INCH-POUND MIL-M-38510/108A 18 December 2003 SUPERSEDING MIL-M-38510/108 (USAF) 9 April 1976

MILITARY SPECIFICATION

MICROCIRCUITS, LINEAR, TRANSISTOR ARRAYS, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

Inactive for new design as of 10 July 1995

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon transistor arrays. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3)

1.2 Part or Identifying Number (PIN). The PIN should be in accordance with MIL-PRF-38535, and as specified herein.

1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	Circuit
01	Two isolated NPN transistors and one NPN Darlington connected pair,
	general purpose.
02	Three isolated NPN transistors and one NPN differentially connected pair,
	general purpose.

1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.

1.2.3 Case outline. The case outline should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
A <u>1</u> /	GDFP5-F14 or CDFP6-F14	14	Flat pack
C	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Μ	MACY1-X12	12	Can

1/ Inactive package case outline.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

1.3 Absolute maximum ratings. 1/

Collector – base voltage	40 V dc <u>2</u> /
	$10 V UC \underline{2}$
Collector – substrate voltage	60 v ac <u>3</u> /
Emitter – base voltage	5 V dc <u>2</u> /
Power dissipation	300 mW <u>2</u> /
Collector current	50 mA <u>2</u> /
Storage temperature range	-65°C to +150°C
Junction temperature	+175°C
Lead temperature (soldering, 60 seconds)	+300°C

1.4 Recommended operating conditions.

Collector – base voltage	32 V dc	<u>2</u> /
Collector – emitter voltage	12 V dc	2/
Ambient operating temperature range	-55°C ≤ 1	Γ _A ≤ +125°C

1.5 Power and thermal characteristics.

Case outline	Maximum allowable power dissipation	<u>Maximum</u> θ _{JC}	<u>Maximum</u> θ_{JA}
A, D, M	350 mW @ T _A = 125°C	60°C/W	140°C/W
С	400 mW @ T _A = 125°C	40°C/W	120°C/W

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883	-	Test Method Standard for Microelectronics.
MIL-STD-1835	-	Interface Standard Electronic Component Case Outlines.

(Copies of these documents are available online at <u>http://assist.daps.dla.mil;quicksearch/</u> or <u>www.dodssp.daps.mil</u> or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this specification and the references cited herein the text of this document shall takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

^{1/} The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

²/ Rating applies to each transistor within the array.

 $[\]underline{3}$ / Does not apply to Q₅ of device type 02, refer to V_{CEO} rating.

3. REQUIREMENTS

3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).

3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. This slash sheet has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity.

3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.

3.3.1 <u>Circuit diagrams and terminal connections.</u> The logic diagram and terminal connections shall be as specified on figure 1.

3.3.2 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VA) upon request.

3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.

3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range, unless otherwise specified.

3.6 <u>Electrical test requirements</u>. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.

3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.

3.7.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. For class Q product built in accordance with A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity, the "QD" certification mark shall be used in place of the "QML" or "Q" certification mark.

3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 53 (see MIL-PRF-38535, appendix A).

MIL-M-38510/108A

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
					Min	Max	
Breakdown voltage, collector to base	V _{(BR)CBO}	$I_{C} = 10 \ \mu A, \ I_{E} = 0$	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	01, 02	40		V
Breakdown voltage, collector to emitter	V _{(BR)CEO}	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0$	$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	01, 02	15		V
Breakdown voltage, collector to substrate 2/	V _{(BR)CUO}	I _C = 10 μA	$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	01, 02	60		V
Breakdown voltage, emitter to base 2/	V _{(BR)EBO}	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	$-55^{\circ}C \leq T_A \leq +125^{\circ}C$	01, 02	5.0		V
Collector to base	I _{CBO}	$V_{CB} = 35 \text{ V}, I_E = 0$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		10	nA
cutoff current			T _A = +125°C	-		0.2	μA
Collector to emitter	I _{CEO}	$V_{CE} = 10 \text{ V}, I_{B} = 0$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		10	nA
cutoff current			T _A = +125°C			1.0	μA
Collector to emitter	I _{CEO(D)}	$V_{CE} = 10 \text{ V}, I_{B} = 0$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01		20	nA
cutoff current (Darlington pair) 3/			T _A = +125°C	-		50	μA
Collector to substrate	I _{CUO}	V _{CU} = 40 V	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		10	nA
cutoff current 2/			T _A = +125°C	-		200	-
Emitter to base cutoff	I _{EBO}	$V_{EB} = 4 V, I_{C} = 0$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		10	nA
current			T _A = +125°C			200	-
Collector to emitter	V _{CE(sat)}	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1 \text{ mA}$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		0.400	V
voltage (saturated)			T _A = +125°C			0.600	
Base emitter voltage	V _{BE(sat)}	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1 \text{ mA}$	$+25^{\circ}C \leq T_A \leq \ +125^{\circ}C$	01, 02		1.0	V
(saturated)			$T_A = -55^{\circ}C$			1.1	1
Base emitter voltage	V _{BE}	$V_{CE} = 3 V, I_E = -1 mA$	T _A = +25°C	01, 02	0.600	0.800	V
(unsaturated)			T _A = +125°C	-	0.450	0.650	1
			$T_A = -55^{\circ}C$		0.750	0.950	1
Base emitter voltage	V _{BE}	$V_{CE} = 3 \text{ V}, \text{ I}_{E} = -10 \text{ mA}$	T _A = +25°C	01, 02		0.900	V
(unsaturated)			T _A = +125°C			0.750	
			$T_A = -55^{\circ}C$			1.000	
Base emitter voltage	V _{BE(D)}	$V_{CE} = 3 V, I_E = -1 mA$	T _A = +25°C	01	1.100	1.500	V
(unsaturated), Darlington pair 3/			T _A = +125°C		0.700	1.100	
<u><u><u></u></u></u>			$T_A = -55^{\circ}C$		1.500	1.900]
Base emitter voltage	V _{BE(D)}	$V_{CE} = 3 V, I_E = -10 mA$	$T_A = +25^{\circ}C$	01		1.600	V
(unsaturated), Darlington pair 3/			T _A = +125°C			1.200	
<u> </u>			$T_A = -55^{\circ}C$			2.00	
Input offset voltage,	VBEQ1 -	$V_{CE} = 3 V, I_E = -1 mA$	T _A = +25°C	01, 02		2.0	mV
unerential pair <u>4</u> /	VBEQ2		$-55^{\circ}C \le T_A \le +125^{\circ}C$			3.0	
Input offset voltage	V _{BEQA} -	$V_{CE} = 3 \text{ V}, I_E = -1 \text{ mA}$	$T_A = +25^{\circ}C$	01, 02		2.0	mV
transistors <u>5/6/7/</u>	V BEQB		$-55^{\circ}C \leq T_A \leq +125^{\circ}C$			3.0	

TABLE I.	Electrical	performance	characteristics.

See footnotes at end of table.

