Data Sheet

FEATURES

1.5 pF off source capacitance
$<1 \mathrm{pC}$ charge injection
33 V supply range
120Ω on resistance
Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}$
No V L supply required
3 V logic-compatible inputs
Rail-to-rail operation
14-lead TSSOP and 12-lead LFCSP
Typical power consumption < $0.03 \mu \mathrm{~W}$

APPLICATIONS

Automatic test equipment

Data acquisition systems

Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1204 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels designed on an i CMOS (industrial CMOS) process. iCMOS^{\star} is a modular manufacturing process that combines high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of this multiplexer makes it an ideal solution for data acquisition and sample-andhold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth makes the device suitable for video signal switching. iCMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and battery-powered instruments.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADG1204 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines: A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action.

PRODUCT HIGHLIGHTS

1. $\quad 1.5 \mathrm{pF}$ off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. $<1 \mathrm{pC}$ charge injection.
3. 3 V logic-compatible digital inputs: $\mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.8$ V.
4. No VL logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 14-lead TSSOP and 12-lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

Rev. C

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 5
Absolute Maximum Ratings 7
REVISION HISTORY
3/16-Rev. B to Rev. C
Changed LFCSP_VQ to LFCSP Throughout
Changes to Figure 3 8
Updated Outline Dimensions 15
Changes to Ordering Guide 15
2/09—Rev. A to Rev. BChanges to Power Requirements, I_{DD}, Digital Inputs $=5 \mathrm{~V}$
Parameter, Table 1. 4
Changes to Power Requirements, $I_{D D}$, Digital Inputs $=5 \mathrm{~V}$
Updated Outline Dimensions 15
ESD Caution 7
Pin Configurations and Function Descriptions 8
Truth Table 8
Typical Performance Characteristics 9
Test Circuits 12
Terminology 14
Outline Dimensions 15
Ordering Guide 15
7/06-Rev. 0 to Rev. AUpdated Format.Universal
Changes to Table 1 3
Changes to Table 2 5
Changes to the Terminology Section. 14
7/05—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Y Version } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments	
POWER REQUIREMENTS	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$	
IDD			Digital inputs $=0 \mathrm{~V}$ or V_{DD}			
IDD						
	170				$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
				285	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	
			1.0	$\mu \mathrm{A}$ max		
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$	
			1.0	$\mu \mathrm{A}$ max		

${ }^{1} \mathrm{Y}$ version temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

${ }^{1} \mathrm{Y}$ version temperature range is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {Ss }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\begin{aligned} & V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } \\ & 30 \mathrm{~mA} \text {, whichever occurs first } \end{aligned}$
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms , 10% duty cycle maximum)
Continuous Current	45 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
14-Lead TSSOP, θ_{JA} Thermal Impedance (4-Layer Board)	$112^{\circ} \mathrm{C} / \mathrm{W}$
12-Lead LFCSP, θ_{JA} Thermal Impedance	$80^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	$260^{\circ} \mathrm{C}$

[^0]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. TSSOP Pin Configuration

NOTES

1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE TIED

TO SUBSTRATE, V_{SS}.
Figure 3. LFCSP Pin Configuration

Table 4. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	11	A0	Logic Control Input. Active High Digital Input. When low, the device is disabled and all switches are off. 2
		EN	
When high, Ax logic inputs determine on switches.			
3	1	VSS	Most Negative Power Supply Potential.
4	2	S1	Source Terminal. Can be an input or an output.
5	3	S2	Source Terminal. Can be an input or an output.
6	4	D	Drain Terminal. Can be an input or an output.
7 to 9	5	NC	No Connection.
10	6	S4	Source Terminal. Can be an input or an output.
11	7	S3	Source Terminal. Can be an input or an output.
12	8	VDD	Most Positive Power Supply Potential.
13	9	GND	Ground (0 V) Reference.
14	10	A1	Logic Control Input.

TRUTH TABLE

Table 5.

EN	A1	A0	S1	S2	S3	S4
0	X	X	0	Off	Off	Off
1	0	1	On	Off	Off	Off
1	1	0	Off	On	Off	Off
1	1	1	Off	Off	On	Off
1	Off	On				

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

Figure 10. Leakage Currents as a Function of Temperature, Single Supply

Figure 11. IDD vs. Logic Level

Figure 12. Charge Injection vs. Source Voltage

Figure 13. Transition Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. Crosstalk vs. Frequency

Figure 16. On Response vs. Frequency

Figure 17. THD $+N$ vs. Frequency

Figure 18. Off Capacitance vs. Source Voltage

Figure 19. On Capacitance vs. Source Voltage

Figure 20. Capacitance vs. Source Voltage, Single Supply

TEST CIRCUITS

Figure 21. On Resistance

Figure 22. Off Leakage

Figure 23. On Leakage

Figure 24. Address to Output Switching Times

Figure 25. Break-Before-Make Time Delay

Figure 26. Enable-to-Output Switching Delay

Figure 27. Charge Injection

Figure 28. Off Isolation

Figure 29. Bandwidth

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.
$V_{D}\left(V_{s}\right)$
The analog voltage on Terminal D and Terminal S .
$\mathbf{R}_{\text {ON }}$
The ohmic resistance between D and S .
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
Is (OFF)
The source leakage current with the switch off.

I_{D} (OFF)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
Cs (OFF)
The off switch source capacitance, which is measured with reference to ground.
C_{D} (OFF)
The off switch drain capacitance, which is measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$

The on switch capacitance, measured with reference to ground.
C_{IN}
The digital input capacitance.
ton (EN)
The delay between applying the digital control input and the output switching on.
toff (EN)
The delay between applying the digital control input and the output switching off.
$t_{\text {trans }}$
The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by -3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

OUTLINE DIMENSIONS

Figure 32. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.
Figure 33. 12-Lead Lead Frame Chip Scale Package [LFCSP]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-12-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1204YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YCPZ-500RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-12-4$
ADG1204YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4

[^1]
NOTES

[^0]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

[^1]: ${ }^{1} Z=$ RoHS Compliant Part.

