Middle Power LED Series

 3030
LM301A
 CRI 80

Features \& Benefits

- Superior mid power LED with wide over-drive range up to 1.5 W
- Mold resin for high reliability
- Standard form factor for design flexibility $(3.0 \times 3.0 \mathrm{~mm})$

Table of Contents

1. Characteristics

\qquad
2. Product Code Information ------------------------ 6
3. Typical Characteristics Graphs 21
4. Outline Drawing \& Dimension 24
5. Reliability Test Items \& Conditions 25
6. Soldering Conditions 26
7. Tape \& Reel 27
8. Label Structure 29
9. Packing Structure 30
10. Precautions in Handling \& Use 33

1. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	-40~+85	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T	125	${ }^{\circ} \mathrm{C}$	-
Forward Current	$\mathrm{I}_{\text {F }}$	500	mA	-
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	${ }^{\circ} \mathrm{C}$	-
ESD (HBM)	-	5	kV	-

b) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

Item	Unit	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (V_{F})	V	WA	AY	2.6	-	2.7
			AZ	2.7	-	2.8
			A1	2.8	-	2.9
			A2	2.9	-	3.0
			A3	3.0	-	3.1
Reverse Voltage (@ 5 mA)	V			0.7	-	1.2
Color Rendering Index (R_{a})	-			80	-	-
Special CRI (R9)	-			0	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			-	7	-
Beam Angle	-			-	115	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}, \mathrm{CRI}= \pm 3, \mathrm{R9}= \pm 6.5$
b) Electro-optical Characteristics ($\mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

Item	CRI	Nominal CCT (K)	SC		SD		SE		SF		SG		Current
			Min.	Max.									
			22	24	24	26	26	28	28	30	30	32	65 mA
			50	54	54	58	58	62	62	66	66	70	150 mA
			104	112	112	120	120	128	128	136	136	144	350 mA
Luminous Flux (Φ_{v})	80	2700											
		3000											
		3500											
		4000											
		5000											
		5700											
		6500											

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3, R 9= \pm 6.5$
Calculated luminous flux values at 65 mA and 350 mA are for reference only.

2．Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	P																

Digit	PKG Information	Code	Specification
123	Samsung Package Middle Power	SPM	
	Color	WH	White
6	Product Version	T	
789	Form Factor	328	$3.0 \times 3.0 \times 0.65 \mathrm{~mm} ; 2$ pads；1chip；
10	Sorting Current（mA）	F	150 mA
11	Chromaticity Coordinates	D	ANSI Standard
12	CRI	5	Min． 80
$13 \quad 14$	Forward Voltage（V）	WA	2．6～3．1V
1516	CCT（K）	W V於 U约 T设	2700 W1，W2，W3，W4，W5，W6，W7，W8，W9，WA，WB，WC，WD，WE，WF，WG 3000 Bin V1，V2，V3，V4，V5，V6，V7，V8，v9，VA，VB，VC，VD，VE，VF，VG 3500 Code： U1，U2，U3，U4，U5，U6，U7，U8，U9，UA，UB，UC，UD，UE，UF，UG 4000 T1，T2，T3，T4，T5，T6，T7，T8，T9，TA，TB，TC，TD，TE，TF，TG
			tis：Warm white：＂0＂（Whole bin）＂M＂（Quarter bin）or＂K＂（Kitting bin）
		$\begin{aligned} & R \star \\ & Q \star \\ & P \star \end{aligned}$	5000 R1，R2，R3，R4，R5，R6，R7，R8，R9，RA，RB，RC，RD，RE，RF，RG 5700 Bin Code： Q1，Q2，Q3，Q4，Q5，Q6，Q7，Q8，Q9，QA，QB，QC，QD，QE，QF，QG 6500 P1，P2，P3，P4，P5，P6，P7，P8，P9，PA，PB，PC，PD，PE，PF，PG
			＊：Cool white：＂0＂（Whole bin）or＂K＂（Kitting bin）
$17 \quad 18$	Luminous Flux	SO	$\begin{gathered} \text { Bin } \\ \text { Code: } \end{gathered} \quad \text { SD, SE, SF }$

a) Luminous Flux $\operatorname{Bins}\left(\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}\right)$