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
					Min	Max	
Temperature	$\Delta V_{BE} / \Delta T$	$V_{CE} = 3 V, I_E = -1 mA$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01	-2.2	-1.5	mV/°C
coefficient of base				02	-2.2	-1.3	
<u>5</u> / <u>8</u> /			$+25^{\circ}C \leq T_A \leq \ +125^{\circ}C$	01	-2.2	-1.5	1
				02	-2.2	-1.3	-
Temperature	$\Delta V_{BE(D)} / \Delta T$	$V_{CE} = 3 \text{ V}, I_E = -1 \text{ mA}$	$-55^{\circ}C \leq T_A \leq \ +25^{\circ}C$	01	-5.0	-3.5	mV/°C
coefficient of base emitter voltage, Darlington pair 3/ 8/			$+25^{\circ}C \leq T_A \leq +125^{\circ}C$		-5.0	-3.5	
Temperature	(Δ V _{BEQA} -	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	$-55^\circ C \leq T_A \leq +25^\circ C$	01, 02		15	μV/°C
coefficient of input	$V_{BEQB})/\Delta T$		$+25^{\circ}C \leq T_A \leq +125^{\circ}C$	Ť		15	
Static forward	h _{FE}	V_{CE} = 3 V, I_C = 10 μ A	$+25^{\circ}C \leq T_A \leq +125^{\circ}C$	01, 02	45		
current transfer ratio (beta)			$T_A = -55^{\circ}C$	Ī	25		
Static forward	h _{FE}	$V_{CE} = 3 V, I_{C} = 1 mA$	$+25^{\circ}C \leq T_A \leq +125^{\circ}C$	01	70	300	
current transfer ratio (beta)			$T_A = -55^{\circ}C$	1	40		
			$+25^{\circ}C \leq T_A \leq +125^{\circ}C$	02	70		
			$T_A = -55^{\circ}C$		40		
Static forward	h _{FE}	$V_{CE} = 3 V, I_C = 10 mA$	$+25^\circ C \leq T_A \leq +125^\circ C$	01, 02	60		
ratio (beta)			T _A = -55°C		35		
Magnitude of static	h _{FEQA} /h _{FEQB}	$V_{CE} = 3 V, I_C = 1 mA$	T _A = +25°C	01, 02	0.9	1.1	
two isolated			$-55^{\circ}C \le T_A \le +125^{\circ}C$		0.85	1.15	-
Static forward	h _{FE(D)}	$V_{CE} = 3 V, I_{C} = 1 mA$	$+25^{\circ}C \le T_A \le +125^{\circ}C$	01	4000		
current transfer ratio, Darlington pair 3/			T _A = -55°C		2500		
Static forward	h _{FE(D)}	$V_{CE} = 3 \text{ V}, I_{C} = 100$	$+25^{\circ}C \le T_A \le +125^{\circ}C$	01	2500		
current transfer		μΑ	T _A = -55°C	+	1500		
pair <u>3</u> /							
Low frequency,	h _{fe}	$V_{CE} = 3 V$, $I_C = 1 mA$	T _A = -55°C	01, 02	35		
forward current transfer ratio			$+25^{\circ}C \le T_A \le +125^{\circ}C$		60		
Gain-bandwidth	f _t	See figure 4	T _A = +25°C	01, 02	300		MHz
Delay time	t _d	See figure 2	T _A = +25°C	01, 02		100	ns
	u		T _A = -55°C, +125°C	ł		160	
Rise time	t _r	See figure 2	T _A = +25°C	01, 02		50	ns
			T _A = -55°C, +125°C	t		80	1
Storage time	ts	See figure 2	T _A = +25°C	01, 02		200	ns
			T _A = -55°C, +125°C	1		300	1

TABLE I.	Electrical	performance	characteristics	- Continued.
		-		

See footnotes at end of table.

MIL-M-38510/108A

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
					Min	Max	
Fall time	t _f	See figure 2	$T_A = +25^{\circ}C$	01, 02		80	ns
			T _A = -55°C, +125°C			125	
Channel separation	C.S.	See figure 3	T _A = +25°C	01, 02	80		dB

|--|

1/ Limits apply to each transistor within the array, unless otherwise specified.

 $\underline{2}$ / Does not apply to Q₅ of device type 02.

 $\underline{3}$ / Applies only to Darlington pair (Q₃, Q₄) of device type 01.

 $\frac{1}{4}$ Applies only to differential pair (Q₁, Q₂) of device type 02.

5/ Does not apply to Darlington pair (Q₃, Q₄) of device type 01.

 $\underline{6}$ / Does not apply to differential pair (Q₁, Q₂) of device type 02.

 $\overline{7}$ Applies for pairs (Q₁, Q₂) of device type 01 and for pairs (Q₁, Q₃), (Q₁, Q₄), (Q₁, Q₅) of device type 02.

<u>8</u>/ (V_{BE} @ 125°C - V_{BE} @ 25°C)/(125°C - 25°C), (V_{BE} @ 25°C - V_{BE} @ -55°C)/(25°C - (-55°C))

<u>9</u>/ (||V_{BEQA} - V_{BEQB}| @ 125°C - |V_{BEQA} - V_{BEQB}| @ 25°C |)/(125°C - 25°C),

(| |V_{BEQA} - V_{BEQB} | @ 25°C - |V_{BEQA} - V_{BEQB} | @ -55°C |)/(25°C − (-55°C))

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, (2, 3, 4)**	1*, (2, 3, 4)**
Group A test requirements	1,2,3,4,5,6 7,9,10,11	1, 2, 3, 4
Group B electrical test parameters when using the method 5005 QCI option	1,2,3 and table IV delta limits	N/A
Group C end-point electrical parameters	1,2,3 and table IV delta limits	1,2,3 and table IV delta limits
Group D end-point electrical parameters	1,2,3	1,2,3

*PDA applies to subgroup 1

^{**} $\Delta V_{BE}/\Delta T$ and $(\Delta |V_{BEQA} - V_{BEQB}|)/\Delta T$ test as specified in table III herein for group A, subgroups 2 and 3, and f_t tests as specified in table III herein for group A, subgroup 4, are not required for final electrical tests (for device 02 only) but shall be performed for group A sample testing.

4. VERIFICATION.

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as function as described herein.

MIL-M-38510/108A

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:

- a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Burn-in test (method 1015 of MIL-STD-883) 1/.

Test condition		В	A <u>2</u> /				
Product assurance class	S	В	S	В			
T _A minimum	125°C	125°C	250°C	200°C			
t minimum	240 hours	168 hours	16 hours	16			
			or 200°C	hours			
			168 hours				

Notes:

- 1/ The vertical columns of this table establish alternate combinations of test conditions from which the manufacturer may choose any one for a given product assurance class, at their option, unless otherwise specified in the procurement documentation. The same condition shall be used for all devices in a given inspection lot and the same condition shall be used for both burn-in (when applicable), and operating life test for any given inspection lot. Alternate 2 for stabilization bake and high temperature storage tests shall be used only when test condition A has been selected, and alternate 1 shall be used when test condition B has been selected.
- 2/ When accelerated test condition A is used, the centrifuge test and hermeticity tests of method 5004 of MIL-STD-883 shall be performed, in that order, subsequent to the burn-in test and before the final electrical test of method 5004 of MIL-STD-883.
- c. Reverse bias burn-in (method 1015 of MIL-STD-883). This screen shall apply to class S only.

Test condition	А
Product assurance class	S
T _A minimum	150°C
t minimum	72 hours

- d. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- e. Additional screening for space level product shall be as specified in MIL-PRF-38535.

4.3 <u>Qualification inspection</u>. Qualification inspection shall be in accordance with MIL-PRF-38535.

4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).

4.4.1 <u>Group A inspection</u>. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroup 8 shall be omitted.

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:

- a. End point electrical parameters shall be as specified in table II herein.
- b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- c. Operating life test (method 1005 of MIL-STD-883) 1/.

Test condition	E	3	A <u>2</u> /				
Product assurance class	S	В	S	В			
T _A minimum	125°C	125°C	250°C	200°C			
t minimum	1000 hours	1000 hours	100 hours	100 hours			
			or 200°C				
			1000 hours				
Sample size series number	5	5	10	10			

Note:

- The vertical columns of this table establish alternate combinations of test conditions from which the manufacturer may choose any one for a given product class, at their option, unless otherwise specified in the procurement documentation.
 See 4.2b.
- <u>Z</u>/ See 4.20.
- d. Steady state reverse bias (method 1005 of MIL-STD-883).

Test condition	A
Product assurance class	S
T _A minimum	150°C
t minimum	72 hours
Sample size series number	5

4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End point electrical parameters shall be as specified in table II herein.

4.5 <u>Methods of inspection</u>. Methods of inspection shall be specified as follows.

4.5.1 <u>Voltage and current</u>. All voltage values given are referenced to the microcircuit ground terminals. Currents given are conventional current and positive when flowing into the referenced terminal.

Device type 01

12 lead can (top view)

Device type 01

Cases A, C, D

14 lead flat pack or dual-in-line (top view)

Figure 1. Circuit diagrams and terminal connections.

Downloaded from Arrow.com.

