Dual Processor Supervisors with Watchdog ADM13305

FEATURES

Dual supervisory circuits

Supply voltage range of 2.7 V to 5.5 V
Pretrimmed threshold options: $1.8 \mathrm{~V}, \mathbf{2 . 5} \mathrm{~V}, \mathbf{3 . 3} \mathrm{~V}$, and 5 V
Adjustable 0.6 V voltage reference
Maximum supply current of $40 \mu \mathrm{~A}$
140 ms (minimum) reset timeout
Watchdog timer with $1.6 \mathbf{~ s e c}$ (typical) timeout
RESET valid from $V_{D D} \geq 1.1 \mathrm{~V}$
Push-pull RESET and $\overline{\text { RESET }}$ outputs
8-lead, narrow body SOIC package
Temperature range: $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

APPLICATIONS

Supervising DSPs/microcontrollers

Industrial and portable equipment
Wireless systems
Notebook/desktop computers

GENERAL DESCRIPTION

The ADM13305 is a dual voltage supervisor designed to monitor two supplies and provide a reset signal to DSP and microprocessor-based systems.
There are five models available, all of which feature a combination of internally pretrimmed undervoltage threshold options for monitoring $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V supplies. There is also an adjustable input option with an undervoltage threshold voltage of 0.6 V .

The ADM13305-18, ADM13305-25, and ADM13305-33 models have two internally fixed thresholds. The ADM13305-4 and ADM13305-5 offer one internally fixed threshold and one externally programmable threshold via a resistor string. See the Ordering Guide for a list of all available options.
During power-up, $\overline{\operatorname{RESET}}$ is asserted when the supply voltage exceeds 1.1 V . The device then monitors the SENSEv input pins and holds the $\overline{\text { RESET }}$ output low as long as either of the SENSEv inputs remains below the rising threshold voltage, $\mathrm{V}_{\mathrm{IT}}+$.

Once the supplies monitored at the SENSEv inputs rise above their associated thresholds, the reset signal remains low for the reset timeout period before deasserting. Subsequently, if a voltage monitored by the SENSEv pins falls below its associated falling threshold, $\mathrm{V}_{\text {IT }}$, the $\overline{\mathrm{RESET}}$ output asserts. The ADM13305 features both an active high RESET and an active low $\overline{\text { RESET }}$ output.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2. .

As well as providing power-on reset signals, an on-chip watchdog timer can reset the microprocessor if it fails to strobe within the preset timeout period. A reset signal can also be asserted by an external push button through the manual reset input pin.
The ADM13305 is available in an 8-lead, narrow body SOIC package. The device operates over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ADM13305* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts \square

View a parametric search of comparable parts

Documentation ㅁ

Data Sheet

- ADM13305: Dual Processor Supervisors with Watchdog Data Sheet

Reference Materials \square

Product Selection Guide

- ADI Complementary Parts Guide - Supervisory Devices and DSP Processors
- Supervisory Devices Complementary Parts Guide for Altera FPGAs
- Supervisory Devices Complementary Parts Guide for Xilinx FPGAs

Design Resources ${ }^{\square}$

- ADM13305 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions
View all ADM13305 EngineerZone Discussions

Sample and Buy \square

Visit the product page to see pricing options

Technical Support느

Submit a technical question or find your regional support number

[^0]
ADM13305

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagrams. 1
Revision History 2
Specifications 3
Timing Requirements 5
Switching Characteristics 5
Functional Truth Table 5
Absolute Maximum Ratings 6
Thermal Resistance 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics. 8
Theory of Operation 10
Input Configuration 10
Reset Output 10
Watchdog Timer 10
Manual Reset ($\overline{\mathrm{MR}}$) 11
Outline Dimensions 12
Ordering Guide 12

REVISION HISTORY

8/07—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1. ADM13305-18, ADM13305-25, and ADM13305-33

