05	0.05	c1	.007	.011	0.18	0.28		
DD	.808	.812	20.52	20.62	е	0.	350 BSC	8.89	BSC		
D1	.720		18.29		e1	.721	.729	18.31	18.52		
E	.470	.482	11.94	12.24	Θ	0.	8'	0.	8'		
E1	.390	.394	9.91	10.01	aaa	.004		0	.10		
E2	.306		7.77		bbb		.006	0	.15		
E3	.383	.387	9.73	9.83	ccc		.010		.010 0.25		.25
L	.018	.024	0.46	0.61							
L1	.010	BSC	0.2	5 BSC							
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			MECHANICAL OU			JTLINE PRINT VERSION NOT TO SCALE				
TITLE:						DOCUME	NT NO: 98ASA	10834D	REV: D		
	OM-780G-4L					STANDAF	RD: NON-JEDE	С			
						14 NOV 201					

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Over-Molded Plastic Packages
- · AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

White Paper

· RFPLASTICWP: Designing with Plastic RF Power Transistors

Software

- Electromigration MTTF Calculator
- RF High Power Model
- s2p File

Development Tools

• Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2015	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number: MRFE6VP6600N Rev. 0, 5/2015