

MOSFET - N-Channel, **POWERTRENCH**®

30 V, 9.0 A, 16 m Ω

FDMA8878, FDMA8878-F130

General Description

This N-Channel MOSFET is produced using onsemi's advanced POWERTRENCH process that has been optimized for R_{DS(on)}, switching performance.

Features

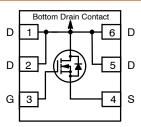
- Max $R_{DS(on)} = 16 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$, $I_D = 9.0 \text{ A}$
- Max $R_{DS(on)} = 19 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$, $I_D = 8.5 \text{ A}$
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- Fast Switching Speed
- Pb-Free, Halide Free and RoHS Compliant

Applications

- DC-DC Buck Converters
- Load Switch in NB
- Notebook Battery Power Management

ABSOLUTE MAXIMUM RATINGS

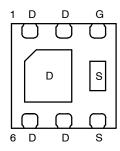
 $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage (Note 3)	±20	V
I _D	Drain Current Continuous (Package Limited), T _C = 25°C Continuous, T _A = 25°C (Note 1a) Pulsed	10 9.0 40	A
P _D	Power Dissipation, T _A = 25°C (Note 1a) (Note 1b)	2.4 0.9	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	52	°C/W
	(Note 1b)	145	



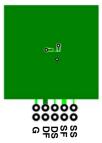
MARKING DIAGRAM

= Assembly Plant Code ΧY = 2-Digit Date Code ΚK = Lot Run Code = Specific Device Code

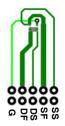
PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
FF CHARA	CTERISTICS		•		•		
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30	-	_	V	
$\frac{\Delta BV_{DSS}}{\Delta T}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	_	- 26	-	- mV/°C	
ΔT _J	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	_	_	1	μА	
I _{DSS}	Gate—Body Leakage	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		_	±100	μA nA	
I _{GSS}	CTERISTICS	VGS - ±20 V, VDS - 0 V			±100	ш	
	Gate to Source Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.2	1.8	3.0	V	
V _{GS(th)}	Gate to Source Threshold Voltage		1.2	-5	3.0	mV/°C	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	_	_ - 5	_	IIIV/°C	
R _{DS(on)}	Static Drain to Source On-Resistance	$I_D = 9.0 \text{ A}, V_{GS} = 10 \text{ V},$	-	13	16	mΩ	
, ,		I _D = 8.5 A, V _{GS} = 4.5 V	_	16	19		
		$I_D = 9.0 \text{ A}, V_{GS} = 10 \text{ V},$ $T_J = 125^{\circ}\text{C}$	-	17	21		
9FS	Forward Transconductance	V _{DD} = 5 V, I _D = 9.0 A	-	41	_	S	
YNAMIC CI	HARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$	_	539	720 pF		
C _{oss}	Output Capacitance	f = 1.0 MHz	_	172	230	·	
C _{rss}	Reverse Transfer Capacitance	1	-	24	35		
R_{G}	Gate Resistance		-	1.3	_	Ω	
WITCHING	CHARACTERISTICS						
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 9.0 A,	_	6	12	ns	
t _r	Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	_	2	10		
t _{d(off)}	Turn-Off Delay Time	7	_	14	25		
t _f	Fall Time	1	-	2	10		
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V to 10 V, V _{DD} = 15 V, I _D = 9.0 A	-	8.5	12	nC	
		$V_{GS} = 0 \text{ V to } 4.5 \text{ V}, V_{DD} = 15 \text{ V}, I_D = 9.0 \text{ A}$	-	4.1	5.8	nC	
Q_{gs}	Gate to Source Charge	V _{DD} = 15 V, I _D = 9.0 A	-	1.6	_		
Q_{ad}	Gate to Drain "Miller" Charge		-	1.2	_		
RAIN-SOU	RCE DIODE CHARACTERISTICS AND M	IAXIMUM RATINGS					
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.0 A (Note 2)	-	0.75	1.2	V	
		V _{GS} = 0 V, I _S = 9.0 A (Note 2)	-	0.86	1.2		
t _{rr}	Reverse Recovery Time	I _F = 9.0 A, di/dt = 100 A/μs	-	16	28	ns	
711	<u>, </u>						


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.

a) 52°C/W when mounted on a 1 in² pad of 2 oz. copper.

b) 145°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% 3. As an N-ch device, the negative V_{gs} rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