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Min \& Typ \& Max \& Unit \& Test Conditions/Comments \\
\hline OPERATING VOLTAGE RANGE, \(\mathrm{V}_{\mathrm{DD}}\) \& 2.7 \& \& 5.5 \& V \& \\
\hline SUPPLY CURRENT, IDD \& \& \& 40 \& \(\mu \mathrm{A}\) \& \\
\hline INPUT CAPACITANCE, \(C_{1}\) \& \& 10 \& \& pF \& \(\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{DD}}\) \\
\hline \begin{tabular}{l}
RESET, \(\overline{\text { RESET OUTPUT }}\) \\
High Level Output Voltage, \(\mathrm{V}_{\text {он }}\) \\
Low Level Output Voltage, VoL \\
Power-Up Reset Voltage \({ }^{1}\)
\end{tabular} \& \[
\begin{aligned}
\& V_{D D}-0.2 \\
\& V_{D D}-0.4 \\
\& V_{D D}-0.4
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 0.2 \\
\& 0.4 \\
\& 0.4 \\
\& 0.4
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{~V} \\
\& \mathrm{~V}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\
\& \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{~V} \mathrm{VD}=3.3 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V} \text { DD }=5.5 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{L}}=20 \mu \mathrm{~A} \\
\& \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}, \mathrm{~V}=5.5 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{DL}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}} \geq 1.1 \mathrm{~V}
\end{aligned}
\] \\
\hline SENSE INPUTS
Falling Threshold Voltage, \(\mathrm{V}_{\text {IT- }}\)

Hysteresis at SENSEv Inputs, $\mathrm{V}_{\text {HYS }}$ \& $$
\begin{aligned}
& 1.64 \\
& 2.20 \\
& 2.86 \\
& 4.46 \\
& 1.64 \\
& 2.20 \\
& 2.86 \\
& 4.46
\end{aligned}
$$ \& 1.68

2.25
2.93
4.55
1.68
2.25
2.93
4.55
15
20
30

40 \& \[
$$
\begin{aligned}
& 1.72 \\
& 2.30 \\
& 3.00 \\
& 4.64 \\
& 1.73 \\
& 2.32 \\
& 3.02 \\
& 4.67
\end{aligned}
$$

\] \& | V |
| :--- |
| V |
| V |
| V |
| V |
| V |
| V |
| V |
| mV |
| mV |
| mV |
| mV | \& \[

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\text {IT- }}=1.68 \mathrm{~V} \\
& \mathrm{~V}_{\text {IT- }}=2.25 \mathrm{~V} \\
& \mathrm{~V}_{\text {IT- }}=2.93 \mathrm{~V} \\
& \mathrm{~V}_{\text {IT- }}=4.55 \mathrm{~V}
\end{aligned}
$$
\]

\hline | WDI |
| :--- |
| Average High Level Input Current, Im(av) Average Low Level Input Current, ILAV) | \& \& \[

$$
\begin{array}{r}
100 \\
-15 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
150 \\
-20
\end{array}
$$

\] \& $\mu \mathrm{A}$ $\mu \mathrm{A}$ \& \[

$$
\begin{aligned}
& \mathrm{WDI}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \mathrm{WDI}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}
\end{aligned}
$$
\]

\hline | INPUT VOLTAGE AT $\overline{\mathrm{MR}}$ AND WDI |
| :--- |
| High Level, $\mathrm{V}_{\mathbf{H}}$ |
| Low Level, $\mathrm{V}_{\text {IL }}$ | \& $0.7 \times \mathrm{V}_{\text {DD }}$ \& \& $0.3 \times \mathrm{V}_{\text {D }}$ \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$
\] \&

\hline INPUT TRANSITION RISE AND FALL RATE AT $\overline{\overline{M R}}$ \& \& \& 50 \& ns/V \&

\hline HIGH LEVEL INPUT CURRENT, IH $\frac{\text { WDI }}{M R}$ SENSE1 SENSE2 \& \& \[
$$
\begin{aligned}
& 120 \\
& -130 \\
& 5 \\
& 6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 170 \\
& -180 \\
& 8 \\
& 9
\end{aligned}
$$

\] \& | $\mu \mathrm{A}$ |
| :--- |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ | \& \[

$$
\begin{aligned}
& \mathrm{WDI}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \overline{\mathrm{MR}}=0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \mathrm{SENSE1}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \text { SENSE2 }=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}
\end{aligned}
$$
\]

