MINIATURE RELAY

2 POLES—1 to 2 A (for signal switching)

RY SERIES

FEATURES

- Ultra high sensitivity
- UL, CSA recognized
- Conforms to FCC rules and regulations Part 68
-Surge strength $1,500 \mathrm{~V}$
- High dielectric strength type available (RY-WF type)
- Contact arrangement MBB type available (RY-D type)
- High reliability-bifurcated contacts
- Wide operating range
- DIL pitch terminals
- Plastic sealed type
- RoHS compliant since date code: 0438B9

Please see page 8 for more information

■ ORDERING INFORMATION

[Example]
$R Y-12 W F-K$

(a)	Series Name	RY : RY Series
(b)	Nominal Voltage	Refer to the COIL DATA CHART
		WZ: High sensitive type
		WZ : Nominal 0.5 W type
(c)	Coil and Contact Function	WF: High dielectric strength type
		WFZ:2 A type
		D : 2 FORM D (2 MBB type)
(d)	Enclosure	K : Plastic sealed type

Note: Actual marking omits the hyphen (-) of (*)
For movable and stationary contact with gold overlay type, add suffix "-OH".

COIL DATA CHART

MODEL		Nominal voltage	Coil resistance ($\pm 10 \%$)	Must operate voltage	Must release voltage	Nominal power
	RY-4.5 W-K	4.5 VDC	135Ω	3.2 VDC	0.23 VDC	150 mW
	RY- 5 W-K	5 VDC	165Ω	3.6 VDC	0.25 VDC	150 mW
	RY- 6 W-K	6 VDC	240Ω	4.3 VDC	0.3 VDC	150 mW
	RY- 9 W-K	9 VDC	540Ω	6.4 VDC	0.45 VDC	150 mW
	RY-12 W-K	12 VDC	960Ω	8.5 VDC	0.6 VDC	150 mW
	RY-18 W-K	18 VDC	1,620	12.6 VDC	0.9 VDC	200 mW
	RY-24 W-K	24 VDC	2,880	16.8 VDC	1.2 VDC	200 mW
	RY-48 W-K	48 VDC	7,680	32.6 VDC	2.4 VDC	300 mW
$\begin{aligned} & \infty \\ & \stackrel{y}{2} \\ & 3 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	RY- 3 WZ-K	3 VDC	18Ω	1.5 VDC	0.15 VDC	500 mW
	RY-4.5 WZ-K	4.5 VDC	36Ω	2.25 VDC	0.23 VDC	560 mW
	RY- 5 WZ-K	5 VDC	45Ω	2.5 VDC	0.25 VDC	560 mW
	RY- 6 WZ-K	6 VDC	66Ω	3.0 VDC	0.3 VDC	550 mW
	RY- 9 WZ-K	9 VDC	140Ω	4.5 VDC	0.45 VDC	580 mW
	RY-12 WZ-K	12 VDC	280Ω	6.0 VDC	0.6 VDC	510 mW
	RY-18 WZ-K	18 VDC	560Ω	9.0 VDC	0.9 VDC	580 mW
	RY- 24 WZ-K	24 VDC	1,070	12.0 VDC	1.2 VDC	540 mW
	RY-48 WZ-K	48 VDC	4,000	24.0 VDC	2.4 VDC	580 mW
	RY- 5 WF-K	5 VDC	56Ω	3.3 VDC	0.25 VDC	450 mW
	RY- 6 WF-K	6 VDC	80Ω	4.0 VDC	0.3 VDC	450 mW
	RY- 9 WF-K	9 VDC	180Ω	6.0 VDC	0.45 VDC	450 mW
	RY-12 WF-K	12 VDC	320Ω	8.0 VDC	0.6 VDC	450 mW
	RY-18 WF-K	18 VDC	720Ω	12.0 VDC	0.9 VDC	450 mW
	RY- 24 WF-K	24 VDC	1,260	15.9 VDC	1.2 VDC	450 mW
	RY-48 WF-K	48 VDC	5,000	33.0 VDC	2.4 VDC	460 mW
	RY- 3 WFZ-K	3 VDC	18Ω	1.9 VDC	0.15 VDC	500 mW
	RY-4.5 WFZ-K	4.5 VDC	36Ω	2.9 VDC	0.23 VDC	560 mW
	RY- 5 WFZ-K	5 VDC	45Ω	3.2 VDC	0.25 VDC	560 mW
	RY- 6 WFZ-K	6 VDC	66Ω	3.8 VDC	0.3 VDC	550 mW
	RY- 9 WFZ-K	9 VDC	140Ω	5.7 VDC	0.45 VDC	580 mW
	RY-12 WFZ-K	12 VDC	280Ω	7.6 VDC	0.6 VDC	510 mW
	RY-18 WFZ-K	18 VDC	560Ω	11.4 VDC	0.9 VDC	580 mW
	RY-24 WFZ-K	24 VDC	1,070	15.2 VDC	1.2 VDC	540 mW
	RY -48 WFZ-K	48 VDC	4,000	36.0 VDC	2.4 VDC	580 mW