Note:

"沵" can be "0" (Whole bin), "M" (Quarter bin) or "K" (Kitting bin) of the color binning
" \star " can be " 0 " (Whole bin) or "K" (Kitting bin) of the color binning
b) Kitting rule

1) Kitting bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same VF rank such as (AY+AY), (AZ+AZ), (A1+A1), (A2+A2) or (A3+A3).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2
VF	AY	AY
	AZ	AZ
	A1	A1
	A2	A2
	A3	A3
CIE	$\mathrm{W}(1,2,5 \mathrm{bin})$	Z (C, F, G bin)
	V ($6,7, \mathrm{~A}, \mathrm{~B}$ bin)	V (6, 7, A, B bin)
	$\mathrm{X}(3,4,8 \mathrm{bin})$	Y (9, D, E bin)
IV	SD	SD
	SE	SE
	SF	SF

Each of $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z can be one bin without details division.
c) Color Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

CRI (R_{a}) Min.	Nominal CCT (K)	Product Code	Color Rank	Chromaticity Bins
	2700	SPMWHT328FD5WAW0S0	W0 (Whole bin)	W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC, WD, WE, WF, WG
		SPMWHT328FD5WAWMS0	WM (Quarter bin)	W6, W7, WA, WB
		SPMWHT328FD5WAWKS0	WK (Kitting bin)	WV, WW, WX, WY, WZ
	3000	SPMWHT328FD5WAV0S0	V0 (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
		SPMWHT328FD5WAVMS0	VM (Quarter bin)	V6, V7, VA, VB
		SPMWHT328FD5WAVKS0	VK (Kitting bin)	VV, VW, VX, VY, VZ
80	3500	SPMWHT328FD5WAU0S0	UO (Whole bin)	U1, U2, U3, U4, U5, U6, U7, U8, U9, UA, UB, UC, UD, UE, UF, UG
		SPMWHT328FD5WAUMS0	UM (Quarter bin)	U6, U7, UA, UB
		SPMWHT328FD5WAUKS0	UK (Kitting bin)	UV, UW, UX, UY, UZ
	4000	SPMWHT328FD5WAT0S0	T0 (Whole bin)	T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, TE, TF, TG
		SPMWHT328FD5WATMS0	TM (Quarter bin)	T6, T7, TA, TB
		SPMWHT328FD5WATKS0	TK (Kitting bin)	TV, TW, TX, TY, TZ
	5000	SPMWHT328FD5WAR0SO	R0 (Whole bin)	R1, R2, R3, R4, R5, R6, R7, R8, R9 RA,RB,RC,RD,RE,RF,RG
		SPMWHT328FD5WARKS0	RK (Kitting bin)	RV, RW, RX, RY, RZ
	5700	SPMWHT328FD5WAQ0S0	Q0 (Whole bin)	Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9 QA,QB,QC,QD,QE,QF,QG
		SPMWHT328FD5WAQKS0	QK (Kitting bin)	QV, QW, QX, QY, QZ
	6500	SPMWHT328FD5WAP0S0	PO (Whole bin)	P1, P2, P3, P4, P5, P6, P7, P8, P9 PA,PB,PC,PD,PE,PF,PG
		SPMWHT328FD5WAPKS0	PK (Kitting bin)	PV, PW, PX, PY, PZ

sImsuna
d) Voltage Bins ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates ($I_{F}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates

Region	CIE X	CIEy	Region	CIE X	CIEy
		W rank	(2700 K)		
W1	0.4373	0.3893	W9	0.4465	0.4071
	0.4418	0.3981		0.4513	0.4164
	0.4475	0.3994		0.4573	0.4178
	0.4428	0.3906		0.4523	0.4085
W2	0.4428	0.3906	WA	0.4523	0.4085
	0.4475	0.3994		0.4573	0.4178
	0.4532	0.4008		0.4634	0.4193
	0.4483	0.3919		0.4582	0.4099
W3	0.4483	0.3919	WB	0.4582	0.4099
	0.4532	0.4008		0.4634	0.4193
	0.4589	0.4021		0.4695	0.4207
	0.4538	0.3931		0.4641	0.4112
W4	0.4538	0.3931	WC	0.4641	0.4112
	0.4589	0.4021		0.4695	0.4207
	0.4646	0.4034		0.4756	0.4221
	0.4593	0.3944		0.4700	0.4126
W5	0.4418	0.3981	WD	0.4513	0.4164
	0.4465	0.4071		0.4562	0.4260
	0.4523	0.4085		0.4624	0.4274
	0.4475	0.3994		0.4573	0.4178
W6	0.4475	0.3994	WE	0.4573	0.4178
	0.4523	0.4085		0.4624	0.4274
	0.4582	0.4099		0.4687	0.4289
	0.4532	0.4008		0.4634	0.4193
W7	0.4532	0.4008	WF	0.4634	0.4193
	0.4582	0.4099		0.4687	0.4289
	0.4641	0.4112		0.4750	0.4304
	0.4589	0.4021		0.4695	0.4207
W8	0.4589	0.4021	WG	0.4695	0.4207
	0.4641	0.4112		0.4750	0.4304
	0.4700	0.4126		0.4813	0.4319
	0.4646	0.4034		0.4756	0.4221

SAMSUNG
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIEx	CIE y	Region	CIE x	CIEy
		U rank	(3500 K)			T rank (4000 K)					
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.376		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

shmsuna
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIEx	CIE y	Region	CIEx	CIE y
		R rank	(5000 K)			Q rank (5700 K)					
R1	0.3366	0.3369	R9	0.3371	0.3490	Q1	0.3222	0.3243	Q9	0.3215	0.3350
	0.3369	0.3430		0.3374	0.3553		0.3219	0.3297		0.3211	0.3406
	0.3407	0.3460		0.3415	0.3587		0.3254	0.3328		0.3251	0.3442
	0.3403	0.3398		0.3411	0.3522		0.3256	0.3272		0.3253	0.3384
R2	0.3403	0.3398	RA	0.3411	0.3522	Q2	0.3256	0.3272	QA	0.3253	0.3384
	0.3407	0.3460		0.3415	0.3587		0.3254	0.3328		0.3251	0.3442
	0.3446	0.3491		0.3457	0.3621		0.3290	0.3359		0.3290	0.3478
	0.3440	0.3427		0.3451	0.3554		0.3290	0.3300		0.3290	0.3417
R3	0.3440	0.3427	RB	0.3451	0.3554	Q3	0.3290	0.3300	QB	0.3290	0.3417
	0.3446	0.3491		0.3457	0.3621		0.3290	0.3359		0.3290	0.3478
	0.3485	0.3522		0.3500	0.3655		0.3329	0.3394		0.3332	0.3515
	0.3478	0.3457		0.3492	0.3587		0.3328	0.3335		0.3331	0.3454
R4	0.3478	0.3457	RC	0.3492	0.3587	Q4	0.3328	0.3335	QC	0.3331	0.3454
	0.3485	0.3522		0.3500	0.3655		0.3329	0.3394		0.3332	0.3515
	0.3524	0.3554		0.3542	0.3690		0.3369	0.3430		0.3374	0.3553
	0.3515	0.3487		0.3533	0.3620		0.3366	0.3369		0.3371	0.3490
R5	0.3369	0.3430	RD	0.3374	0.3553	Q5	0.3219	0.3297	QD	0.3211	0.3406
	0.3371	0.3490		0.3376	0.3616		0.3215	0.3350		0.3207	0.3462
	0.3411	0.3522		0.3420	0.3652		0.3253	0.3384		0.3249	0.3500
	0.3407	0.3460		0.3415	0.3587		0.3254	0.3328		0.3251	0.3442
R6	0.3407	0.3460	RE	0.3415	0.3587	Q6	0.3254	0.3328	QE	0.3251	0.3442
	0.3411	0.3522		0.3420	0.3652		0.3253	0.3384		0.3249	0.3500
	0.3451	0.3554		0.3463	0.3687		0.3290	0.3417		0.3290	0.3538
	0.3446	0.3491		0.3457	0.3621		0.3290	0.3359		0.3290	0.3478
R7	0.3446	0.3491	RF	0.3457	0.3621	Q7	0.3290	0.3359	QF	0.3290	0.3478
	0.3451	0.3554		0.3463	0.3687		0.3290	0.3417		0.3290	0.3538
	0.3492	0.3587		0.3507	0.3724		0.3331	0.3454		0.3333	0.3577
	0.3485	0.3522		0.3500	0.3655		0.3329	0.3394		0.3332	0.3515
R8	0.3485	0.3522	RG	0.3500	0.3655	Q8	0.3329	0.3394	QG	0.3332	0.3515
	0.3492	0.3587		0.3507	0.3724		0.3331	0.3454		0.3333	0.3577
	0.3533	0.3620		0.3551	0.3760		0.3371	0.3490		0.3376	0.3616
	0.3524	0.3554		0.3542	0.3690		0.3369	0.3430		0.3374	0.3553