\hline | LOW LEVEL INPUT CURRENT, IL $\frac{W D I}{M R}$ |
| :--- |
| SENSEv | \& -1 \& \[

$$
\begin{aligned}
& -120 \\
& -430
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& -170 \\
& -600 \\
& +1
\end{aligned}
$$

\] \& | $\mu \mathrm{A}$ |
| :--- |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ | \& \[

$$
\begin{aligned}
& \mathrm{WDI}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \mathrm{MR}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \text { SENSE1, SENSE2 }=0 \mathrm{~V}
\end{aligned}
$$
\]

\hline
\end{tabular}

[^1]
ADM13305

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2. ADM13305-4 and ADM13305-5

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
OPERATING VOLTAGE RANGE, VDD	2.7		5.5	V	
SUPPLY CURRENT, Ido			40	$\mu \mathrm{A}$	
INPUT CAPACITANCE, C_{1}		10		pF	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to V_{DD}
RESET, $\overline{\text { RESET OUTPUT }}$ High-Level Output Voltage, $\mathrm{V}_{\text {он }}$ Low-Level Output Voltage, VoL Power-Up Reset Voltage ${ }^{1}$	$\begin{aligned} & V_{D D}-0.2 \\ & V_{D D}-0.4 \\ & V_{D D}-0.4 \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V} \text { DD }=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=20 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=2 \mathrm{~mA}, \mathrm{~V} \text { DD }=3.3 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=3 \mathrm{~mA}, \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}} \geq 1.1 \mathrm{~V} \end{aligned}$
SENSEv INPUTS Falling Input Threshold Voltage, $\mathrm{V}_{\text {IT- }}$ Hysteresis at SENSEv Inputs, VHYS	$\begin{aligned} & 0.5952 \\ & 2.23 \\ & 2.90 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2.25 \\ & 2.93 \\ & 0 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6048 \\ & 2.29 \\ & 2.98 \end{aligned}$	V V V mV mV mV	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {IT- }}=0.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {T- }}=2.25 \mathrm{~V} \\ & \mathrm{~V}_{\text {IT- }}=2.93 \mathrm{~V} \end{aligned}$
WDI Average High Level Input Current, $I_{H(A V)}$ Average Low Level Input Current, IL(AV)		$\begin{aligned} & 100 \\ & -15 \end{aligned}$	$\begin{aligned} & 150 \\ & -20 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{WDI}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{WDI}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$
INPUT VOLTAGE AT $\overline{M R}$ AND WDI High Level, V_{H} Low Level, V_{IL}	$0.7 \times \mathrm{V}_{\mathrm{DD}}$		$0.3 \times V_{D D}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
INPUT TRANSITION RISE AND FALL RATE AT $\overline{\mathrm{MR}}$			50	ns / V	
HIGH LEVEL INPUT CURRENT, I_{H} $\frac{\text { WDI }}{M R}$ SENSE1 SENSE2	-50	$\begin{aligned} & 120 \\ & -130 \\ & 5 \end{aligned}$	$\begin{aligned} & 170 \\ & -180 \\ & 8 \\ & +50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ nA	$\begin{aligned} & \mathrm{WDI}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \overline{\mathrm{MR}}=0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{SENSE1}=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { SENSE2 }=\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$
LOW LEVEL INPUT CURRENT, IL $\frac{\mathrm{WDI}}{\mathrm{MR}}$ SENSEv	-1	$\begin{aligned} & -120 \\ & -430 \end{aligned}$	$\begin{aligned} & -170 \\ & -600 \\ & +1 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{WDI}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \overline{\mathrm{MR}}=0 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V} \\ & \text { SENSE1, SENSE2 }=0 \mathrm{~V} \\ & \hline \end{aligned}$

[^2]
TIMING REQUIREMENTS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 3. ADM13305-18, ADM13305-25 and ADM13305-33

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
PULSE WIDTH (t_{w})					
SENSEv	6			$\mu \mathrm{s}$	$\mathrm{V}_{\text {SENSEVL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \mathrm{~V}_{\text {SENSEVH }}=\mathrm{V}_{\text {IT }+}+0.3 \mathrm{~V}$
$\overline{M R}$	100			ns	$\mathrm{V}_{\mathrm{H}}=0.7 \times \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0.3 \times \mathrm{V}_{\text {D }}$
WDI	100			ns	$\mathrm{V}_{\text {IH }}=0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IL }}=0.3 \times \mathrm{V}_{\text {DD }}$