Device type 02

14 lead flat pack or dual-in-line (top view)

Figure 1. <u>Circuit diagrams and terminal connections</u> – Continued.

FIGURE 2. Switching time test circuit and waveforms.

Notes: 1.

Device type	QA	QB
01	Q1	Q2
02	Q3	Q4

FIGURE 3. Channel separation test circuit.

Notes:

- 1. The input shall be a 100 MHz signal containing only the fundamental frequency (THD $\leq 0.5\%$).
- 2. Connect the substrate to -2.5 V.
- 3. With the device removed from the circuit, a shorting link is placed between the base and collector and the input signal adjusted for 1.0 mV rms on the high impedance voltmeter V_{ce} . The shorting link is then removed. The device is placed in the circuit and the reading on the voltmeter V_{ce} equal to the magnitude of h_{fe} .
- 4. f_t = 100 MHz x h_{fe}

FIGURE 4. Gain-bandwidth product (ft) test circuit.

			1		1	1					1		1					
	Unit		> = = = =	* * * *			¥" , , ,		n	* * * *		> * * *		z z	2 Z	z z	2 2	z z
lits	Max						10	33 33	20	10 """		0.400 "	1.0	0.800	z z	= =	3 3	0.900
Lim	Min		40	. 2	60	5.0								0.600	z z	* *	z z	
	Measured terminal		C C C C C C C C C C C C C C C C C C C	04 05 05 05 05 05 05 05 05 05 05 05 05 05	C 02 C 03 C 03 C 04	ЕQ1 ЕQ3 С4 С3 С4	C C C C C C C C C C C C C C C C C C C	CQ1 CQ2 CQ3 CQ3	CQ3, CQ4	CQ1 CQ2 CQ3 CQ4	ЕQ1 ЕQ2 С4	C02 C02 C03 C03 C04	BQ1 BQ2 BQ3 BQ4	BQ1	BQ2	BQ3	BQ4	BQ1
14	2	BQ4/ EQ3		GND		10 µA GND	GND	GND			4.0 V GND	GND 1 mA	GND 1 mA			GND/ -1 mA	в	
13	-	EQ4		GND		10 MA	-	GND	GND		4.0 V	GND	GND				GND/ -1 mA	
12	12	CQ4		10 µА 1 mA	10 uA	-	35 V	10 V	10 V	40 V		10 mA	10 mA				3 V	
11	11	co3	10 µA	1 mA	10 µA		35 V	10 V	10 V	40 V		10 mA	10 mA			3 V		
10	10	SUB	GND					11 11 11		33 33	* * * * *			2 Z	z z	3 3	2 2	2 Z
6	6	BQ3	GND			GND	GND				GND	1 mA	1 mA			8		
ω		NC																
7	ω	caı	10 µA	1 mA	10 µA		35 V	10 V		40 V		10 mA	10 mA	3 V				3 V
9	7	EQ1		GND		10 µA		GND			4.0 V	GND	GND	GND/ -1 mA				GND/ -10 mA
വ	9	BQ1	GND			GND	GND				GND	1 mA	1 mA	B				8
4	2	CQ2	10 µA	1 mA	10 µА		35 V	10 V		40 V		10 mA	10 mA		3 V			
е	4	EQ2		GND		10 µA		GND			4.0 V	GND	GND		GND/ -1 mA			
2	е	BQ2	GND			GND	GND				GND	1 mA	1 mA		в			
-		RC																
Cases A.C.D	Case M	Test no.	- m·	م م م 4	e 0 1 2	13 15 16	17 19 20	21 22 24	25	26 27 28	30 32 33	34 35 36 37	38 39 40	42	43	44	45	46
	Symbol		V _(ВR) сво	(BR)CEO 2	(BR)CUO	(BR)EBO	CBO	СЕО	CEO(D)	cno	EBO	CE(SAT)	BE(SAT)	BE				
	Subgroup		1 Γ _A =+25°C		> >		>	_	_		_	_	>	>		>		

MIL-M-38510/108A

" 3V 3V GND/ BQ3 1.600 "	3 V GND/ BQ3 1.100 1.500 " -1 mA -1 mA	- 2.0 mV	BQ1 45	BQ2 "	BQ3 "		70 300	23	37 37	2					1.1		
" 3V 3V GND/ BQ3 1.600	3 V GND/ BQ3 1.100 1.500 -1 mA -1 mA	- 2.0	BQ1 45	BQ2 "	BQ3 "		70 300	57	9 9	3					1.1		
* 3V 3V GND/ BQ3	3 V GND/ BQ3 1.100 -1 mA BQ3 1.100 3 V GND/ BO3		BQ1 45	BQ2 "	BQ3 "		20	и	'n								
-1 mA -1 mA 3 V GND/ BQ3	3 V GND/ BQ3 -1 mA -1 mA -3 V GND/ BQ3	, ,	BQ1	BQ2	BQ3	4				u	60	a	н	u	0.9	2500	4000
" -1 mA -1 mA -1 mA -1 mA	3 V GND/ -1 mA 3 V GND/					BQ	BQ1	BQ2	BQ3	BQ4	BQ1	BQ2	BQ3	BQ4		BQ3	BQ3
" 3V 3V GND/	3 V GND/ -1 mA				GND	B			GND	-8			GND	в			
" 3V 3V	3 <	'				GND				GND				GND		GND	GND
" 3V						3 V/ 10 μΑ				3 V/ 1 mA				3 V/ 10 mA		3 V/ 100 μA	3 V/ 1 mA
2	3 V 3 V				3 V/ 10 μΑ				3 V/ 1 mA				3 V/ 10 mA			CQ4	CQ4
	u u				ÿ		3	33	9		3	3	3			11	×
<u>_</u>			з	n	le "		3		B		3		a		3	la "	<u>_a</u>
			3 V/ 10 μΑ				3 V/ 1 mA				3 V/ 10 mA						
			GND				GND				GND						
			<u>_</u>				<u>8</u>				B						
				3 V/ 10 μΑ				3 V/ 1 mA				3 V/ 10 mA					
				GND				GND				GND					
				۵				ш				۵					
					-				_								
	50	52	53												65	66	67
51	V _{BE} 48)	V _{BEQ1} –V _{BEQ2}	h _{FE}	1	1	54	55	56	57	58	59	60	61	62	hreat /bg eaz	h⊧£¢e\$,	h _{re(D)}
	V _{BE468} 50	VBd46) 51	Vв4(6) 51 Vвеот – Vвеод 52	Vве46) 51 Vвеат – Vвеа2 52 hre 53	Ved(6) 51 Vecor – Vecoz 52 hre 53	Vede) 51 Vede) 51 Necai – Vecal 52 hre 53	Ved(6) 51 Ved(6) 51 Ved(6) 52 here 53 here 53 here 53 here 53 here 53 here 53 here 54	V _{BE} (6) 51 V VBEQ1 - VBEQ2 52 53 hFE 53 F	V _{BE} (4) 51 V VBE on -VBE out hree 53 r 1 54 53 r 1 54 53 r 1 54 53 r 1 55 55 r 1 56 r 1 57 r	Vert66 51 Vert66 51 Vert66 52 Vert66 52 Provide the second statement of the se	Ved6) 51 Ved6) 51 Ved6) 52 Ved6) 52 Ved6) 52 Ved6 Ved6 Ved6 Ved6 Ved6 Ved6 Ved6 Ved6	Ved46/ 51 IVecon 52 IVecon 52 hre 53 54 53 55 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58 58 59 50	Vertion I Vertion Three 52 54 52 53 54 53 55 56 57 56 57 57 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57	Ved6. 51 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ved46 51 NEecon - Veccol 52 hre 53 54 53 55 55 56 57 58 58 58 58 58 56 58 56 58 56 59 59 60 60 61 1 62 1 61 1 62 1	Ved46 51 IVeed6 51 IVeed6 52 hre 53 54 53 54 53 54 53 55 56 56 57 58 59 59 59 60 51 61 1 61 1 62 55 63 1 64 1 65 1 61 1 62 55 63 1 64 1 65 1 62 1 63 55 64 1 65 1 1 1 1 1 1 1	Vad66 51 Nad66 51 Needo 52 Nee 53 he 53 54 53 55 55 56 7 57 7 58 7 59 60 61 1 61 1 heat 61 hreat 65 hreat 65 hreat 65 hreat 65 1 1 62 65 1 1 1 1 1 1