shmsuna
e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIEy
		P rank	(6500 K)		
P1	0.3068	0.3113	P9	0.3048	0.3207
	0.3106	0.3150		0.3089	0.3249
	0.3098	0.3199		0.3080	0.3298
	0.3058	0.3160		0.3038	0.3256
P2	0.3106	0.3150	PA	0.3089	0.3249
	0.3144	0.3186		0.3130	0.3290
	0.3137	0.3238		0.3123	0.3341
	0.3098	0.3199		0.3080	0.3298
P3	0.3144	0.3186	PB	0.3130	0.3290
	0.3183	0.3224		0.3172	0.3332
	0.3177	0.3278		0.3166	0.3384
	0.3137	0.3238		0.3123	0.3341
P4	0.3183	0.3224	PC	0.3172	0.3332
	0.3221	0.3261		0.3213	0.3373
	0.3217	0.3317		0.3209	0.3427
	0.3177	0.3278		0.3166	0.3384
P5	0.3058	0.3160	PD	0.3038	0.3256
	0.3098	0.3199		0.3080	0.3298
	0.3089	0.3249		0.3072	0.3348
	0.3048	0.3207		0.3028	0.3304
P6	0.3098	0.3199	PE	0.3080	0.3298
	0.3137	0.3238		0.3123	0.3341
	0.3130	0.3290		0.3115	0.3391
	0.3089	0.3249		0.3072	0.3348
P7	0.3137	0.3238	PF	0.3123	0.3341
	0.3177	0.3278		0.3166	0.3384
	0.3172	0.3332		0.3160	0.3436
	0.3130	0.3290		0.3115	0.3391
P8	0.3177	0.3278	PG	0.3166	0.3384
	0.3217	0.3317		0.3209	0.3427
	0.3213	0.3373		0.3205	0.3481
	0.3172	0.3332		0.3160	0.3436

Note: Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
f) Kintting Chromaticity Region \& Coordinates (If = $65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

f) Kintting Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Region	CIE x	CIE y	Region	CIE x	CIE y
		W rank	(2700 K)		
WV	0.4475	0.3994			
	0.4589	0.4021			
	0.4695	0.4207			
	0.4573	0.4178			
WW	0.4373	0.3893	WY	0.4465	0.4071
	0.4483	0.3919		0.4523	0.4085
	0.4532	0.4008		0.4573	0.4178
	0.4475	0.3994		0.4634	0.4193
	0.4523	0.4085		0.4687	0.4289
	0.4465	0.4071		0.4562	0.4260
WX	0.4483	0.3919	WZ	0.4641	0.4112
	0.4593	0.3944		0.4700	0.4126
	0.4700	0.4126		0.4813	0.4319
	0.4641	0.4112		0.4687	0.4289
	0.4589	0.4021		0.4634	0.4193
	0.4532	0.4008		0.4695	0.4207