Table 4. ADM13305-4 and ADM13305-5

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
PULSE WIDTH (t_{w})					
SENSEv		30		$\mu \mathrm{s}$	$\mathrm{V}_{\text {SENSEVL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \mathrm{~V}_{\text {SENSEVH }}=\mathrm{V}_{\text {IT+ }}+0.3 \mathrm{~V}$
$\overline{M R}$	100			ns	$\mathrm{V}_{\text {IH }}=0.7 \times \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }}=0.3 \times \mathrm{V}_{\text {D }}$
WDI	100			ns	$\mathrm{V}_{\text {IH }}=0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IL }}=0.3 \times \mathrm{V}_{\mathrm{DD}}$

SWITCHING CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 5. ADM13305-18, ADM13305-25 and ADM13305-33

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Watchdog Timeout ($\mathrm{t}_{\text {tout) }}$)	1.1	1.6	2.3	sec	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {IT+ }}+0.2 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$
Delay Time (t_{d})	140	200	280	ms	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {IT+ }}+0.2 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$
Propagation Delay, High-to-Low, $\overline{\mathrm{MR}}$ to RESET ${ }^{1} / \overline{\mathrm{RESET}}$ ($\mathrm{t}_{\text {phL }}$)		200	500	ns	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {T+ }}+0.2 \mathrm{~V}, \mathrm{~V}_{\text {IH }} \geq 0.7 \times \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }} \geq 0.3 \times \mathrm{V}_{\text {DD }}$
Propagation Delay, Low-to-High, $\overline{\mathrm{MR}}$ to RESET/ $\overline{\mathrm{RESET}}^{1}$ (tplh)		200	500	ns	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {TT+ }}+0.2 \mathrm{~V}^{\prime} \mathrm{V}_{\mathrm{H}} \geq 0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}} \geq 0.3 \times \mathrm{V}_{\mathrm{DD}}$
Propagation Delay, High-to-Low, SENSEv to RESET $1 / \overline{\text { RESET }}$ (tpHL)		1	5	$\mu \mathrm{s}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IT }}+0.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\mathrm{DD}}$
Propagation Delay, Low-to-High, SENSEv to RESET/ $\overline{\text { ESET }}^{1}$ (tplh)		1	5	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {IT+ }}+0.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\mathrm{DD}}$

${ }^{1}$ The reset timeout delay of 200 ms masks the propagation delay.

Table 6. ADM13305-4 and ADM13305-5

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Watchdog Timeout ($\mathrm{t}_{\text {(out) }}$)	1.1	1.6	2.3	sec	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {IT+ }}+0.2 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$
Delay Time (t_{d})	140	200	280	ms	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {IT+ }}+0.2 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$
Propagation Delay, High-to-Low, $\overline{\mathrm{MR}}$ to RESET ${ }^{1} / \overline{\text { RESET }}$ (tphl)		200	500	ns	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {TT+ }}+0.2 \mathrm{~V}^{\prime} \mathrm{V}_{\mathrm{HH}} \geq 0.7 \times \mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IL }} \geq 0.3 \times \mathrm{V}_{\text {DD }}$
Propagation Delay, Low-to-High, $\overline{\mathrm{MR}}$ to RESET/ $\overline{\mathrm{RESET}}^{1}$ (tplH)		200	500	ns	$\mathrm{V}_{\text {ISENSEV) }} \geq \mathrm{V}_{\text {IT+ }}+0.2 \mathrm{~V}^{\prime} \mathrm{V}_{\mathrm{HH}} \geq 0.7 \times \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IL}} \geq 0.3 \times \mathrm{V}_{\text {DD }}$
		30		$\mu \mathrm{s}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IT+ }}+0.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$
Propagation Delay, Low-to-High, SENSEv to RESET/ $\overline{\text { EESET }}^{1}$ (tplH)		30		$\mu \mathrm{s}$	$\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {IT+ }}+0.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=\mathrm{V}_{\text {IT- }}-0.3 \mathrm{~V}, \overline{\mathrm{MR}} \geq 0.7 \times \mathrm{V}_{\text {DD }}$

${ }^{1}$ The reset timeout delay of 200 ms masks the propagation delay.