. 0

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Broup A inspection for device type 01 – Continued.	ins not designated may be $H \ge 2.0$ V, or $L \le 0.8$ V, or open)
TABLE III.	Terminal conditions (p

	Unit		μA	з	u	u	3	з	×	ä	3	Ρu	a	×	a
Limits	Max		0.2	'n	y	u	1.0	y	u	ų	50	200	n	3	3
	Min														
	Measured terminal		cQ1	CQ2	CQ3	CQ4	caı	CQ2	CQ3	CQ4	CQ3,CQ4	cou, co. co1 co2 co3		co3	CQ4
14	2	BQ4/ EQ3				GND			GND						
13	1	EQ4								GND	GND				
12	12	CQ4				35 V				10 V	10 V				40 V
11	11	CQ3			35 V				10 V		10 V			40 V	
10	10	SUB	GND	a	u	97	n	a	n	a	a	a	a	a	a
6	6	BQ3			GND										
ω	ı	NC													
2	ω	caı	35 V				10 V					40 V			
9	7	EQ1					GND								
5	9	BQ1	GND												
4	5	CQ2		35 V				10 V					40 V		
ю	4	EQ2						GND							
2	ю	BQ2													
~		NC			GND										
Cases A,C,D	Case M	Test no.	68				72				76	77	78		
	Symbol		Iceo			69	lc 700	71		73	Iced(#)	lcR5			
	Subgroup		2 T _A = +125°C				<u> </u>				<u> </u>	<u> </u>			

				_							-									
	Note																			
	Unit		An	ч	3	u.	>	u.	3	a	>	ч	3	ч	ч	ч	з	з	з	з
Limits	Max		200	11	*	**	0.600	"	*	a	0.650	11	'n	11	0.750	n	и	u,	1.100	1.200
	Min										0.450	3	*	4					0.700	
	Measured terminal		EQ1	EQ2	EQ3	EQ4	ca1	CQ2	CQ3	CQ4	BQ1	BQ2	BQ3	BQ4	BQ1	BQ2	BQ3	BQ4	BQ3	BQ3
14	2	BQ4/ EQ3			4.0 V	GND			GND	1 mA			GND/ -1 mA	в			GND/ -10 mA	8		
13	-	EQ4				4.0 V				GND				GND/ -1 mA				GND/ -10 mA	GND/ -1 mA	GND/ -10 mA
12	12	CQ4								10 mA				3 V				3 V	3 V	3 V
11	11	CQ3							10 mA				3 V				3 <		3 <	3 V
10	10	SUB		ų	3		'n	IJ	7		3	з	11		з	я	а		а	n
თ	0	BQ3		GND	GND		u		1 mA		ä		-8		u		8		<u>в</u> "	9
ω	ı	NC																		
7	œ	ca1					10 mA				3 V				3 V					
9	7	EQ1	4.0 V				GND				GND/ -1 mA				GND/ -10 mA					
5	9	BQ1	GND				1 mA				В				в					
4	5	CQ2						10 mA				3 V				3 V				
e	4	EQ2		4.0 V				GND				GND/ -1 mA				GND/ -10 mA				
7	ო	BQ2		GND				1 mA				۵				۵				
-		NC											-	-			_			
Cases A,C,D	Case M	Test no.	81	82	83	84	85	86	87	88	89	06	91	92	93	94	95	96	97	86
	Symbol Febo						V _{CE(sat)}	I	1	1	BE	I		1	1	1	<u> </u>	<u> </u>	BE(D)	BE(D)
	Subgroup		2 T _A = +125°C				Į				Į		>						I	ļ

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Downloaded from Arrow.com.

>

	Note		-	2	с	4	S	9	2	œ	ø	6							
	Unit		л Ч	mV/°C	3	3	3	3	μV/°C				>	з	2	a	>	з	
Limits	Max		3.0	-1.5	3	3	3	-3.5	15.0	300	300	1.15	1.100				0.950	0.950	
	Min			-2.2	ч	ч	ч	-5.0	ч	20	20	0.85					0.750	0.750	
	Measured terminal									BQ1	BQ2		BQ1	BQ2	BQ3	BQ4	BQ1	BQ2	
14	7	BQ4/ EQ3													GND	1 mA			
13	٢	EQ4														GND			g
12	12	CQ4														10 mA			x 10 ³ /1C ∈(107)
1	11	CQ3													10 mA				- V ₅₂) : 106)/h _{FI}
10	10	SUB	GND	4	3	'n	ÿ	3	ų	31	n	ų	ų	31	4	4	3	ä	late (V ₉₉ 1 mA/I _B ate h _{FE} (
ი	ი	BQ3													1 mA				Calcul . h _{FE} = . Calcul
ω		NC																	~ ⁸
7	ω	cq1								3 V/ 1 mA			10 mA				3 V		$10^{3}/100$ $10^{3}/100$ $10^{3}/100$
و	7	EQ1								GND			GND				GND/ -1 mA		V ₄₄) x V ₄₅) x V ₅₀) x
5	9	BQ1								в В			1 mA				- <mark>в</mark>		te (V_{91}) te (V_{92}) te (V_{97})
4	5	CQ2									3 V/ 1 mA			10 mA				3 V	Calcula Calcula Calcula Calcula
т	4	EQ2									GND			GND				GND/ -1 mA	ي. م بن
7	ю	BQ2									æ			1 mA				в	3 3/100 3/100
-		NC										-							/ ₉₀) × 10 V ₄₂) × 10 V ₄₃) × 10
Cases A,C,D	Case M	Test no.	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	te (V ₈₉ – V te (V ₈₉ – V te (V ₉₀ – V
	Symbol	<u> `</u>	V _{BEQ1} - V _{BEQ2}	ΔV _{BE} /ΔT				$\Delta V_{BE(D)}/\Delta T$	$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	FEQ1	FEQ2	FEQ1/ hFEQ2	V _{BE} (sat)	3	3	31	BE	3	NOTES: 1. Calculat 2. Calculat 3. Calculat
	Subgroup		2 T _A = +125°C		-	-	-	a :	3 3	:	-	٤	3 ⊺ _A = -b5°C	۔ د				-	>

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

				r	·		·	·		r		·	·	1	r	r		·	r	
	Note										-	2	e	4	2	9	2	ø	∞	6
	Unit		>	a	4	a	a	a	a	a	> E	mV/°C	a	4	4	a	μV/°C			
Limits	Max		0.950	0.950	1.000	n	н	n	1.900	2.000	3.0	-1.5	н	н	и	-3.5	15.0			1.15
	Min		0.750	0.750					1.500			-2.2	з	з	n	-5.0	n	40	40	0.85
	Measured terminal		BQ3	BQ4	BQ1	BQ2	BQ3	BQ4	BQ3	BQ3								BQ1	BQ2	
14	5	BQ4/ EQ3	GND/ -1 mA	8			GND/ 10 mA	8												
13	-	EQ4		GND/ -1 mA				GND/ -10 mA	GND/ -1 mA	GND/ -10 mA										
12	12	CQ4		3 <				3 V	3 V	3 V										
11	1	CQ3	3 V				3 V		3 <	3 <										
10	10	sUB	GNS	3	3	3	ч	3	3	3	DNS	ч	ч	3	3	3	ч	3	3	3
<u>б</u>	ი	S S S	۹ ا				9		9	a	0									
ω		ы С С																		
2	æ	م 1			>													// An		
		ŭ T			0/ 3													0 1-3		
9	2	1 EQ			GNI -10 r													ND		
2	9	BQ			<u>8</u>													a I		
4	2	CQ2				3 <													3 V/ 1 mA	
с	4	EQ2				GND/ -10 mA													GND	
5	ю	BQ2				æ													æ	
-		NC					_													_
Cases A,C,D	Case M	fest no.	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
	Symbol	<u> </u>	V _{BE}	3					BE(D)	BE(D)	Vbea1 - Vbea2	ΔV _{BE} /ΔT				$\Delta V_{BE(D)}/\Delta T$	$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	FEQ1	FEQ2	FEQ1/ hFEQ2
	ubgroup		3 ₄ = -55°C					3	3		>	>					3			ء

Table III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

7 Calculate ($V_{52} - V_{123}$) x 10³/80 8. h_{FE} = 1 mA/l_B 9. h_{FE}(130)/h_{FE}(131)

Calculate (V₄₄ – V₁₁₅) x 10³/80 Calculate (V₄₅ – V₁₁₆) x 10³/80 Calculate (V₅₀ – V₁₂₁) x 10³/80

1. Calculate $(V_{113} - V_{114}) \times 10^3$ 2. Calculate $(V_{42} - V_{113}) \times 10^3/80$ 3. Calculate $(V_{43} - V_{114}) \times 10^3/80$

.