Note : All values in the table are measured at $20^{\circ} \mathrm{C}$.

MODEL		Nominal voltage	Coil resistance $(\pm 10 \%)$	Must operate voltage	Must release voltage	Nominal power
	RY-4.5 D-K	4.5 VDC	45Ω	3.0 VDC	0.23 VDC	450 mW
	RY- 5 D-K	5 VDC	55Ω	3.3 VDC	0.25 VDC	450 mW
	RY- $6 \mathrm{D}-\mathrm{K}$	6 VDC	80Ω	3.95 VDC	0.3 VDC	450 mW
	RY- $9 \mathrm{D}-\mathrm{K}$	9 VDC	180Ω	5.9 VDC	0.45 VDC	450 mW
	RY-12 D-K	12 VDC	320Ω	7.9 VDC	0.6 VDC	450 mW
	RY-18 D-K	18 VDC	720Ω	11.8 VDC	0.9 VDC	450 mW
	RY-24 D-K	24 VDC	1,280	15.8 VDC	1.2 VDC	450 mW
	RY-48 D-K	48 VDC	4,800 ${ }^{\text {a }}$	31.8 VDC	2.4 VDC	480 mW

Note : All values in the table are measured at $20^{\circ} \mathrm{C}$.

SPECIFICATIONS

Item			High Sensitive Type	500 mW Type	High Dielectric Strength	2 A Type	Continuous (MBB) Type
			RY-() W-K	RY-() WZ-K	RY-() WF-K	RY-() WFZ-K	RY-() D-K
Contact	Arrangement		2 form C (DPDT)				2 Form D (2 MBB)
	Material		Gold overlay silver-palladium			Gold overlay silver-nickel	Gold overlay silver-palladium
	Style		Bifurcated (cross bar)				Single
	Resistance (initial)		Maximum $100 \mathrm{~m} \Omega$ (at 1 A 6 VDC)				
	Maximum Carrying Current		1.25 A			2 A	0.6 A
	Rating (resistive)		$\begin{aligned} & 1 \mathrm{~A} 24 \mathrm{VD} \\ & 0.5 \mathrm{~A} 120 \mathrm{VAC} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~A} 24 \mathrm{VDC} \\ & 0.25 \mathrm{~A} 120 \mathrm{VAC} \end{aligned}$	$\begin{array}{r} 2 \mathrm{~A} 30 \mathrm{VDC} \\ 0.5 \mathrm{~A} 125 \mathrm{VAC} \end{array}$	$\begin{aligned} & 0.15 \mathrm{~A} 48 \mathrm{VDC} \\ & 0.3 \mathrm{~A} 120 \mathrm{VAC} \end{aligned}$
	Maximum Switching Power		$60 \mathrm{VA} / 24 \mathrm{~W}$		$30 \mathrm{VA} / 24 \mathrm{~W}$	62.5 VA/60 W	36 VA/7.2 W
	Maximum Switching Voltage		120 VAC, 60 VDC			125 VAC, 150 VDC	120 VAC, 60 VDC
	Maximum Switching Current		1 A			2 A	0.6 A
	Minimum Switching Load*1		0.01 mA 10 mVDC				0.1 mA 10 mVDC
	Capacitance (at 10 MHz)		Approx. 0.9 pF (between open contacts) 1.4 pF (adjacent contacts) Approx. 1.9 pF (between coil and contacts)				
Coil	Nominal Power (at $20^{\circ} \mathrm{C}$)		150 to 300 mW	500 to 580 mW	450 to 460 mW	500 to 580 mW	450 to 480 mW
	Operate Power (at $20^{\circ} \mathrm{C}$)		75 to 140 mW	125 to 145 mW	200 to 210 mW	200 to 324 mW	200 to 210 mW
	Operating Temperature (No frost)		$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+90^{\circ} \mathrm{C} \\ & \left({ }^{*}+80^{\circ} \mathrm{C}\right) \end{aligned}$	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	C (refer to the CHARA	CTERISTIC DATA)	$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left({ }^{* 2}+65^{\circ} \mathrm{C}\right) \end{aligned}$
