

STN3NF06L

N-channel 60 V, 0.07 Ω typ., 4 A STripFET™ II Power MOSFET in a SOT-223 package

Datasheet - production data

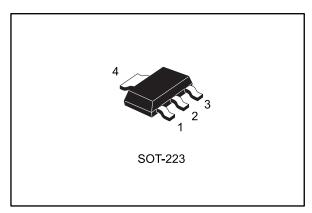
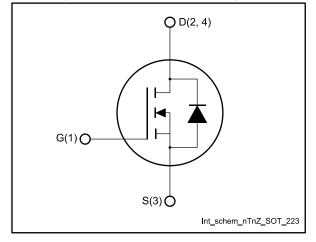



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STN3NF06L	60 V	0.1 Ω	4 A

- Exceptional dv/dt capability
- 100% avalanche tested
- Low threshold drive

Applications

Switching applications

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process is specifically designed to minimize input capacitance and gate charge. It is therefore ideal as a primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer applications. It is also suitable for any application with low gate charge drive requirements.

Table 1: Device summary

Order code	Marking	Package	Packing
STN3NF06L	3NF06L	SOT-223	Tape and reel

July 2017 DocID7798 Rev 9 1/12

Contents STN3NF06L

Contents

1	Electrical ratings		
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	8
4	Packag	e information	g
	4.1	SOT-223 package information	9
5	Revisio	on history	11

Downloaded from Arrow.com.

STN3NF06L Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	60	V	
V _{GS}	Gate-source voltage	±16	V	
I _D ⁽¹⁾	Drain current (continuous) at Tc = 25 °C	4	Α	
I _D	Drain current (continuous) at T _c = 100 °C	2.9	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	16	Α	
Ртот	Total dissipation at T _{pcb} = 25 °C 3.3			
dv/dt (3)	Peak diode recovery voltage slope	10	V/ns	
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	200	mJ	
Tj	Operating junction temperature range	55 to 150	°C	
T _{stg}	Storage temperature range	- 55 to 150 °C		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb}	Thermal resistance junction-pcb (1)	38	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb ⁽²⁾	100	°C/W

Notes:

⁽¹⁾Current limited by the package.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \le 3$ A, di/dt ≤ 150 A/ μ s, $V_{DD} \le V_{(BR)DSS}$

 $^{^{(4)}}$ Starting T_j = 25 °C, I_D = 4 A, V_{DD} = 30 V

 $[\]ensuremath{^{(1)}}\xspace$ When Mounted on FR-4 board 1 inch² pad, 2 oz. of Cu and t <10 s.

⁽²⁾When mounted on minimum recommended footprint.

Electrical characteristics STN3NF06L

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 4: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V
	Zana mata waltana dasia	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V}$ $T_{C} = 125 \text{ °C}^{(1)}$			10	μΑ
Igss	Gate body leakage current	V _{DS} = 0 V, V _{GS} = ±16 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		2.8	V
R _{DS(on)} Static drain-source on-resistance	V _{GS} = 10 V, I _D = 1.5 A		0.07	0.10	Ω	
	V _{GS} = 5 V, I _D = 1.5 A		0.085	0.12	Ω	

Notes:

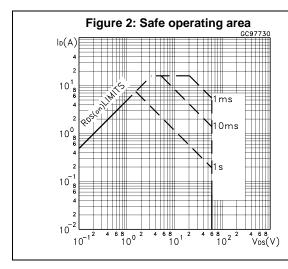
Table 5: Dynamic

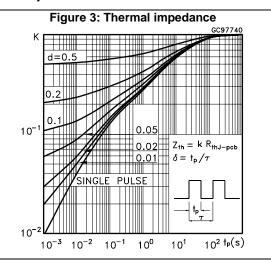
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	340		pF
Coss	Output capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0 V	1	63		pF
Crss	Reverse transfer capacitance	156 26 1,1 1 111 12, 156 6 1	-	30		pF
Qg	Total gate charge	V _{DD} = 48 V, I _D = 3 A	ı	7	9	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 5 V	-	1.5		nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	2.8		nC

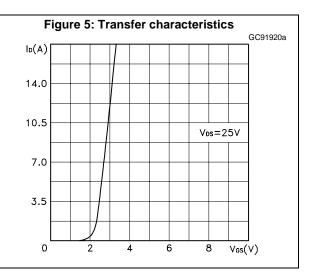
Table 6: Switching times

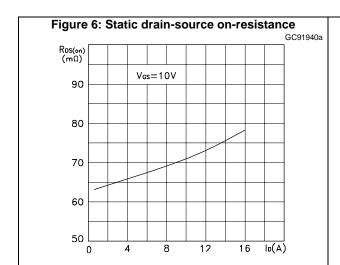
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 30 V, I _D = 1.5 A,	-	9	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$	-	25	-	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 5 V	-	20	-	ns
t _f	Fall time	(see Figure 13: "Test circuit for resistive load switching times" and Figure 18: "Switching time waveform")	-	10	-	ns

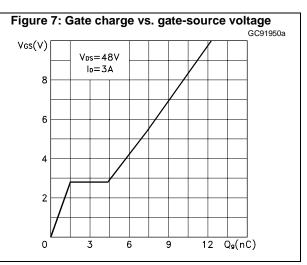
 $[\]ensuremath{^{(1)}}\mbox{Defined}$ by design, not subject to production test.