도 도

Downloaded from Arrow.com.

	Note		10	11	12	13	14	14	14	14	12	13	12	13
	Unit						MHz	и	z	z				
Limits	Max													
	Min		2500	1500	60	60	300	з	3	ч	60	60	35	35
	Measured terminal		BQ3	BQ3	BQ1	BQ2	caı	CQ2	co3	CQ4	BQ1	BQ2	BQ1	BQ2
14	2	BQ4/ EQ3												
13	۲	EQ4	GND	GND										
12	12	CQ4	3 V/ 1 mA	3 V/ 100 μΑ										
11	11	CQ3	CQ4	CQ4										
10	10	SUB	GND	a	39	u					GND	'n	a	11
თ	ი	BQ3	8	8										
ω	•	NC												
7	ω	caı			3 V/ 1 mA						3 V/ 1 mA		3 V/ 1 mA	
9	7	EQ1			GND						GND		GND	
5	9	BQ1			٩I						q		q	
4	പ	CQ2				3 V/ 1 mA						3 V/ 1 mA		3 V/ 1 mA
с	4	EQ2				GND						GND		GND
2	ю	BQ2				q						q		٩
-		NC												
Cases A,C,D	Case M	Test no.	133	134	135	136	137	138	139	140	141	142	143	144
	Symbol		hFE (D)	FE (D)	hFE	FE	ft	ft	ft	ft	hfe	hfe	hfe	hfe
	Subgroup		3 T _A = -55°C		4 T _A = 25°C	٢		ح			5 T≜ = +125°C		6 T _A = -55°C	

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

NOTES:

10. $h_{FE(D)} = 1 \text{ mA/I}_{BQ3}$ 11. $h_{FE(D)} = 100 \text{ \muA/I}_{BQ3}$ 12. Adjust I_b until I_C = 1.1 mA

13. $h_{fe} = 0.1 \text{ mA/Al}_b$ 14. f = 100 MHz, measure h_{fe} , $f_t = 100 \text{ h}_{fe}$ (see figure 4)

MIL-M-38510/108A

				-	-						-	_		-	·		·	-			·		·					
		Note		~	7	u	n	"	n	n	×	n	u	"	n	u	n	"	n	"	u	n	n	u	n	n	u	3
		Unit		đb	su	u	n	u	n	a	'n	u	a	'n	u	n	u	'n	n	u	3	n	u	ч	ä	IJ	n	3
	Limits	Max			100	100	50	50	200	200	80	80	160	160	80	80	300	300	125	125	160	160	80	80	300	300	125	125
		Min		80																								
		asured minal		202	ğ	202	sa1	202	ba1	202	SQ1	202	SQ1	202	ğ	202	ğ	202	ba1	202	ğ	202	ğ	202	ğ	202	SQ1	202
		Mea	33	0	0		0						0								0						0	0
	7	2	а С С																									
	13	٢	EQ4																									
	12	12	CQ4																									
	11	11	CQ3																									
	10	10	SUB	GND	a	3	n	n	n	n	u	'n	33	n	3	4	ч	33	n	n	a	n	3	3	u	"	'n	3
	თ	6	BQ3																									
	ø		NC NC																									
	7	æ	col																									
)	G	2	ð																									
;		0	а 1 2																									
			2 B(
	4	2	g																									
	e	4	EQ2																									
	0	£	BQ2																									
	-		NC																									
	ses C,D	ase M	t no.	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
	A.G	ö –	Tes	÷	÷	÷	+	÷	÷	÷	÷	÷	,	÷	÷	-	÷	4	÷	÷	÷	~	-	~	~	÷	7	-
		mbol		v.	р	p	tr	ţ	ş	ş	ţf	tr	р	р	t.	r.	ړ. د	,s	ţf	ţf	P	P	t.	t.	ş	ţ	tf	ţf
		Sy		O						-											_					-		
		group		7 ≜ = 5°C	o 5°= C	<u> </u>	<u> </u>		<u> </u>		<u> </u>		10 ≜ = 25°C	<u> </u>		11 -55°C	<u> </u>											
		ìqn		μŶ	μĻ								`⊢` ;) II							

Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

Downloaded from Arrow.com.

20

1. See figure 3. 2. See figure 2. NOTES:

			1	1	1	1	1	r –		1	1	1	r	r –	1	1	r		1	1								<u> </u>	-	1
	Unit	>	я	a	з	н	3	u	н	a	a	3	ä	3	ч	3	ä	я	×	3	٩u	н	3	ч	я	я	ч	'n	я	a
Limits	Max																				10	n	n	u	n	я	u	n	n	n
	Min	40	а	4	ч	u	15	а	a	4	4	60	'n	n	ÿ	5.0	u	n	u	×										
	Measured terminal	cQ1	CQ2	CQ3	CQ4	CQ5	caı	CQ2	CQ3	CQ4	CQ5	caı	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	EQ5	caı	CQ2	CQ3	CQ4	CQ5	caı	CQ2	CQ3	CQ4	CQ5
14	CQ5					10 µA					1 mA														35 V					10 V
13	EQ5/ SUB	GND	n	n		'n	n	n	n	n	n	'n	a	n		a	a	a	n	10 µA	GND	n	'n	n	n	a	n	u	a	n
12	BQ5					GND	"										'n			GND					GND					
v, ui upe	CQ4				10 µA					1mA					10 µA									35 V					10 V	
L ≥ 0.0	EQ4									GND									10 µA										GND	
6 6	BQ4				GND														GND					GND						
8	CQ3			10 µA					1 mA					10 µA									35 V					10 V		
	EQ3								GND									10 µA										GND		
9	BQ3			GND														GND					GND							
5	CQ2		10 µA					1 mA					10 µA									35 V					10 V			
4	BQ2		GND														GND					GND								
3	EQ1, 2						GND	GND								10 µA	10 µA									GND	GND			
5	BQ1	GND														-					GND									
-	ca1	0 µA					1 mA					0 µA						GND			35 V					10 V				
Cases	est no.	, -	2	с	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	Ĕ																											<u> </u>		
Symbol		V _(BR) cbo	ч				V _(BR) ceo		и		ч	(BR)CUO				V _{(BR)EBO}		и		u	IcBo	я				lceo		n .		я
Subgroup		1 T≜ = +25°C		<u> </u>	<u> </u>			*	а	ч	<u> </u>	3	[7	>	[ä	z	я		a	3				[3	3	z	

2 TABLE III. Group A inspection for device type 02. tions (rins not designated may be H > 2.0 V, or I < (1:1) 7

È

EIII. Group A inspection for device type 02 – Continued.	ons (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)
TABLE I	Ferminal conditior