FUNCTIONAL TRUTH TABLE

Table 7.

$\overline{\mathbf{M R}}$	SENSE1 $>\mathbf{V}_{\mathbf{I T 1} 1}$	SENSE2 $>\mathbf{V}_{\mathbf{I T} 2}$	$\overline{\text { RESET }}$	RESET
L	X 1	X 1	L	H
H	0	0	L	H
H	0	1	L	H
H	1	0	L	H
H	1	1	H	L

[^3]
ADM13305

ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter	Rating
Supply Voltage Range, V_{DD}	-0.3 V to +6 V
$\overline{\mathrm{MR}, \mathrm{WDI}}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
SENSE1, SENSE2	$\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right) \mathrm{V}_{\mathrm{I}} / \mathrm{V}_{\text {REF }}$
RESET, RESET	-0.3 V to +6 V
Maximum Low Output Current	5 mA
Maximum High Output Current	-5 mA
Input Clamp Current $\left(\mathrm{V}_{1}<0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{DD}}\right)$	$\pm 20 \mathrm{~mA}$
Output Clamp Current $\left(\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{DD}}\right)$	$\pm 20 \mathrm{~mA}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
\quad Soldering (10 sec)	$300^{\circ} \mathrm{C}$
Vapor Phase (60 sec$)$	$215^{\circ} \mathrm{C}$
\quad Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE
Table 9.

Package Type	$\boldsymbol{\theta}_{\text {JA }}$	Unit
8-Lead SOIC_N (R-8)	206	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration
Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	SENSE1	Sense Input Voltage 1.
2	SENSE2	Sense Input Voltage 2.
3	WDI	Watchdog Timer Input.
4	GND	Ground.
5	$\overline{\text { RESET }}$	Active-Low Reset Output.
6	RESET	Active-High Reset Output.
7	$\overline{M R}$	Manual Reset Input.
8	$V_{D D}$	Supply Voltage.

ADM13305

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Sense Threshold Voltage vs. Free Air Temperature at VDD

Figure 5. Supply Current vs. Supply Voltage

Figure 6. Input Current vs. Input Voltage at $\overline{M R}$

Figure 7. ADM13305-18, ADM13305-25 and ADM13305-33 Minimum Pulse Duration at SENSE vs. Sense Threshold Overdrive

Figure 8. ADM13305-4 and ADM13305-5 Minimum Pulse Duration at SENSE vs. Sense Threshold Overdrive

Figure 9. High Level Output Voltage vs. High Level Output Current

ADM13305

Figure 10. High Level Output Voltage vs. High Level Output Current

Figure 11. Low Level Output Voltage vs. Low Level Output Current

Figure 12. Low Level Output Voltage vs. Low Level Output Current

ADM13305

THEORY OF OPERATION

The ADM13305 is a dual voltage supervisor designed to monitor two supplies and provide a reset signal to DSP and microprocessor-based systems.
There are five models available, all of which feature a combination of internally pretrimmed undervoltage threshold options for monitoring $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 5 V supplies. There is also an adjustable input option with an undervoltage threshold of 0.6 V .
The ADM13305-18, ADM13305-25, and ADM13305-33 have two internally fixed thresholds, while the ADM13305-4 and ADM13305-5 offer one internally fixed threshold and one externally programmable threshold via a resistor string. See the Ordering Guide for a list of all available options.

INPUT CONFIGURATION

The ADM13305 is powered through $V_{\text {DD }}$. To increase noise immunity in noisy applications, place a $0.1 \mu \mathrm{~F}$ capacitor between the $V_{D D}$ input and ground.
The SENSEv inputs are resistant to short power supply glitches. Do not allow an unused SENSEv input to float or to be grounded, instead connect it to a supply voltage greater than its specified threshold voltage.
Typically, the threshold voltage at each adjustable SENSEv input is 0.6 V . To monitor a voltage greater than 0.6 V , connect a resistor divider network to the device as depicted in Figure 13, where,

$$
V_{\text {MONITERED }}=0.6 \mathrm{~V}\left(\frac{R 1+R 2}{R 2}\right)
$$

Figure 13. Setting the Adjustable Monitor

RESET OUTPUT

The reset outputs are guaranteed to be in the correct state for V_{DD} down to 1.1 V. During power-up, $\overline{\mathrm{RESET}}$ is asserted when the supply voltage becomes greater than 1.1 V .