Region	CIE x	CIE y	Region	CIE x	CIE y
		V rank	(3000 K)		
V	0.4242	0.3919			
	0.4359	0.3960			
	0.4449	0.4141			
	0.4322	0.4096			
VW	0.4147	0.3814	VY	0.4221	0.3984
	0.4259	0.3853		0.4281	0.4006
	0.4300	0.3939		0.4322	0.4096
	0.4242	0.3919		0.4385	0.4119
	0.4281	0.4006		0.4430	0.4212
	0.4221	0.3984		0.4299	0.4165
vX	0.4259	0.3853	VZ	0.4403	0.4049
	0.4373	0.3893		0.4465	0.4071
	0.4465	0.4071		0.4562	0.4260
	0.4403	0.4049		0.4430	0.4212
	0.4359	0.3960		0.4385	0.4119
	0.4300	0.3939		0.4449	0.4141

f) Kintting Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIEy
		U rank	(3500 K)			T rank (4000 K)					
UV	0.3981	0.3800				TV	0.3744	0.3685			
	0.4116	0.3865					0.3863	0.3758			
	0.4186	0.4037					0.3912	0.3917			
	0.4040	0.3966					0.3782	0.3837			
UW	0.3889	0.3690	UY	0.3941	0.3848	TW	0.3670	0.3578	TY	0.3702	0.3722
	0.4017	0.3751		0.4010	0.3882		0.3783	0.3646		0.3763	0.3760
	0.4048	0.3832		0.4040	0.3966		0.3804	0.3721		0.3782	0.3837
	0.3981	0.3800		0.4113	0.4001		0.3744	0.3685		0.3847	0.3877
	0.4010	0.3882		0.4146	0.4089		0.3763	0.3760		0.3869	0.3958
	0.3941	0.3848		0.3996	0.4015		0.3702	0.3722		0.3736	0.3874
UX	0.4017	0.3751	UZ	0.4150	0.3950	TX	0.3783	0.3646	TZ	0.3887	0.3837
	0.4147	0.3814		0.4221	0.3984		0.3898	0.3716		0.3950	0.3875
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4150	0.3950		0.4146	0.4089		0.3887	0.3837		0.3869	0.3958
	0.4116	0.3865		0.4113	0.4001		0.3863	0.3758		0.3847	0.3877
	0.4048	0.3832		0.4186	0.4037		0.3804	0.3721		0.3912	0.3917

f) Kintting Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
R rank (5000 K)					
RV	0.3407	0.3460			
	0.3485	0.3524			
	0.3500	0.3655			
	0.3415	0.3588			
RW	0.3366	0.3369	RY	0.3371	0.3493
	0.3440	0.3427		0.3411	0.3525
	0.3446	0.3491		0.3415	0.3588
	0.3407	0.3460		0.3457	0.3621
	0.3411	0.3525		0.3463	0.3687
	0.3371	0.3493		0.3376	0.3616
RX	0.3440	0.3428	RZ	0.3492	0.3587
	0.3514	0.3487		0.3553	0.3620
	0.3533	0.3620		0.3551	0.3760
	0.3492	0.3587		0.3463	0.3687
	0.3485	0.3522		0.3457	0.3621
	0.3446	0.3493		0.3500	0.3655

Region	CIE x	CIE y	Region	CIE x	CIE y
Q rank (5700 K)					
QV	0.3254	0.3328			
	0.3329	0.3394			
	0.3332	0.3515			
	0.3251	0.3442			
QW	0.3222	0.3243	QY	0.3215	0.3350
	0.3290	0.3300		0.3253	0.3384
	0.3290	0.3359		0.3251	0.3442
	0.3254	0.3328		0.3290	0.3478
	0.3253	0.3384		0.3290	0.3538
	0.3215	0.3350		0.3207	0.3462
QX	0.3290	0.3300	QZ	0.3331	0.3454
	0.3366	0.3369		0.3371	0.3490
	0.3371	0.3490		0.3376	0.3616
	0.3331	0.3454		0.3290	0.3538
	0.3329	0.3394		0.3290	0.3478
	0.3290	0.3359		0.3332	0.3515