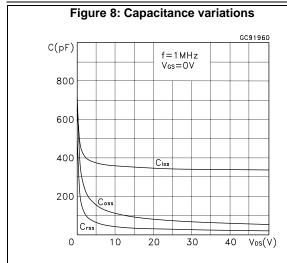

Table 7: Source-drain diode

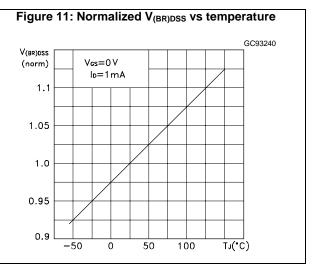

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 4 A, V _{GS} =0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 4 A, di/dt = 100 A/μs,		50		ns
Qrr	Reverse recovery charge	V _{DD} =25 V, T _j =150 °C (see <i>Figure 15: "Test circuit for</i>	-	88		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	3.5		Α

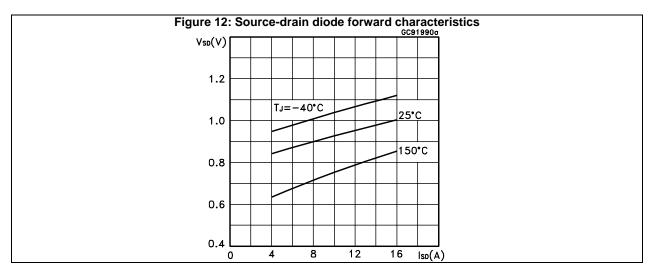

Notes:


 $^{^{(1)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%


2.1 Electrical characteristics (curves)







6/12 DocID7798 Rev 9

STN3NF06L Electrical characteristics

Test circuits STN3NF06L

3 Test circuits

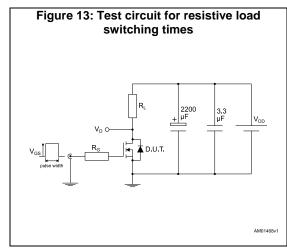
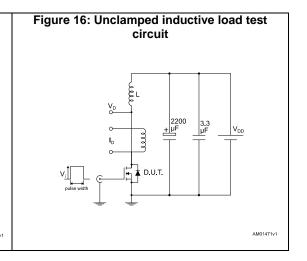
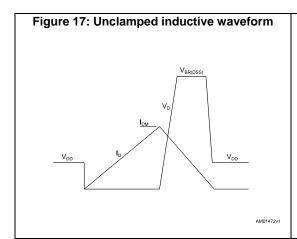
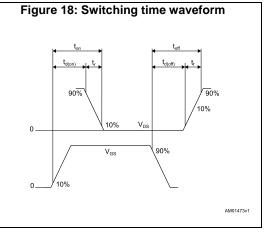


Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 1 kΩ


Vos 1 1 kΩ

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4

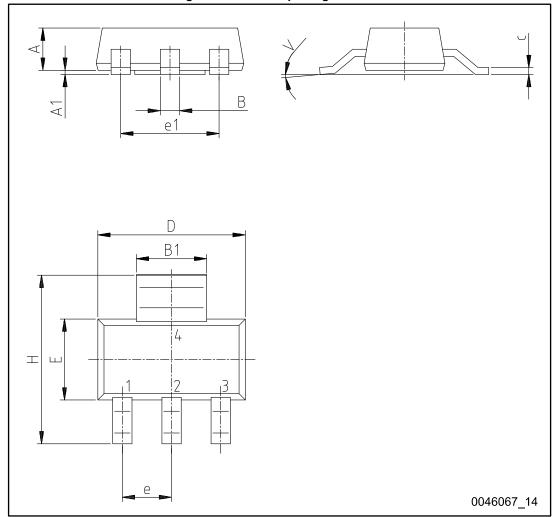
8/12 DocID7798 Rev 9

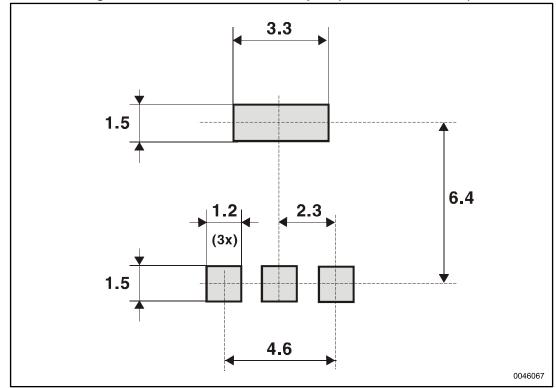
STN3NF06L Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 SOT-223 package information




Figure 19: SOT-223 package outline

577

Table 8: SOT-223 package mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α			1.8			
A1	0.02		0.1			
В	0.6	0.7	0.85			
B1	2.9	3	3.15			
С	0.24	0.26	0.35			
D	6.3	6.5	6.7			
е		2.3				
e1		4.6				
Е	3.3	3.5	3.7			
Н	6.7	7.0	7.3			
V			10°			

Figure 20: SOT-223 recommended footprint (dimensions are in mm)

STN3NF06L Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
21-Jun-2004	5	Complete version.
04-Oct-2006	6	New template, no content change.
01-Feb-2007	7	Typo mistake on Table 2.
12-Jun-2008	8	Corrected marking on Table 1
03-Jul-2017	9	Modified internal schematic diagram on cover page. Updated Section 4: "Package information". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