Time Value	Operate (at nominal voltage)		Maximum 6 ms				
	Release (at nominal voltage)		Maximum 3 ms				
Life	Mechanical		2×10^{7} ops. min. 1×10^{7} operations minimum				1×10^{6} ops. min.
	Electrical (at contact rating)		$\begin{aligned} & 2 \times 10^{5} \text { ops. min. ((} \\ & 5 \times 10^{5} \text { ops. min. (} \end{aligned}$	$\begin{gathered} 0.5 \mathrm{~A} 120 \mathrm{VAC}) \\ 1 \mathrm{~A} 24 \mathrm{VDC}) \end{gathered}$	$\begin{gathered} 5 \times 10^{5} \text { ops. min. } \\ (0.25 \mathrm{~A} 120 \mathrm{VAC} \\ 1 \mathrm{~A} \quad 24 \mathrm{VDC} \end{gathered}$	$\begin{aligned} & 1 \times 10^{5} \text { ops. min. } \\ & (2 \mathrm{~A} 30 \mathrm{VDC}) \end{aligned}$	$\begin{aligned} & 2 \times 10^{5} \text { opsmin. } \\ & \text { (} 0.3 \mathrm{~A} 120 \mathrm{VAC} \text {) } \\ & 5 \times 10^{5} \mathrm{ops} . \mathrm{min} . \\ & (0.15 \mathrm{~A} 48 \mathrm{VDC}) \end{aligned}$
Other	Vibration Resistance	Misoperation	10 to 55 Hz (double amplitude of 1.5 mm)				
		Endurance	10 to 55 Hz (double amplitude of 4.5 mm)				
	Shock Resistance	Misoperation	$100 \mathrm{~m} / \mathrm{s}^{2}$ (11 $\pm 1 \mathrm{~ms}$)				
		Endurance	$1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$				
	Weight		Approximately 5 g				

*1 Minimum switching loads mentioned above are reference values. Please perform the confirmation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.
*2 48VDC type
INSULATION

Item		Sensitive	500mW	High Isolation	2A	MBB
Isolation (initial)		Minimum 1,000 M (at 500VDC)				
Dielectric Strength	open contact	500VAC 1 min.,		1,000VAC 1 min.,		min.,
	coil and contact/ adjacent contacts	1,000VAC 1 min.,				
Surge Voltage		1500V (coil-contact) (10/160 μ s standard wave)				

- SAFETY STANDARDS

Type	Compliance	Contact rating
UL	$\begin{aligned} & \text { UL 478, UL } 508 \\ & \text { E } 45026 \end{aligned}$	Flammability: UL 94-V0 (plastics) [RY-W, RY-WZ]
CSA	$\begin{aligned} & \text { C22.2 No. } 14 \\ & \text { LR } 35579 \end{aligned}$	$0.5 \mathrm{~A}, 120 \mathrm{VAC}$ (resistive) 1A, 24VDC (resistive) 0.3A, 60VDC (resistive) [RY-WF] $0.25 \mathrm{~A}, 120 \mathrm{VAC}$ (resistive) 1A, 24VDC (resistive) 0.3A, 60VDC (resistive) [RY-D] 0.3A, 120VAC (resistive) 0.2A, 60VDC (resistive) [RY-WFZ] (only CSA) $0.5 \mathrm{~A}, 125 \mathrm{VAC}$ (resistive) 2A, 30VDC (resistive) $0.6 \mathrm{~A}, 110 \mathrm{VDC}$ (resistive)

- CHARACTERISTIC DATA

RY SERIES

- CHARACTERISTIC DATA

- REFERENCE DATA

DIMENSIONS

- Dimensions

- Schematics (Bottom view)

