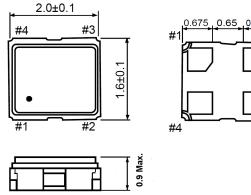
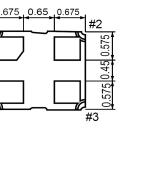


ATIONAL

ECS-1633 SMD CLOCK OSCILLATOR


ECS-1633 (+3.3V) subminiature SMD oscillators. Ideal for today's high density applications.


OPERATING CONDITIONS / ELECTRICAL CHARACTERISTICS

PARAMETERS	CONDITIONS	ECS	-1633 (+	3.3V)		
PARAMETERS	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS	
Frequency Range		1.500		80.000	MHz	
Operating Temperature	Standard	-10		+70	C	
Operating reinperature	Extended (N Option)	-40		+85	C	
Storage Temperature		-55		+100	C	
Input Voltage	VDD	+3.135	+3.3	+3.465	VDC	
Frequency Stability *	Option A			± 100	ppm	
	Option B			± 50	ppm	
	Option C			± 25	ppm	
Input Current	1.500 to 19.90 MHz			6.0	mA	
	20.0 to 39.9 MHz			7.0	mA	
	40.0 to 49.9 MHz			8.0	mA	
	50.0 to 80.0 MHz			9.0	mA	
Stand-by Current	Pin 1 = VIL			10.0	μΑ	
Output Symmetry	@ 50% VDD Level			45/55	%	
Rise and Fall Times	10% VDD to 90% level			5	ns	
"0" level	VOL			10% VDD	VDC	
"1" level	VOH	90% VDD			VDC	
Output Load	CMOS			15	pF	
Disable delay	able delay			150	ns	
Startup time				10	ms	
Aging				±5	ppm	

* Note: Inclusive of +25°C tolerance, operating temperature, input voltage change, load change, shock and vibration.

DIMENSIONS (mm)

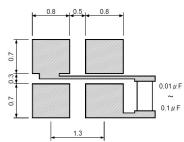


Figure 2) Suggested Land Pattern

Pin Connections					
Pin #1	Tri-State				
Pin #2	Ground				
Pin #3	Output				
Pin #4	Vdd				

Tri-State Control Voltage				
Pad 1	Pad 3			
Open	Oscillation			
VIH 70% VDD Min	Oscillation			
VIL 30% VDD Max	No Oscillation			

Note: Internal crystal oscillation to be halted (Pin #1=VIL)

Figure 1) Top, Side and Bottom views

Downloaded from Arrow.com.

PART NUMBERING GUIDE: Example ECS-1633-200-BN-TR

ECS - S	Series -	Frequency Abbreviation	- Stability	Temperature	Packaging	
163	33 = +3.3V	See Frequency	$A = \pm 100 \text{ ppm}$ $B = \pm 50 \text{ ppm}$ $C = \pm 25 \text{ ppm}$	Blank = -10 ~ +70 ℃ M = -20 ~ +70 ℃ N = -40 ~ +85 ℃	TR = Tape & Reel	