f) Kintting Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
P rank (6500 K)					
PV	0.3098	0.3199			
	0.3177	0.3278			
	0.3166	0.3384			
	0.3080	0.3298			
PW	0.3068	0.3113	PY	0.3048	0.3207
	0.3144	0.3186		0.3089	0.3249
	0.3137	0.3238		0.3080	0.3298
	0.3098	0.3199		0.3123	0.3341
	0.3089	0.3249		0.3115	0.3391
	0.3048	0.3207		0.3028	0.3304
PX	0.3144	0.3186	PZ	0.3172	0.3332
	0.3221	0.3261		0.3213	0.3373
	0.3213	0.3373		0.3205	0.3481
	0.3172	0.3332		0.3115	0.3391
	0.3177	0.3278		0.3123	0.3341
	0.3137	0.3238		0.3166	0.3384

Note:

Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

CCT: 2700 K (80 CRI)

CCT: 3500 K (80 CRI)

CCT: 5000 K (80 CRI)

CCT: 3000 K (80 CRI)

CCT: 4000 K (80 CRI)

CCT: 5700 K (80 CRI)

CCT: 6500 K (80 CRI)

b) Forward Current Characteristics $\left(\mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C}\right)$

c) Temperature Characteristics $\quad\left(\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}\right)$

Relative Forward Voltage vs. Temperature

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}, \mathrm{T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

[Top View]

[Side View]

[Bottom View]

[RECOMMENDED PCB SOLDER PAD]

- Measurement unit: mm
- Tolerance : $\pm 0.1 \mathrm{~mm}$
- Do not place pressure on the encapsulation resin @

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s)
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition		Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 500 \mathrm{~mA}$		1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 500 \mathrm{~mA}$		1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \mathrm{DC} 500 \mathrm{~mA}$		1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 500 \mathrm{~mA}$		1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$, each 20 min , on/off 5 min Temp. Change time 100 min, DC 500 mA		100 cycles	22
Temperature Cycling	$-45^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min}$		500 cyicles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$		1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$		1000 h	11
ESD (HBM)		$\begin{array}{ll} \mathrm{R}_{1}: & 10 \mathrm{M} \Omega \\ \mathrm{R}_{2}: & 1.5 \mathrm{k} \Omega \end{array}$	5 times	30
ESD (MM)		$R_{1}: 10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 0$ C: 200 pF V : $\pm 0.5 \mathrm{kV}$	5 times	30

Vibration Test
20~2000~20 Hz, $200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min
X, Y, Z 3 direction, each 1 cycle
4 cycles
11

Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis

\qquad
b) Criteria for Judging the Damage

Item	Symbol	$\begin{aligned} & \text { Test Condition } \\ & \left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	Limit	
			Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=500 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension
(unit: mm)

b) Reel Dimension

Notes:

1) Quantity: The quantity/reel is 4,000 pcs
2) Cumulative tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion strength of cover tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

c ${ }^{9} \mathrm{~N}_{\mathrm{us}}$
 A2R4SE

SPMWHT328FD5WAROS0 A2R4SE 01
III
GLAZC4001 / 1001 / 4,000 pcs
||

Note: Denoted bin code and product code above is only an example
\star ' means all kind of Chromaticity Coordinate Ranks

Bin Code:

(a) (b): Forward Voltage bin (refer to page 9)
(c) Chromaticity bin (refer to page 11~14)
(e) \dagger : Luminous Flux bin (refer to page 7)
b) Lot Number

```
c\\
A2R4SE
SPMWHT328FD5WAROS0 A2R4SE 01 |||||||||||||||||||||||||||||||||||||||||||||||||||
GLAZC4001 / 1001 / 4,000 pcs
```



```
ampyer
```

The lot number is composed of the following characters:
(1)(2)(3)(4)(5)(6)(7)(8)(9)/1(a)(b)C) $/ 4,000 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : L (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B:2017 ...)
(5) : Month (1~9, A, B, C)
(6) : Day (1~9, A, B~V)
(7)(8)(9) : Product serial number (001~999)
(a)(b) : Reel number (001~999)