Figure 14. Reset Timing Diagram
Once the supplies monitored at the SENSEv pins rise above their associated threshold level, the $\overline{\mathrm{RESET}}$ signal remains low for the reset timeout period before deasserting. Subsequently, if either of the supplies monitored by the SENSEv pins falls below its associated threshold the $\overline{\mathrm{RESET}}$ output reasserts.

The ADM13305 features both an active-low, push-pull $\overline{\text { RESET }}$ output and an active-high, push-pull RESET output.

WATCHDOG TIMER

The ADM13305 features a watchdog timer that monitors microprocessor activity. A timer circuit is cleared with every low-to-high or high-to-low logic transition on the watchdog input pin (WDI). If the timer counts through the preset watchdog timeout period of $1.6 \mathrm{sec}, \overline{\mathrm{RESET}}$ is asserted, as shown in Figure 15.
The microprocessor is required to toggle the WDI pin to avoid being reset. Therefore, failure of the microprocessor to toggle WDI within the timeout period indicates a code execution error and the reset pulse generated restarts the microprocessor in a known state. The watchdog timer can be disabled by leaving WDI floating.

Figure 15. Watchdog Timing Diagram

MANUAL RESET ($\overline{\mathbf{M R}}$)

The ADM13305 features a manual reset input, which when driven low, asserts the reset output, as shown in Figure 16. When $\overline{M R}$ transitions from low to high, reset remains asserted for the duration of the reset active timeout period before deasserting. An external push-button switch can be connected between $\overline{M R}$ and ground to allow the user to generate a reset.

Figure 16. Manual Reset Timing Diagram

ADM13305

OUTLINE DIMENSIONS

Figure 17. 8-Lead Standard Small Outline Package [SOIC N]
Narrow Body
($R-8$)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Nominal Supervised Voltage		Threshold Voltage (Typical)		Temperature Range	Package Description	Package Option
	SENSE1	SENSE2	SENSE1	SENSE2			
ADM13305-18ARZ ${ }^{1}$	3.3 V	1.8 V	2.93 V	1.68 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-18ARZ-RL7 ${ }^{1}$	3.3 V	1.8 V	2.93 V	1.68 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-25ARZ ${ }^{1}$	3.3 V	2.5 V	2.93 V	2.25 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-25ARZ-RL7 ${ }^{1}$	3.3 V	2.5 V	2.93 V	2.25 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-33ARZ ${ }^{1}$	5 V	3.3 V	4.55 V	2.93 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-33ARZ-RL7 ${ }^{1}$	5 V	3.3 V	4.55 V	2.93 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-4ARZ ${ }^{1}$	3.3 V	Adjustable ${ }^{2}$	2.93 V	0.6 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-4ARZ-RL7 ${ }^{1}$	3.3 V	Adjustable ${ }^{2}$	2.93 V	0.6 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-5ARZ ${ }^{1}$	2.5 V	Adjustable ${ }^{2}$	2.25 V	0.6 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
ADM13305-5ARZ-RL7 ${ }^{1}$	2.5 V	Adjustable ${ }^{2}$	2.25 V	0.6 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2} 0.6 \mathrm{~V}$ adjustable. External resistor divider determines the actual sense voltage.

[^0]: * This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

[^1]: ${ }^{1}$ The lowest supply voltage at which $\overline{\text { RESET }}$ becomes active. $\mathrm{t}_{\mathrm{r}}, \mathrm{V}_{\mathrm{DD}} \geq 15 \mu \mathrm{~s} / \mathrm{V}$.

[^2]: ${ }^{1}$ The lowest supply voltage at which $\overline{\operatorname{RESET}}$ becomes active. $\mathrm{t}_{\mathrm{r}}, \mathrm{V}_{\mathrm{DD}} \geq 15 \mu \mathrm{~s} / \mathrm{V}$.

[^3]: ${ }^{1} \mathrm{X}=$ don't care.