	Unit	ЧЧ	ä	n	n	n	"	u	n	n	٧	и	n	n	u	u	u	n	×	ä
Limits	Max	10	a	n	3	a	3	3	a	3	0.400	з	3	3	a	1.000	з	a	n	з
	Min																			
	Measured terminal	caı	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	EQ5	ca1	CQ2	CQ3	CQ4	CQ5	BQ1	BQ2	BQ3	BQ4	BQ5
14	CQ5														10 mA					10 mA
13	EQ5/ SUB	GND	n	n	n	n	'n	n	n	4 V	GND	u	n	n	n	n	n	n	u	z
12	BQ5									GND					1 mA					1 mA
1	CQ4				40 V									10 mA					10 mA	
10	EQ4								4 V					GND					GND	
6	BQ4								GND					1 mA					1 mA	
ω	CQ3			40 V									10 mA					10 mA		
7	EQ3							4 V					GND					GND		
9	BQ3							GND					1 mA					1 mA		
ъ	CQ2		40 V									10 mA					10 mA			
4	BQ2						GND					1 mA					1 mA			
т	EQ1, 2					4 V	4 V				GND	GND				GND	GND			
2	BQ1					GND					1 mA					1 mA				
-	ca1	40 V									10 mA					10 mA				
Cases A,C,D	Test no.	30	31	32	33	34	35	36	37	38	39	40	41	42		44	45	46	47	48
Symbol	L	lcuo	3			Гево		ч		ч	CE(sat)	ч				BE(sat)	ч		-43	
Subgroup		1 T≜ = +25°C	<u> </u>	1	1	1	1	3	3	1	3	1	3	>	<u> </u>	<u> </u>	3	3	>	

MIL-M-38510/108A

ä

Note												-	7	с	4	5	2	5	5	5	9
	Unit	>	n	u	u	×	u	u	n	ä	u	л И	ä	u	n						
Limits	Мах	0.800	77	17	17	11	0.900	17	37	17	17	2.0	11	17	37						
	Min	0.600	77	3	77	n										45	77	3	з	з	70
	Measured terminal	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	1	:	1	1	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1
14	CQ5					3 V					3 <									3 V/ 10 µA	
13	EQ5/ SUB	GND	ä	я	"	GND/ -1 mA	GND	"	n	я	GND/ -10 mA	GND	я	"	n	я	ä	a		11	я
12	BQ5					в					8									в "	
1	CQ4				3 \					3 V									3 V/ 10 μA		
10	EQ4				GND/ -1 mA					GND/ -10 mA									GND		
ი	BQ4				B					B									B		
ø	CQ3			3 <					3 <									3 V/ 10 μА			
7	EQ3			GND/ -1 mA					GND/ -10 mA									GND			
9	BQ3			_@														_@			
5	CQ2		3 <					3 <									3 V/ 10 µA				
4	BQ2		8					в									8				
e	EQ1, 2	GND/ -1 mA	GND/ -1 mA				GND/ 10 mA	GND/ 10 mA								GND	GND				GND
7	BQ1	9														9					B
٦	cQ1	3 <					3 \									3 V/ 10 µА					3 V/ 1 mA
Cases A,C,D	Test no.	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68
Symbol		V _{BE}	ŋ									V _{BEQ1} – V _{BEQ2}	beq1 – V _{beq3}	BEQ1 – VBEQ4	bea1 — Vbeas	H					
Subgroup		1 ⊺ _A = +25°C	-	<u>.</u>	<u>.</u>				4					≥	≥	≥	-	ء	3		4

Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

Г

> 4. Calculate $|V_{49} - V_{53}|$ 5. $h_{FE} = 10 \,\mu A/I_B$ 6. $h_{FE} = 1 \,m A/I_B$

1. Calculate $|V_{49} - V_{50}|$ 2. Calculate $|V_{49} - V_{51}|$ 3. Calculate $|V_{49} - V_{52}|$

NOTES:

. .

Note		-	~	-	-	7	2	7	7	7	с	4	2	9					
	Unit														hA	3	"	n	a
Limits	Max										1.1	37	59	'n	200	'n	'n	ų	и
	Min	20	n	z	u	60	u.	ч	60	60	6.0	z	z	n					
	Measured terminal	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5		ı	ı		ca1	CQ2	603	CQ4	CQ5
14	CQ5				3 V/ 1 mA					3 V/ 10 mA									35 V
13	EQ5/ SUB	GND	9	а	a	а	n	u	а	a	99	а	a	99	а	11	99	u	n
12	BQ5				8					в									GND
11	CQ4			3 V/ 1 mA					3 V/ 10 mA									35 V	
10	EQ4			GND					GND										
6	BQ4			в					в									GND	
80	CQ3		3 V/ 1 mA					3 V/ 10 mA									35 V		
7	EQ3		GND					GND											
9	BQ3		в					_@									GND		
5	CQ2	3 V/ 1 mA					3 V/ 10 mA									35 V			
4	BQ2	<u>8</u>					_@									GND			
ς	EQ1, 2	GND				GND	GND												
5	BQ1					8									GND				
-	ca1					3 V/ 10 mA									35 V				
Cases A,C,D	Test no.	69	02	71	72	73	74	75	76	17	78	62	80	81	82	83	84	85	86
Symbol	·	h _{FE}							71		FEQ1/hFEQ2	FEQ1/hFEQ3	FEQ1/hFEQ4	FEQ1/hFEQ5	Ісво	31			
Subgroup		1 T _A = +25°C		<u>.</u>	3	ä	3	3	3	3		ے _ت	: _	<u>ء</u>	2 T _A = +125°C	:			я

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

3 3

h FE(68)/hFE(70) h FE(68)/hFE(71) hFE(68)/hFE(72)

4[.]5. | 6. |

MIL-M-38510/108A

Note																												
	Unit	μA	ä	з	з	3	3	з	3	ä	3	3	u	з	>	3	з	з	3	n	u.	u	n	u.	n	3	u.	я
Limits	Мах	1.0	'n	з	a	3	200	a	u	я	'n	'n	n	a	0.600	'n	з	a	'n	0.650	a	u	a	a	0.750	'n	a	u
	Min																			0.450	n	77	33	n				
	Measured terminal	ca1	CQ2	CQ3	CQ4	CQ5	ca1	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	caı	CQ2	CQ3	CQ4	CQ5	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4
14	CQ5					10 V													10 mA					3 V				
13	EQ5/ SUB	GND	u	y	ų	y	79	7	n	77	7	79	u	'n	77	7	y	7	79	z	a	3	a	GND/ -1 mA	GND	u	3	u
12	BQ5																		1 mA					в				
11	CQ4				10 V					40 V								10 mA					3 V					3 V
10	EQ4				GND									4 V				GND					GND/ -1 mA					GND/ 10 mA
6	BQ4													GND				1 mA					_8					<u>в</u>
ω	003			٥ ٧					∧ 0t								Am C					3 V					3 V	
7	03			DN 1					4				>				ND 1(/DN MD/					ND/ MD/	
	33 E			G													nA G					- C					ء 6 6	
	22 B(>					>					ð			hA	1				>	_				>	_	
2	S S		10					40				0				A 10 r					ŝ					é		
4	BQ2											GND				1 m/					<u>в</u>					<u>в</u>		
т	EQ1, 2	GND	GND								4 V	4 \			GND	GND				GND/ -1 mA	GND/ -1 mA				GND/ -10 m/	GND/ -10 m/		
2	BQ1										GND				1 mA					<u>в</u>					Ъ			
۲-	caı	10 V					40 V								10 mA					3 V					3 V			
Cases A,C,D	Test no.	87	88	89	06	91	92	93	94	95	96	67	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113
Symbol		Iceo					cno				EBO				V _{CE(sat)}	19				BE					y			
Subgroup		2 `₄ = +125°C)			3	з	з	з	_	3	з	ч	_	ч	3	3		-	а	3	. >	>	3	3	a	3	