9. Packing Structure

a) Packing Process

Reel

A2R4SE
SPMWHT328FD5WAROSO A2R4SE 01 ||I||| GLAZC4001 / 1001 / 4,000 pcs || ampuy

Aluminum Vinyl Packing Bag
${ }_{c} \mathrm{MN}_{\mathrm{us}} \quad$ A2R4SE
SPMWHT328FD5WAROS0 A2R4SE 01 || GLAZC4001 / 1001 / 4,000 pcs IIIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIII and suxip

Outer Box
Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

SPMWHT328FD5WAROSO A2R4SE 01 III GLAZC4001 / 1001 / 40,000 pcs

b) Packing Process for kitting

Reel

Kitting ' A '

- ${ }^{2} \mathrm{~N}_{\mathrm{vs}}$

A1 \vee WSE

SPMWHT328FD5WA \diamond KS0 A1 \diamond WSE 01 |||
GLAW94001 / 1001 / 2,500 pcs ||

Kitting 'B'
${ }_{c} 9 \mathrm{X}_{\text {us }}$
A1 \triangle ZSE
SPMWHT328FD5WA \diamond KS0 A1 \diamond ZSE 01
||
GLAW94001 / 1001 / 2,500 pcs ||
mix

Aluminum Vinyl Packing Bag

$$
\text { Kitting ' } A \text { ' }
$$

${ }^{-9} \mathrm{~N}_{\text {us }}$

SPMWHT328FD5WA \diamond KS0 A1 \diamond WS4 01
||I||
GLAW94001 / 1001 / 2,500 pcs

- का दuy x^{7}

Kitting ' B '

. $\mathrm{TN}_{\mathrm{us}}$

SPMWHT328FD5WA \diamond KS0 A1 \diamond ZS4 01
||| GLAW94001 / 1001 / 2,500 pcs |||

Kitting ' A '

Kitting 'B'

Outer Box

Kitting ' B '

${ }_{c} \mathrm{NX}_{\text {us }}$	A1 \triangle ZS4																																												
SPMWHT328FD5WA \diamond KSO A1 \diamond ZS4 01 \|III																																													
GLAW94001 / 1001 / 2,500 pcs																																													
-	Label]																																												

Note: " \diamond " can be Nominal CCT code.

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

2. Peak package body temperature: 240 t
3. Ater this bag is opened, devioes that will be subjected to reflow soldor or other high temperature processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than 30 ' $/ 60 \% \mathrm{RH}$, or
b. Stored at $<10 \%$ RH
4. Devioes require bake, before mounting, if:
a. Humidity Indicator Card is $>/ 60 \%$ when read at 23 ± 5 c, or b. 2 a is not met.
5. It baking is required, devioes must be baked for $10 \sim 24$ hours at $60 \pm 5{ }^{\circ} \mathrm{C}$

Note: I device containers cannot be subjected to high temperature or
shorter bake times are desired, reference IPC/JEDEC J-STD-033 for
bake procedure,
Bag seal due date: \qquad
(f blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사항

이 알루미늠 지퍼 맥은 슴기 및 정전기로부터 제풍을 보호하 기 위하여 제작되었슴니다. 개봉 후에는 즉시 술더 작업율 실 시하는 것을 퀀장합니다.
슊기 및 정전기로포터 졔폼율 보호 하기 위혜서 개봉 후 사용 하지 않는 자재는 븐 펵에 낳어 노란 하시기 바랍니다. 사용하 지 않는 자재를 본 팩에 넣을 매는 반드시 동훙퇸 드라이 빼 퐈 합께 넣고 지퍼부룰을 완전하게 밀홍하여 주시기 바랍니다.

. Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $\left.0 \sim 40^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}\right)$.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co., Ltd. is a global leader in technology, opening new possibilities for people everywhere. Through relentless innovation and discovery, we are transforming the worlds of
TVs, smartphones, tablets, PCs, cameras, home appliances, printers,
LTE systems, medical devices, semiconductors and LED solutions.
We employ 286,000 people across 80 countries with annual sales of US\$216.7 billion. To discover more, please visit www.samsungled.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