TYPICAL CHARACTERISTICS

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

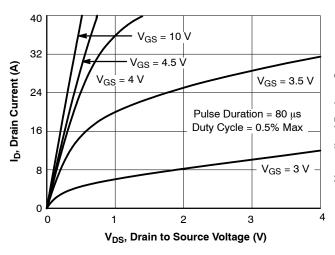


Figure 1. On-Region Characteristics

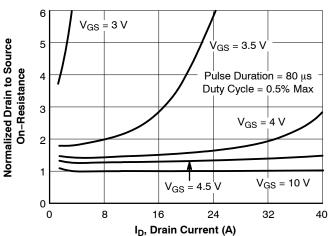


Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

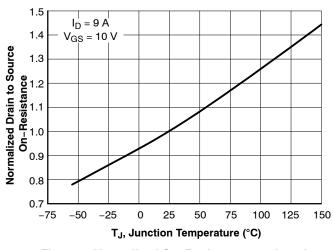


Figure 3. Normalized On–Resistance vs. Junction Temperature

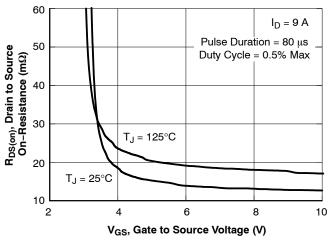


Figure 4. On-Resistance vs. Gate-to-Source Voltage

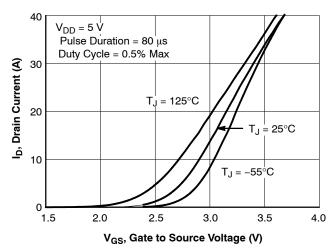


Figure 5. Transfer Characteristics

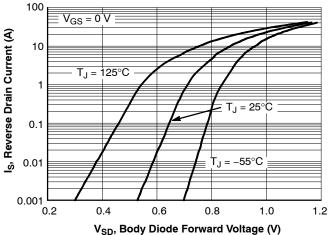


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

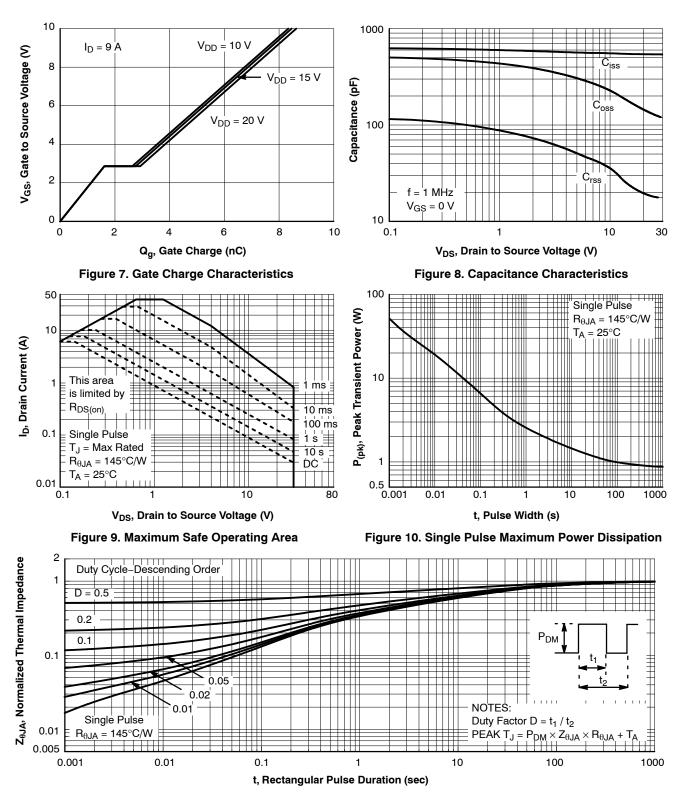
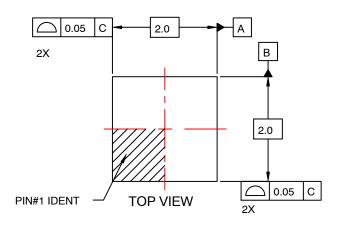
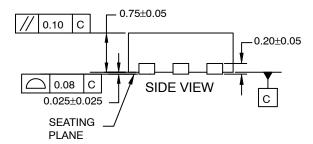


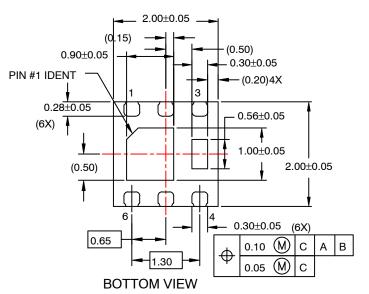
Figure 11. Transient Thermal Response Curve

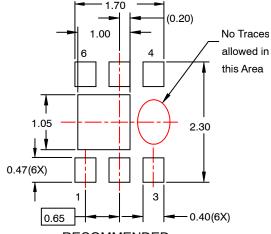
Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

ORDERING INFORMATION

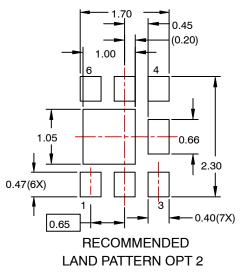

Device Order Number	Package Type	Pin 1 Orientation in Tape Cavity	Shipping [†]
FDMA8878	WDFN6 (Pb-Free/Halide Free)	Top Left	3000 / Tape & Reel
FDMA8878-F130	WDFN6 (Pb-Free/Halide Free)	Top Right	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


WDFN6 2x2, 0.65P CASE 511CZ ISSUE O

DATE 31 JUL 2016



RECOMMENDED LAND PATTERN OPT 1

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13614G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDMA8878