- PC board mounting hole layout (Bottom view)

Unit: mm

RoHS Compliance and Lead Free Relay Information

1. General Information

- Relays produced after the specific date code that is indicated on each data sheet are lead-free now. Most of our signal and power relays are lead-free. Please refer to Lead-Free Status Info. (http://www.fujitsu.com/us/downloads/MICRO/fcai/relays/lead-free-letter.pdf)
- Lead free solder paste currently used in relays is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$.
- All signal and most power relays also comply with RoHS. Please refer to individual data sheets. Relays that are RoHS compliant do not contain the 5 hazardous materials that are restricted by RoHS directive (lead, mercury, chromium IV, PBB, PBDE).
- It has been verified that using lead-free relays in leaded assembly process will not cause any problems (compatible).
- "LF" is marked on each outer and inner carton. (No marking on individual relays).
- To avoid leaded relays (for lead-free sample, etc.) please consult with area sales office.
- We will ship leaded relays as long as the leaded relay inventory exists.

Note: Cadmium was exempted from RoHSon October 21, 2005. (Amendment to Directive 2002/95/EC)

2. Recommended Lead Free Solder Profile

- Recommended solder paste $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$.

Reflow Solder condition

Flow Solder condition:

Pre-heating: maximum $120^{\circ} \mathrm{C}$
Soldering: dip within 5 sec . at $260^{\circ} \mathrm{C}$ soler bath

Solder by Soldering Iron:

Soldering Iron
Temperature: maximum $360^{\circ} \mathrm{C}$
Duration: maximum 3 sec.

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical realys.

4. Tin Whisker

- Dipped SnAgCu solder is known as low risk tin whisker. No considerable length whisker was found by our in house test.

Fujitsu Components International Headquarter Offices

Japan	Europe
Fujitsu Component Limited	Fujitsu Components Europe B.V.
Gotanda-Chuo Building	Diamantlaan 25
3-5, Higashigotanda 2-chome, Shinagawa-ku	2132 WV Hoofddorp
Tokyo 141, Japan	Netherlands
Tel: (81-3) 5449-7010	Tel: (31-23) 5560910
Fax: (81-3) 5449-2626	Fax: (31-23) 5560950
Email: promothq@ft.ed.fujitsu.com	Email: info@fceu.fujitsu.com
Web: www.fcl.fujitsu.com	Web: emea.fujitsu.com/components/
North and South America	Asia Pacific
Fujitsu Components America, Inc.	Fujitsu Components Asia Ltd.
250 E. Caribbean Drive	$102 E$ Pasir Panjang Road
Sunnyvale, CA 94089 U.S.A.	\#01-01 Citilink Warehouse Complex
Tel: (1-408) 745-4900	Singapore 118529
Fax: (1-408) 745-4970	Tel: (65) 6375-8560
Email: components@us.fujitsu.com	Fax: (65) 6273-3021
Web: http://www.fujitsu.com/us/services/edevices/components/	Email: fcal@fcal.fuijitsu.com
	Web: http://www.fujitsu.com/sg/services/micro/components/

©2008 Fujitsu Components America, Inc. All rights reserved. All trademarks or registered trademarks are the property of their respective owners.

Fujitsu Components America or its affiliates do not warrant that the content of datasheet is error free. In a continuing effort to improve our products Fujitsu Components America, Inc. or its affiliates reserve the right to change specifications/datasheets without prior notice.
Rev. January 18, 2008.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fujitsu:

RY-9WF-K RY-12WZ-K RY-6D-K RY-6WF-K RY-12WF-K RY-18WZ-K RY-6W-K RY-48WF-K RY-24WZ-K RY-18D-K RY-5WF-K RY-18W-K RY-9WFZ-K RY-3WFZ-K RY-4.5WZ-K RY-4.5D-K RY-24D-K RY-9D-K RY-24WF-K RY-4.5WFZ-K RY-9WZ-K RY-48D-K RY-3WZ-K RY-5WZ-K RY-48WFZ-K RY-18WFZ-K RY-6WZ-K RY-48WZ-K RY-18WF-K RY-9W-K RY-5WFZ-K RY-24WFZ-K RY-5D-K RY-4.5W-K