MIL-38510/108A

3 3

Note			-	7	e	4	5	9	2	œ	6	10	1	12	13	14	14	14	14	14	15	16	17	18		
	Unit	>	۸ ۳	n	n	n	mV/∘C	я	n	n	n	μV/°C	n	n	n											
Limits	Мах	0.750	3.0	u	ä	u	-1.3	n	ä	u	y	15.0	u	u	ä						1.15	u	n	ä		
	Min						-2.2	з	3	3	3					70	a	a	а	a	0.85	3	з	3	-	
	Measured terminal	BQ5	1	1	1	1	:	:	1	:	1	:	1	1	1	BQ1	BQ2	BQ3	BQ4	BQ5	I	1	:	ı		30) 131) 132)
4	CQ5	3 <																		3 V/ 1 mA)/h _{FE} (1))/h _{FE} (8)/h _{FE} (
13	EQ5/ SUB	GND/ -10 mA	GND	'n	n	и	3	и	n	ä	a	u	ä	и	n	u	n	n	'n	n	u	u	я	u		յ _{FE} (128 Դ _{FE} (128 Ի _{FE} (128
12	BQ5																			8						culate h culate h ilculate
5	CQ4																		3 V/ 1 mA							16. Cal 17. Cal 18. Ca
10	EQ4																		GND							
ი	3Q4																		4						-	⁵⁰ //100 61//100 62//100
œ	O3																	// WA							-	V ₁₁₆ – V ₆ V ₁₁₇ – V V ₁₁₈ – V V _{IB}
	33 53																	1 3							-	ulate ∖ sulate ∖ sulate ` = 1 mA
	е е																	ΰ							-	1. Calc 3. Calc 14. h _E
9	2 BQ																. 4	8								\leftarrow \leftarrow \leftarrow
Ω	ŝ																°, 2,√								-	60/100 51/100 52/100 53/100
4	BQ2																<u> </u>									$106 - \xi_{f}$ 107 - ξ_{f} 108 - $\langle \xi_{f}$
ო	EQ1, 2															GND	GND									ulate V1 ulate V ulate V ulate V
7	BQ1															<u>_</u>										Calo Calo Calo Calo
~	caı															3 V/ 1 mA										0.8.7.6. 0.8.7.6
Cases A,C,D	Test no.	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	-	e $ V_{105} - V_{10} $ te $ V_{105} - V_{10} $ te $ V_{105} - V_{10} $ te $ V_{105} - V_{10} $
Symbol (<u> </u>	V _{BE}	V _{BEQ1} – V _{BEQ2}	bea1 – Vbea3	beq1 – Vbeq4	bea1 – Vbeas	$\Delta V_{BE} / \Delta T$					$\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	$\Delta V_{BEQ1} - V_{BEQ3})/\Delta T$	$\Delta V_{BEQ1} - V_{BEQ4})/\Delta T$	$\Delta V_{BEQ1} - V_{BEQ5})/\Delta T$	EE	3				hfea1/hfea2	FEQ1/hFEQ3	FEQ1/hFEQ4	FEQ1/hFEQ5	OTES.	2. Calculat 1. Calculat 2. Calculat 3. Calculat 4. Calculat
Subgroup		2 T≜=	+125°C	<u>1</u>	<u>1</u>	2	2	2	<u>1</u>	<u>1</u>	1	<u>,</u>	<u>,</u>	<u>,</u>	<u> </u>	<u>I</u>	<u>I</u>	<u>I</u>	ے	<u>I</u>	3	3	3	<u>۔</u> ح	Z د	<u>د</u>

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (rins not designated may be H > 2.0.V or I < 0.8 V or norm)

Note																		-	2	ε	4	5	9	7	œ	6]
		Unit	>	3	ä	ä	u	×	u	a	з	×	a	я	ä	×	×	Уш	3	ä	a	mV/∘C	ä	u	u		
l imite		Мах	1.100	ч	3	3	3	0.950	з	а	×	ч	1.000	ч	u,	ч	ч	3.0	ч	3	ч	-1.3	3	z	ч	-	3
		Min						0.750	я	u	я	ų										-2.2	ä	'n	u	u	
		Measured terminal	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	1	1	1	1	1	:		ı	:	
14	ţ	CQ5					10 mA					3 <					3 V										
5	2	EQ5/ SUB	GND	3	u	n	3	7	и			-1 mA	/GND	3			-10 mA	/GND	3	u	3	3	a	u	з	з	
12	i	BQ5					1 mA				3	<u> </u>	GND				- <u>-</u>	GND									3/80 1/80 1/80
4	:	CQ4				10 mA					3 V					3 V											¹⁴⁴) × 10 ¹⁴⁵) × 10 ¹⁴⁶) × 10
10	2	EQ4				GND					-1 mA					-10 mA											$(V_{51} - V_{12})$ $(V_{52} - V_{12})$ $(V_{53} - V_{12})$
σ)	BQ4				1 mA					в	GND				в	GND										alculate alculate alculate
, «	þ	CQ3			10 mA					3 V					3 V												ບິບິບິ ເ ໜີ
2		EQ3			GND					GND/ -1 mA					GND/ -10 mA												0 ³ 3/80
9	þ	BQ3			1 mA					9					8												/ ₁₄₆ x 1 ₁₄₂) x 10 ₁₄₃) x 10
	b	CQ2		10 mA					3 \					3 <													$V_{142} - V_{49} - V_{49} - V_{50} - V_{50} - V_{50}$
4	·	BQ2		1 mA					в					9													culate culate (culate (culate (
c.	þ	EQ1, 2	GND	GND				GND/ -1 mA	GND/ -1 mA				GND/ -10 mA	GND/ -10 mA													4. Cal 5. Cal 6. Cal
~	1	BQ1	1 mA					в					в														0 ^{.00} .0
	-	ca1	10 mA					3 V					3 V														V ₁₄₃ x 1 V ₁₄₄ x 1 V ₁₄₆ x 1
	Cases A, C, D	Test no.	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	Iculate V ₁₄₂ – Iculate V ₁₄₂ – Ilculate V ₁₄₂ –
Symbol			V _{BE(sat)}					V _{BE}			и	2	2			7	ч	beq1 – Vbeq2	BEQ1 – VBEQ3	BEQ1 – VBEQ4	bea1 – Vbeas	$\Delta V_{BE} / \Delta T$					IOTES: 1. Ca 2. Ca 3. Ca
Subaroun	dnoificino		3 T _^ = -55°C				3	3	3	3		3	3				3	3	2	2 2	2 2	2 2	>			a	

. ത്

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

	or open)
- Continued.	', or L \leq 0.8 V,
r device type 02	ay be H≥2.0 \
A inspection fo	ot designated m
Group	(pins n
TABLE III.	conditions
	Terminal

r		1		1	1	1		1	1			1	1	1	1	-	
Note		-	7	е	4	2	വ	വ	2	വ	9	2	œ	6	10	10	10
	Unit	μV/°C	з	з	з												
Limits	Max	15.0	u	u	ä						1.15	ä	u	u			
	Min					40	a	3	а	a	0.85	a	a	а	60	60	60
	Measured terminal	:	:	:	:	BQ1	BQ2	BQ3	BQ4	BQ5	:	:	:	:	BQ1	BQ2	BQ3
14	CQ5									3 V/ 1 mA							
13	EQ5/ SUB	GND	31	71	n	'n	а	а	'n	а	я	n	71	77	'n	а	и
12	BQ5									в							
11	CQ4								3 V/ 1 mA								
10	EQ4								GND								
6	BQ4								B								
8	CQ3							3 V/ 1 mA									3 V/ 1 mA
7	EQ3							GND									GND
9	BQ3							B									Iв
5	CQ2						3 V/ 1 mA									3 V/ 1 mA	
4	BQ2						Ъ									B	
ю	EQ1, 2					GND	GND								GND	GND	
5	BQ1					B									B		
-	cQ1					3 V/ 1 mA									3 V/ 1 mA		
Cases A,C,D	Test no.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
Symbol		$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	$(\Delta V_{BEQ1}-V_{BEQ3})/\Delta T$	$(\Delta V_{BEQ1}-V_{BEQ4})/\Delta T$	$(\Delta V_{BEQ1} - V_{BEQ5})/\Delta T$	H	21				h _{FEQ1} /h _{FEQ2}	FEQ1/hFEQ3	FEQ1/hFEQ4	FEQ1/hFEQ5	hfe	hfe	hfe
Subgroup		3 T≜ = -55°C							۲		ч	z	z	٢	4 Γ _A = +b5°C	٢	

NOTES:

1. Calculate $|V_{59} - V_{152}| \times 10^3/80$ 2. Calculate $|V_{60} - V_{153}| \times 10^3/80$ 3. Calculate $|V_{61} - V_{154}| \times 10^3/80$ 4. Calculate $|V_{61} - V_{155}| \times 10^3/80$ 5. hre = 1 mA/ls 6. Calculate hre(165)/hre(166) 7. Calculate hre(165)/hre(166) 8. Calculate hre(165)/hre(166) 9. Calculate hre(165)/hre(168) 9. Calculate hre(165)/hre(168) 10. Adjust l_b until IC = 1.1 mA, hre = 0.1 mA/dl_b

MIL-M-38510/108A

Note	i	1	٢	2	2	2	2	2	1	n	n	n	'n	n	'n	n	n	'n	3
	Unit			MHz															dВ
Limits	Мах																		
	Min	60	60	300	я	з	з	з	60	ч	з	n	а	35	ч	и	я	a	80
	Measured terminal	BQ4	BQ5	cQ1	CQ2	co3	CQ4	CQ5	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	CQ4
14	CQ5		3 V/ 1 mA										3 V/ 1 mA					3 V/ 1 mA	
<u>5</u>	EQ5/ SUB	GND	GND						GND	з	з	з	з	з	з	з	з	з	з
12	BQ5		qI										qI					qI	
;	CQ4	3 V/ 1 mA										3 V/ 1 mA					3 V/ 1 mA		
10	EQ4	GND										GND					GND		
0	BQ4	qI										qI					q		
ω	CQ3										3 V/ 1 mA					3 V/ 1 mA			
7	EQ3										GND					GND			
9	BQ3										q					q			
5	CQ2									3 V/ 1 mA					3 V/ 1 mA				
4	BQ2									qI					qI				
ო	EQ1, 2								GND	GND				GND	GND				
2	BQ1								q					q					
←	caı								3 V/ 1 mA					3 V/ 1 mA					
Cases A,C,D	Test no.	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194
Symbol	-	hfe	hfe	ft	ц				hfe	ц		u		hfe			ц		C.S.
Subgroup		4 T≜ = +25°C	I	<u> </u>	Į	<u>ļ</u>	<u>I</u>	ļ	5" T≜ =	+125°C	3	<u> </u>	ļ	5" T _A = -55°C	I	3	Į	3	7" T≙ = +25°C

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

" NOTES:

1. Adjust I_b until I_c= 1.1 mA, h_{fe} = 0.1 mA/ Δ I_b 2. f = 100 MHz, measure h_{fe} , f_t = 100 h_{fe} (see figure 4) 3. See figure 3.

MIL-M-38510/108A

	Note		-	з	3	3	3	3	3	3	a	a	з	3	a	3	3	3	3	u	3	ч
		Unit	su	n	a	a	a	u	a	a	a	a	u	3	a	u	a	a	a	3	3	a
	Limits	Max	100	u	z	и	z	50	и	3	z	z	200	2	z	z	я	80	3	3	3	3
		Min																				
		Measured terminal	ca1	CQ2	CQ3	CQ4	CQ5	cQ1	CQ2	CQ3	CQ4	CQ5	cQ1	CQ2	CQ3	CQ4	CQ5	ca1	CQ2	CQ3	CQ4	CQ5
	14	CQ5																				
	13	EQ5/ SUB	GND	n	3	π	n	3	n	з	7	7	33	ä	7	3	з	з	з	з	я	з
	12	BQ5																				
	11	CQ4																				
	10	EQ4																				
	ი	BQ4																				
	ω	co3																				
	7	EQ3																				
	9	BQ3																				
:	5	CQ2																				
	4	BQ2																				
	e	EQ1, 2																				
	7	BQ1																				
	.	201																				
	0																					
	Cases A,C	Test no.	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214
	Symbol		td			u		tr			и		ts			z		ţf			ч	
	Subgroup		9 T _^ = +25°C		<u>I</u>	I				I	I,		=	I							<u> </u>	

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Г

NOTES: 1. See figure 2.

3

:	Note		~	з	'n	'n	u	а	а	а	а	а	a	а	а	а	u	u	а	a	a	з
		Unit	su	з	u	'n	a	а	а	а	а	а	a	а	а	а	n	"	а	u	a	3
	Limits	Мах	160	з	я	'n	3	80	з	з	з	з	300	з	з	з	n	125	з	n	3	u
		Min																				
		Measured terminal	ca1	CQ2	CQ3	CQ4	CQ5	ca1	CQ2	CQ3	CQ4	CQ5	ca1	CQ2	CQ3	CQ4	CQ5	cQ1	CQ2	CQ3	CQ4	CQ5
	14	CQ5																				
	13	EQ5/ SUB	GND	з	z	y	3	3	я	3	ч	ч	з	з	ч	3	n	"	з	"	ä	"
0,	2	BQ5																				
	2	CQ4																				
0	10	EQ4																				
0	ה	3Q4																				
	×	03																				
_		C S																				
1	<u> </u>	В																				
¢	ø	BQ3																				
L	۵	CQ2																				
	4	BQ2																				
c	n	EQ1, 2																				
c	N	BQ1																				
-	-	cQ1																				
	Cases A,C,D	Test no.	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
	Symbol		td	ч		ч		tr			ч		ts			3		tf			u	
	Subgroup		10 T _A =	+125°C			3		3		3	=		4		3	a		3		z	и

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

NOTES: 1. See figure 2.

a

Downloaded from Arrow.com.

Note		-	31	u	a	3	z	a	3	a	a	a	а	z	a	n	×	×	a	×	a
	Unit	su	y	u	a	3	3	3	3	a	a	a	а	z	a	n	3	3	a	3	a
Limits	Max	160	z	u	a	3	80	ч	3	3	3	300	3	a	3	a	125	3	3	3	3
	Min																				
	Measured terminal	ca1	CQ2	CQ3	CQ4	CQ5	ca1	CQ2	ca3	CQ4	CQ5	ca1	CQ2	ca3	CQ4	CQ5	ca1	CQ2	CQ3	CQ4	CQ5
14	CQ5																				
13	EQ5/ SUB	GND	n	4	'n	'n	71	a	'n	з	з	'n	з	77	a	n	3	3	a	a	а
12	BQ5																				
11	CQ4																				
10	EQ4																				
6	3Q4																				
8	B B B																				
	ŏ																				
7	EQ																				
9	BQ3																				
5	CQ2																				
4	BQ2																				
e	EQ1, 2																				
2	BQ1																				
-	cQ1																				
Cases A,C,D	Test no.	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254
Symbol		td			33		tr			ч		ts			3		łf			ч	
Subgroup		11 T _^ = -55°C			3	з		a		3	3		ч		з	з		z		а	u

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

NOTES: 1. See figure 2

a

MIL-M-38510/108A

4.5.2 <u>Life test cooldown procedure</u>. When devices are measured at 25°C following application of the operating life or burn-in test condition, they shall be cooled to within 10°C of their power stable condition room temperature prior to removal of the bias.

Table IV. Groups B and C end point electrical parameters (T_A = 25°C).

Test	Device typ	es 01 and 02
1631	Device typ	
	Limit	Delta
V _{BE}	0.600 V min	±0.010 V
	0.800 V max	
$ V_{BEQA} - V_{BEQB} $	2.0 mV	
h _{FE}	70 min	±10%
	300 max <u>1</u> /	

1/	The 300	max limit	applies to	device	type 01	only.
	1110 000	max mm	applies to	00100	type or	orny.

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.

- 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification of the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of MIL-STD-883, method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).

6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:.

V _{(BR)CUO}	Breakdown voltage, collector to substrate
Icuo	Collector to substrate cutoff current
V _{CU}	Collector to substrate voltage (dc)

6.6 Logistic support. Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.

6.7 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	3018A
02	3045

6.8 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

ustodians:	Preparing activity:
Army – CR	DLA - CC
Navy - EC	
Air Force - 11	Project 5962-1990

Review activities: Air Force - 19

Custodians:

DLA - CC